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Abstract

We determine the possible intersection sizes of a Hermitian surface H with an
irreducible quadric of PG(3, q2) sharing at least a tangent plane at a common non-
singular point when q is even.
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1 Introduction

The study of intersections of geometric objects is a classical problem in geometry; see e.g.
[12, 13]. In the case of combinatorial geometry, it has several possible applications either
to characterize configurations or to construct new codes.

Let C be a projective [n, k]-linear code over GF(q). It is always possible to consider
the set of points Ω in PG(k − 1, q) whose coordinates correspond to the columns of any
generating matrix for C. Under this setup the problem of determining the minimum
weight of C can be reinterpreted, in a purely geometric setting, as finding the largest
hyperplane sections of Ω. More in detail, any codeword c ∈ C corresponds to a linear
functional evaluated on the points of Ω; see [19, 21]. For examples of applications of these
techniques see [4, 5, 6].
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Clearly, it is not necessary to restrict the study to hyperplanes. The higher weights of
C correspond to sections of C with subspaces of codimension larger than 1; see [17] and
also [22] for Hermitian varieties.

A different generalization consists in studying codes arising from the evaluation on Ω
of functionals of degree t > 1; see [19]. These constructions yield, once more, linear codes,
whose weight distributions depend on the intersection patterns of Ω with all possible
algebraic hypersurfaces of PG(k − 1, q) of degree t.

The case of quadratic functional codes on Hermitian varieties has been extensively
investigated in recent years; see [2, 8, 9, 10, 11, 18]. It is however still an open problem
to classify all possible intersection numbers and patterns between a quadric surface Q in
PG(3, q2) and a Hermitian surface H = H(3, q2).

In [1], we determined the possible intersection numbers between Q and H in PG(3, q2)
under the assumption that q is an odd prime power and Q and H share at least one
tangent plane. The same problem has been studied independently also in [7] for Q an
elliptic quadric; this latter work contains also some results for q even.

In this paper we fully extend the arguments of [1] to the case of q even. It turns
out that the geometric properties being considered, as well as the algebraic conditions
to impose, are different and more involved than in the odd q case. Our main result is
contained in the following theorem.

Theorem 1.1. In PG(3, q2), with q even, let H and Q respectively be a Hermitian surface
and an irreducible quadric sharing at least a tangent plane at one common non-singular
point P . Then, the possible sizes of the intersection H ∩Q are as follows.

• For Q elliptic:

q3 − q2 + 1, q3 − q2 + q + 1, q3 − q + 1, q3 + 1, q3 + q + 1, q3 + q2 − q + 1, q3 + q2 + 1.

• For Q a quadratic cone:

q3 − q2 + q + 1, q3 − q + 1, q3 + q + 1, q3 + q2 − q + 1, q3 + 2q2 − q + 1.

• For Q hyperbolic:

q2 +1, q3−q2 +1, q3−q2 +q+1, q3−q+1, q3 +1, q3 +q+1, q3 +q2−q+1, q3 +q2 +1,

q3 + 2q2 − q + 1, q3 + 2q2 + 1, q3 + 3q2 − q + 1, 2q3 + q2 + 1.

We remark that, as we are dealing with irreducible quadrics in PG(3, q2), by quadratic
cone (or, in short, cones) we shall always mean in dimension 3 the quadric projecting an
irreducible conic contained in a plane π from a point (vertex) V 6∈ π.

Our methods are mostly algebraic in nature, based upon the GF(q)–linear represen-
tation of vector spaces over GF(q2), but in order to rule out some cases some geometric
and combinatorial arguments are needed, as well as some considerations on the action of
the unitary groups.

For generalities on Hermitian varieties in projective spaces the reader is referred to
[3, 16, 15, 20]. Basic notions on quadrics over finite fields are found in [15, 16].
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2 Invariants of quadrics

In this section we recall some basic invariants of quadrics in even characteristic; our main
reference for these results is [15, §1.1, 1.2], whose notation and approach we closely follow.

Recall that a quadric Q in PG(n, q) is just the set of points (x0, . . . , xn) ∈ PG(n, q)
such that F (x0, . . . , xn) = 0 for some non-null quadratic form

F (x0, . . . , xn) =
n∑
i=0

aix
2
i +

∑
i<j

aijxixj.

If there is no change of coordinates reducing F to a form in fewer variables, then Q is
called non-degenerate or non-singular ; otherwise Q is said to be degenerate or singular.
If the polynomial F splits into linear factors in the algebraic closure of GF(q), then Q
is reducible; otherwise Q is irreducible. It is well known that if Q is reducible, then
F (x1, . . . , xn) = L1(x1, . . . , xn)L2(x1, . . . , xn) with L1 and L2 linear polynomials defined
over GF(q2).

The minimum number of indeterminates which may appear in an equation for Q is
the rank of the quadric, denoted by rank(Q); see [14, §15.3].

Suppose q even and consider the quadric Q in PG(3, q) of equation
∑3

i=0 aix
2
i +∑

i<j aijxixj = 0; define

A :=


2a0 a01 a02 a03
a01 2a1 a12 a13
a02 a12 2a2 a23
a03 a13 a23 2a3

 , B :=


0 a01 a02 a03
−a01 0 a12 a13
−a02 −a12 0 a23
−a03 −a13 −a23 0


and, for detB 6= 0,

α :=
detA− detB

4 detB
. (1)

The values detA, detB and α should be interpreted as follows. In A and B we replace
the terms ai and aij by indeterminates Zi and Zij and we evaluate detA, detB and α
as rational functions over the integer ring Z. Then we specialize Zi and Zi to ai and
ai,j. Furthermore, as q is even, the quadric Q induces a symplectic polarity which is
non-degenerate if, and only if, detB 6= 0 (this is actually equivalent to detA 6= 0 in
odd projective dimension), so the formula (1) giving the invariant α is well defined for
non-singular quadrics.

By [15, Theorem 1.2], a non-singular quadric Q of PG(3, 2h) is hyperbolic or elliptic
according as

Trq(α) = 0 or Trq(α) = 1,

respectively, where Trq denotes the absolute trace GF(q)→ GF(2) which maps x ∈ GF(q)

to x+ x2 + x2
2

+ . . .+ x2
h−1 .
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3 Some technical tools

In this section we are going to prove a series of lemmas that shall be useful to prove our
main result, namely Theorem 1.1.

Henceforth, we shall always assume q to be even; x, y, z will denote affine coordinates
in AG(3, q2) and the corresponding homogeneous coordinates will be J,X, Y, Z. The
hyperplane at infinity of AG(3, q2), denoted as Σ∞, is taken with equation J = 0.

Since all non-degenerate Hermitian surfaces of PG(3, q2) are projectively equivalent,
we can assume, without loss of generality, H to have affine equation

zq + z = xq+1 + yq+1. (2)

Since PGU(4, q) is transitive on H, see [20, §35], we can also suppose that a point where
H and Q have a common tangent plane is P = P∞(0, 0, 0, 1) ∈ H; so, the tangent plane
at P∞ to H and Q is Σ∞. Under the aforementioned assumptions, Q has affine equation
of the form

z = ax2 + by2 + cxy + dx+ ey + f (3)

with a, b, c, d, e, f ∈ GF(q2). A straightforward computation proves that Q is non-singular
if and only if c 6= 0; furthermore Q is hyperbolic or elliptic according as the value of

Trq2(ab/c
2)

is 0 or 1 respectively. When c = 0 and (a, b) 6= (0, 0), the quadric Q is a cone with vertex
a single point V . Write now

C∞ := Q∩H ∩ Σ∞. (4)

If Q is elliptic, the point P∞ is, clearly, the only point at infinity of Q ∩ H, that is
C∞ = {P∞}. The nature of C∞ when Q is either hyperbolic or a cone, is detailed by the
following lemma.

Lemma 3.1. If Q is a cone, then C∞ consists of either 1 point or q2 + 1 points on a line.
When Q is a hyperbolic quadric, then C∞ consists of either 1 point, or q2 + 1 points on a
line or 2q2 + 1 points on two lines. All cases may actually occur.

Proof. As both H ∩ Σ∞ and Q ∩ Σ∞ split in lines through P∞, it is straightforward to
see that the only possibilities for C∞ are those outlined above; in particular, when Q is
hyperbolic, C∞ consists of either 1 point or 1 or 2 lines. It is straightforward to see that
all cases may actually occur, as given any two lines `,m in PG(3, q2) there always exist
at least one hyperbolic quadric containing both m and `. Likewise, given a line ` ∈ Σ∞
with P ∈ ` there always is at least one cone with vertex V ∈ ` and V 6= P meeting Σ∞
just in `.

Now we are going to use the same group theoretical arguments as in [1, Lemma 2.3]
in order to be able to fix the values of some of the parameters in (3) without losing in
generality.
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Lemma 3.2. If Q is a hyperbolic quadric, we can assume without loss of generality:

1. b = 0, and aq+1 6= cq+1 when C∞ is just the point P∞;

2. b = 0, a = c when C∞ is a line;

3. b = βa, c = (β + 1)a, a 6= 0 and βq+1 = 1, with β 6= 1 when C∞ is the union of two
lines.

If Q is a cone, we can assume without loss of generality:

1. b = 0 when C∞ is a point;

2. a = b when C∞ is a line.

Proof. Let Λ be the set of all lines of Σ∞ through P∞. The action of the stabilizer G of
P∞ in PGU(4, q) on Λ is the same as the action of PGU(2, q) on the points of PG(1, q2).
This can be easily seen by considering the action on PGU(2, q) on the line ` spanned by
(0, 1, 0, 0) and (0, 0, 1, 0) fixing the equation Xq+1 + Y q+1 = 0. Indeed, if M is a 2 × 2

matrix representing any σ ∈ PGU(2, q), then M ′ :=

1 0 0
0 M 0
0 0 1

 represents an element

of PGU(4, q) fixing P∞ = (0, 0, 0, 1). The action of PGU(2, q) on ` is analyzed in detail in
[20, §42]. So, we see that the group G has two orbits on Λ, say Λ1 and Λ2 where Λ1 consists
of the totally isotropic lines of H through P∞ while Λ2 contains the remaining q2− q lines
of Σ∞ through P∞. Furthermore, G is doubly transitive on Λ1 and the stabilizer of any
m ∈ Λ1 is transitive on Λ2.

Let now Q∞ = Q ∩ Σ∞. If Q is hyperbolic and C∞ = {P∞} we can assume Q∞ to
be the union of the line ` : J = X = 0 and another line, say u : J = aX + cY = 0 with
aq+1 6= cq+1. Thus, b = 0.

Otherwise, up to the choice of a suitable element σ ∈ G, we can always take Q∞ as
the union of any two lines in {`, s, t} where

` : J = X = 0, s : J = X + Y = 0, t : J = X + βY = 0

with βq+1 = 1 and β 6= 1.
Actually, when C∞ contains just one line we take Q∞ : X(X + Y ) = 0, while if C∞ is

the union of two lines we have Q∞ : (X + Y )(X + βY ) = 0. When Q is a cone, we get
either Q∞ : X2 = 0 or Q∞ : (X + Y )2 = 0. The lemma follows.

4 Proof of Theorem 1.1

We use the same setup as in the previous section. Thus, the Hermitian surface H has
equation (2) whereas the quadric Q has equation (3). We first determine the number of
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affine points that Q and H have in common, that is the size of (Q ∩H) \ C∞, where C∞
is defined in (4). Hence we study the following system of equations

(5)

{
zq + z = xq+1 + yq+1

z = ax2 + by2 + cxy + dx+ ey + f.

In order to solve (5), recover the value of z from the second equation and substitute it in
the first. This gives

aqx2q + bqy2q +cqxqyq +dqxq +eqyq +f q +ax2 + by2 +cxy+dx+ey+f = xq+1 +yq+1. (6)

Consider GF(q2) as a vector space over GF(q) and fix a basis {1, ε} with ε ∈ GF(q2) \
GF(q). Write any element in GF(q2) as a linear combination with respect to this basis,
that is, for any x ∈ GF(q2) let x = x0 + x1ε, where x0, x1 ∈ GF(q). Analogously write
also a = a0 +εa1, b = b0 +εb1 and so on. Thus, (6) can be studied as a quadratic equation
over GF(q) in the indeterminates x0, x1, y0, y1.

As q is even, it is always possible to choose ε ∈ GF(q2)\GF(q) such that ε2+ε+ν = 0,
for some ν ∈ GF(q) \ {1} and Trq(ν) = 1. Then, also, ε2q + εq + ν = 0. Therefore,
(εq + ε)2 + (εq + ε) = 0, whence εq + ε+ 1 = 0. With this choice of ε, (6) reads as

(7)
(a1 + 1)x20 + x0x1 + [a0 + (1 + ν)a1 + ν]x21 + (b1 + 1)y20 + y0y1

+ [b0 + (1 + ν)b1 + ν]y21 + c1x0y0 + (c0 + c1)x0y1 + (c0 + c1)x1y0
+ [c0 + (1 + ν)c1]x1y1 + d1x0 + (d0 + d1)x1 + e1y0 + (e0 + e1)y1 + f1 = 0.

As (7) is a non-homogeneous quadratic equation in (x0, x1, y0, y1), its solutions correspond
to the affine points of a (possibly degenerate) quadratic hypersurface Ξ of PG(4, q). Recall
that the number N of affine points of Ξ equals the number of points of H ∩Q which lie
in AG(3, q2); we shall use the formulas of [15, §1.5] in order to actually count the number
of these points.

To this purpose, we first determine the number of points at infinity of Ξ. These points
are those of the quadric Ξ∞ of PG(3, q) with equation

(8)
f(x0, x1, y0, y1) = (a1 + 1)x20 + x0x1 + [a0 + (1 + ν)a1 + ν]x21

+ (b1 + 1)y20 + y0y1 + [b0 + (1 + ν)b1 + ν]y21 + c1x0y0
+ (c0 + c1)x0y1 + (c0 + c1)x1y0 + [c0 + (1 + ν)c1]x1y1

= 0.

Following the approach outlined in Section 2, we write the matrix associated to Q∞

A∞ =


2(a1 + 1) 1 c1 c0 + c1

1 2[a0 + (1 + ν)a1 + ν] c0 + c1 c0 + (1 + ν)c1
c1 c0 + c1 2(b1 + 1) 1

c0 + c1 c0 + (1 + ν)c1 1 2[b0 + (1 + ν)b1 + ν]

 (9)

As q is even, a direct computation gives

detA∞ = 1 + c2(q+1);

so, the quadric Ξ∞ is non-singular if and only if detA∞ 6= 0, that is cq+1 6= 1.

the electronic journal of combinatorics 23(4) (2016), #P4.13 6



Lemma 4.1. If Q is a cone, then rank(Ξ∞) = 4. If Q is non-singular then rank(Ξ∞) ≥ 2
and if rank(Ξ∞) = 2, then the quadric Q is hyperbolic.

Proof. LetQ be a cone, namely c = 0. It turns out that detA∞ 6= 0 and hence rank(Ξ∞) =
4. Now assume that Q is non-singular. If the equation of Ξ∞ were to be of the form
f(x0, x1, y0, y1) = (lx0 + mx1 + ny0 + ry1)

2 with l,m, n, r over some extension of GF(q),
then c = 0; this is a contradiction. So rank(Ξ∞) ≥ 2. Finally, suppose rank(Ξ∞) = 2,
that is Ξ∞ splits into two planes. We need to prove Trq2(ab/c

2) = 0. First observe that
cq+1 = 1 since the quadric Ξ∞ is degenerate.

Consider now the following 4 intersections C0 : Ξ∞ ∩ [x0 = 0], C1 : Ξ∞ ∩ [x1 = 0],
C2 : Ξ∞ ∩ [y0 = 0], C3 : Ξ∞ ∩ [y1 = 0]. Clearly, as Ξ∞ is, by assumption, reducible in
the union of two planes, all of these conics are degenerate; thus we get the following four
formal equations

1

2
det

2[a0 + (1 + ν)a1 + ν] c0 + c1 c0 + (1 + ν)c1
c0 + c1 2(b1 + 1) 1

c0 + (1 + ν)c1 1 2[b0 + (1 + ν)b1 + ν]

 = 0,

1

2
det

2(a1 + 1) c1 c0 + c1
c1 2(b1 + 1) 1

c0 + c1 1 2[b0 + (1 + ν)b1 + ν]

 = 0,

1

2
det

2(a1 + 1) 1 c0 + c1
1 2[a0 + (1 + ν)a1 + ν] c0 + (1 + ν)c1

c0 + c1 [c0 + (1 + ν)c1] 2[b0 + (1 + ν)b1 + ν]

 = 0,

1

2
det

2(a1 + 1) 1 c1
1 2[a0 + (1 + ν)a1 + ν] c0 + c1
c1 c0 + c1 2(b1 + 1)

 = 0.

Using the condition cq+1 = 1, these give
a0 + (1 + ν)a1 + (c20 + c21)b0 + ν(c20 + c21 + c21ν)b1 = 0

a1 + c21b0 + (c20 + νc21)b1 = 0

(c20 + c21)a0 + ν(c20 + c21 + νc21)a1 + b0 + (1 + ν)b1 = 0

c21a0 + (c20 + νc21)a1 + b1 = 0.

(10)

Since cq+1 = 1, if c1 = 0, then c0 = 1. Solving (10), we obtain{
a1 = b1

a0 + a1 + b0 = 0.
(11)

Therefore Trq2(ab/c
2) = Trq2((a0+εa1)(a0+(ε+1)a1)) = Trq2(a

q+1) = 0 as aq+1 ∈ GF(q).
Suppose now c1 6= 0. Then cq+1 = (c20 + c0c1 + νc21) = 1 and, after some elementary

algebraic manipulations, System (10) becomesa0 =
(
c20
c21

+ ν
)
a1 + b1

c21

b0 = a1
c21

+
(
c20
c21

+ ν
)
b1;

(12)
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hence,
ab

c2
=

(a21 + b21)(c
2
1ν + c21ε+ c20) + a1b1(c

2
1ν + c21ε+ c20 + 1)2

c41(c0 + εc1)2
.

Since ε2 = ε+ ν and c21ν + c20 + 1 = c0c1, we get

ab

c2
=
a21 + b21
c41

+
a1b1
c21
∈ GF(q),

which gives Trq2(ab/c
2) = 0 once more. Hence if rank(Ξ∞) = 2, then Q is hyperbolic.

Lemma 4.2. Suppose Q to be a hyperbolic quadric with C∞ being the union of two lines.
If rank(Ξ∞) = 2, then Ξ∞ = Π1 ∪ Π2 is a plane pair over GF(q).

Proof. By Lemma 3.2 we can assume that b = βa, c = (β + 1)a, a 6= 0 and βq+1 = 1 with
β 6= 1.

Furthermore, since rank(Ξ∞) = 2, we have Ξ = Π1 ∪ Π2 where the planes Π1 and Π2

have respectively equations lx0 +mx1 + ny0 + ry1 = 0 and l′x0 +m′x1 + n′y0 + r′y1 = 0,
for some values of l,m, n, r and l′,m′, n′, r′ in GF(q2). Clearly, in this case,

f(x0, x1, y0, y1) = (lx0 +mx1 + ny0 + ry1)(l
′x0 +m′x1 + n′y0 + r′y1). (13)

Then, up to a scalar multiple, the following must be satisfied:

ll′ = a1 + 1

lm′ + l′m = 1

l′n+ ln′ = c1

l′r + lr′ = c0 + c1

mm′ = a0 + (1 + ν)a1 + ν

mn′ + nm′ = c0 + c1

mr′ + rm′ = c0 + (1 + ν)c1

nr′ + rn′ = 1

nn′ = b1 + 1

rr′ = b0 + (1 + ν)b1 + ν.

(14)

If c1 = 0, then c0 = 1 as cq+1 = 1; in particular, as c = b+ a, we have a0 + b0 = c0 = 1
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and, consequently, as (11) holds we get a1 = 1 = b1. So System (14) becomes

ll′ = 0

lm′ + l′m = 1

l′n+ ln′ = 0

l′r + lr′ = 1

mm′ = a0 + 1

mn′ + nm′ = 1

mr′ + rm′ = 1

nr′ + rn′ = 1

nn′ = 0

rr′ = b0 + 1.

We can assume without loss of generality either l = 0 or l′ = 0. Suppose the former; then
l′ 6= 0 and m = l′ −1. We also have n = 0 and r = l′ −1. It follows that Π1 is the plane of
equation x1 + y1 = 0. In particular, Π1 is defined over GF(q) and, consequently, also Π2

is. If l′ = 0, an analogous argument leads to Π2 : x1 + y1 = 0 and, once more, Ξ∞ splits
into two planes defined over GF(q).

Now suppose c1 6= 0. From (14) we get

ll′ = a1 + 1

ln′ + l′n = c1

nn′ = b1 + 1

mm′ = a0 + (1 + ν)a1 + ν

mr′ + rm′ = c0 + (1 + ν)c1

rr′ = b0 + (1 + ν)b1 + ν

nr′ + rn′ = 1

lm′ + l′m = 1.

(15)

We obtain ll′+nn′ = a1 + b1 = c1 = ln′+ l′n and mm′+ rr′ = c0 + (1 + ν)c1 = mr′+ rm′.
Hence,

(l′ + n′)(l + n) = 0, (m+ r)(m′ + r′) = 0.

There are the following two cases to consider:

1. l = n and m = r or, equivalently, l′ = n′ and m′ = r′

2. l = n and m′ = r′ or, equivalently, l′ = n′ and m = r.

Suppose first l = n and m = r; then n(n′ + l′) = c1 6= 0; consequently, n = l 6= 0 and also
n′ 6= l′. If m = 0, then Π1 has equation x0 + x1 = 0 and is defined over GF(q); then also
Π2 is defined over GF(q) and we are done.
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Suppose now m 6= 0 (and hence r 6= 0). We claim l/m ∈ GF(q). This would give that
Π1 is defined over GF(q), whence the thesis. From (15) we have

n′ = b1+1
n

r′ = b0+(1+ν)b1+ν
r

nr′ + rn′ = 1.

Replacing the values of n′ and r′ in the last equation we obtain

n2 (b0 + (1 + ν)b1 + ν) + r2 (b1 + 1) + nr = 0; (16)

if we consider 
ll′ = a1+1

n

lm′ + lm′ = 1

mm′ = a0 + (1 + ν)a1 + ν

a similar argument on l, l′,m,m′ gives

l2 (a0 + (1 + ν)a1 + ν) +m2(a1 + 1) + lm = 0. (17)

Since, by assumption, l = n and m = r we get

l2 (a0 + b0 + (1 + ν)(a1 + b1)) +m2(a1 + b1) = 0,

whence l2/m2 ∈ GF(q). As q is even, this gives l/m ∈ GF(q). The case l′ = n′ and
m′ = r′ is clearly analogous and can be obtained by switching the roles of Π1 and Π2.

Suppose now l = n and m′ = r′. Since c1 6= 0, we also have l 6= 0; furthermore,

n′ =
b1 + 1

l
.

If m′ = r′ = 0, then Π2 has equation (a1 + 1)x0 + (b1 + 1)y0 = 0 and, consequently, is
defined over GF(q). Suppose then m′ = r′ 6= 0. There are several subcases to consider:

• ifm = 0, thenm′ = r′ = l−1 and Π2 has equation (a1+1)x0+x1+(b1+1)y0+y1 = 0,
which is defined over GF(q);

• if r = 0, then m′ = r′ = n−1 = l−1 and we deduce, as above, that Π2 is defined over
GF(q);

• finally, suppose m 6= 0 6= r; then b0 + (1 + ν)b1 + ν 6= 0 and from (14) we get

m′ =
a0 + (1 + ν)a1 + ν

m
, r′ =

b0 + (1 + ν)b1 + ν

r
.

Since m′ = r′ we deduce

m

r
=
a0 + (1 + ν)a1 + ν

b0 + (1 + ν)b1 + ν
∈ GF(q). (18)

the electronic journal of combinatorics 23(4) (2016), #P4.13 10



Observe that l′ = (a1 + 1)l−1 and also r′ = (b0 + (1 + ν)b1 + ν)r−1; thus from (14)
we obtain

l2(b0 + (1 + ν)b1 + ν) + r2(a1 + 1) + (c0 + c1)lr = 0. (19)

On the other hand, since lm′ + l′m = 1,

l

m
(a0 + (1 + ν)a1 + ν) +

m

l
(a1 + 1) = 1;

using (18) we obtain

l

r
(b0 + (1 + ν)b1 + ν) +

r

l
(a1 + 1)

(
a0 + (1 + ν)a1 + 1

b0 + (1 + ν)b1 + 1

)
= 1,

whence

l2(b0 + (1 + ν)b1 + ν) + lr + r2(a1 + 1)

(
a0 + (1 + ν)a1 + 1

b0 + (1 + ν)b1 + 1

)
= 0; (20)

thus, adding (19) to (20), we get

l

r
=

a1 + 1

c0 + c1 + 1

(
a0 + (1 + ν)a1 + 1

b0 + (1 + ν)b1 + 1

)
∈ GF(q)

and the plane Π1 is defined over GF(q). The case l′ = n′ and m = r is analogous.

Lemma 4.3. Suppose that Q is a hyperbolic quadric C∞ = {P∞}. If rank(Ξ∞) = 2, then
Ξ∞ is a line.

Proof. By Lemma 3.2 we can assume b = 0. Since rank(Ξ∞) = 2, we have detA∞ = 0,
that is cq+1 = 1 and (10) holds. If c1 = 0, then solving (10) we obtain (11) and, since
b = 0, we get a = 0. In the case in which c1 6= 0 from (12) we again obtain a = 0. We
have now to show that Ξ∞ is the union of two conjugate planes. In order to obtain this
result, it suffices to prove that the coefficients l,m, n, r in (13) belong to some extension
of GF(q) but are not in GF(q). Since (14) holds we have

ll′ = 1

lm′ + l′m = 1

mm′ = ν;

thus, lν
m

+ m
l

= 1; hence νl2 + lm + m2 = 0. Since Trq(ν) = 1 this implies that l
m
/∈

GF(q).

Now, set N = |(H∩Q)∩AG(3, q2)|. First we observe that N = |Ξ|−|Ξ∞|. By Lemma
4.1 we see that rank(Ξ∞) ≥ 2. Thus, the following possibilities for N may occur according
as:
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(C1) rank(Ξ) = 5 and rank(Ξ∞) = 4;

(C1.1) Ξ is a parabolic quadric and Ξ∞ is a hyperbolic quadric. Then,

N = (q + 1)(q2 + 1)− (q + 1)2 = q3 − q.

(C1.2) Ξ is a parabolic quadric and the quadric Ξ∞ is elliptic. Then,

N = (q + 1)(q2 + 1)− (q2 + 1) = q3 + q.

(C2) rank(Ξ) = 5 and rank(Ξ∞) = 3;

Ξ is a parabolic quadric and the hyperplane at infinity is tangent to Ξ whereas Ξ∞
is a cone comprising the join of a point to a conic. Then,

N = (q + 1)(q2 + 1)− (q2 + q + 1) = q3.

(C3) rank(Ξ) = 4 and rank(Ξ∞) = 4;

(C3.1) Ξ is a cone projecting a hyperbolic quadric of PG(3, q) and the quadric Ξ∞
is hyperbolic. Then,

N = q(q + 1)2 + 1− (q + 1)2 = q3 + q2 − q.

(C3.2) Ξ is a cone projecting an elliptic quadric of PG(3, q) and the quadric Ξ∞ is
elliptic. Then,

N = q(q2 + 1) + 1− (q2 + 1) = q3 − q2 + q.

(C4) rank(Ξ) = 4, rank(Ξ∞) = 3;

(C4.1) Ξ is a cone projecting a hyperbolic quadric and Ξ∞ is a cone comprising the
join of a point to a conic. Then,

N = q(q + 1)2 + 1− [q(q + 1) + 1] = q3 + q2.

(C4.2) Ξ is a cone projecting an elliptic quadric and Ξ∞ is a cone comprising the
join of a point to a conic. Then,

N = q(q2 + 1) + 1− [q(q + 1) + 1] = q3 − q2.

(C5) rank(Ξ) = 4 and rank(Ξ∞) = 2;

(C5.1) Ξ is a cone projecting a hyperbolic quadric and Ξ∞ is the union of two planes
defined over GF(q). Then,

N = q(q + 1)2 + 1− (2q2 + q + 1) = q3.
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(C5.2) Ξ is a cone projecting an elliptic quadric and and Ξ∞ is a line (i.e. the union
of two planes defined over the extension GF(q2) but not over GF(q)). Then,

N = q(q2 + 1) + 1− (q + 1) = q3.

(C6) rank(Ξ) = rank(Ξ∞) = 3;

Ξ is the join of a line to a conic and Ξ∞ is a cone comprising the join of a point to
a conic. Then,

N = q3 + q2 + q + 1− (q2 + q + 1) = q3.

(C7) rank(Ξ) = 3, rank(Ξ∞) = 2;

(C7.1) Ξ is the join of a line to a conic whereas Ξ∞ is a pair of planes over GF(q).
Then,

N = q3 + q2 + q + 1− (2q2 + q + 1) = q3 − q2.

(C7.2) Ξ is the join of a line to a conic whereas Ξ∞ is a line. Then,

N = q3 + q2 + q + 1− q − 1 = q3 + q2.

(C8) rank(Ξ) = rank(Ξ∞) = 2;

(C8.1) Ξ is a pair of solids and Ξ∞ is a pair of planes over GF(q). Then,

N = 2q3 + q2 + q + 1− (2q2 + q + 1) = 2q3 − q2.

(C8.2) Ξ is a plane and Ξ∞ is a line. Then,

N = q2 + q + 1− (q + 1) = q2.

We are going to determine which cases (C1)–(C8) may occur according as Q is either
elliptic or a cone or hyperbolic. In order to do this we need to establish the nature of Ξ∞,
when Ξ∞ is non-singular. Hence we shall to compute the trace of α as given by (1) where
the matrix A is defined as A∞ in (9) and

B =


0 1 c1 c0 + c1
−1 0 c0 + c1 c0 + (1 + ν)c1
−c1 −(c0 + c1) 0 1

−(c0 + c1) −c0 − (1 + ν)c1 −1 0

 .

Write γ = (1 + cq+1) = (1 + c20 + νc21 + c0c1). A straightforward computation shows

α =
a0 + a1 + b0 + b1

γ
+

1

γ2
[(1 + ν)(a21 + b21)+

(c20 + c21ν)(a0b1 + a1b0) + a0a1 + b0b1 + a0b0c
2
1 + a1b1c

2
0]. (21)
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4.1 The elliptic case

Let Q be an elliptic quadric. By Lemma 4.1, we have rank(Ξ∞) ≥ 3 and hence cases
(C1), (C2), (C3), (C4) and (C6) may occur. Whence

N ∈ {q3 − q2, q3 − q2 + q, q3 − q, q3, q3 + q, q3 + q2 − q, q3 + q2}.

In this case C∞ = {P∞}, hence

|Q ∩ H|= N + 1 ∈ {q3 − q2 + 1, q3 − q2 + q + 1, q3 − q + 1, q3 + 1, q3 + q + 1,
q3 + q2 − q + 1, q3 + q2 + 1}.

4.2 The degenerate case

Let Q be a cone. By Lemma 4.1, N falls in one of cases (C1) or (C3) and hence

N ∈ {q3 − q2 + q, q3 − q, q3 + q, q3 + q2 − q}.

Here, by Lemma 3.1 C∞ is either a point or q2 + 1 points on a line. We distinguish these
two cases.

• C∞ = {P∞}. By Lemma 3.2, we can assume b = 0 in (3). Thus (21) becomes
α = a0 + a1 + (1 + ν)a21 + a0a1 and Trq(α) may be either zero or one.

Hence cases (C1) and (C3) may happen; so

|Q ∩ H|= N + 1 ∈ {q3 − q2 + q + 1, q3 − q + 1, q3 + q + 1, q3 + q2 − q + 1}.

• C∞ is a line. By Lemma 3.2, we can assume a = b in (3). Furthermore as Q is a
cone c = 0 in (3); thus, in this case, (21) gives α = 0 that is, Trq(α) = 0; this means
that only subcases (C1.1) of (C1) and (C3.1) of (C3) may occur. In particular,

|Q ∩ H|= N + q2 + 1 ∈ {q3 + q2 − q + 1, q3 + 2q2 − q + 1}.

4.3 The hyperbolic case

Let Q be a hyperbolic quadric. Then, by Lemma 4.1, rank(Ξ∞) ≥ 2 and all cases (C1)–
(C8) might occur.

N ∈ {q2, q3 − q2, q3 − q2 + q, q3 − q, q3, q3 + q, q3 + q2 − q, q3 + q2, 2q3 − q2}.

We have three possibilities for C∞ from Lemma 3.1, that is C∞ is either a point, or q2 + 1
points on a line or 2q2 + 1 points in the union of two lines. We now analyze these cases.

• C∞ = {P∞}. We are going to show that some subcases of (C1)–(C8) can be ex-
cluded. Indeed, when rank(Ξ∞) = 2, from Lemma 4.3 we have that subcases (C7.1)
and (C8.1) cannot occur. So,

|Q ∩ H|= N + 1 ∈ {q2 + 1, q3 − q2 + 1, q3 − q2 + q + 1, q3 − q + 1, q3 + 1,
q3 + q + 1, q3 + q2 − q + 1, q3 + q2 + 1}.
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• C∞ is one line. By Lemma 3.2 we can assume b = 0 and a = c in (3).

1. When Ξ∞ is non-degenerate, only cases (C1) and (C3) may occur. Observe
that (21) becomes

α =
c0 + c1
γ

+
1

γ2
[(1 + ν)(c21) + c0c1].

Since γ = c20 +νc21 + c0c1 +1 we have c21 +νc21 + c1c0 = γ+ c20 + c21 +1. Therefore

α =
(c0 + c1)

γ
+
c20 + c21
γ2

+
1

γ
+

1

γ2

and Trq(α) = 0. Hence, subcases (C1.2) and (C3.2) cannot happen; so,

|Q ∩ H|= N + q2 + 1 ∈ {q3 + q2 − q + 1, q3 + 2q2 − q + 1}.

2. Assume now that Ξ∞ is degenerate, that is 2 ≤ rank(Ξ∞) ≤ 3. Cases (C2) and
(C4)–(C8) occur. We are going to show that rank(Ξ∞) = 3. Suppose, on the
contrary, rank(Ξ∞) = 2; then we end up with considering a system identical
to (10), as it appears in the proof of Lemma 4.1, and its consequences (11)
and (12); so we shall not repeat explicitly these equations here. First observe
that (10) holds. If it were c1 = 0, from (11) we would have a1 = a0 = 0, that is
a = 0, which is impossible. So, c1 6= 0; since we are assuming b = b0 + εb1 = 0,
that is, b1 = b0 = 0, we would now have from (12) a1 = a0 = 0—again a
contradiction.
Thus, only cases (C2) and (C4) might happen; in particular,

|Q ∩ H|= N + q2 + 1 ∈ {q3 + 1, q3 + q2 + 1, q3 + 2q2 + 1}.

• C∞ consists of two lines. By Lemma 3.2 we can assume b = βa, c = (β+1)a where
a 6= 0 and βq+1 = 1 in (3).

1. Suppose now Ξ∞ to be non-degenerate. Cases (C1) and (C3) occur.
From c = a + b we get cq+1 = aq+1 + aqb + bqa + bq+1. Since bq+1 = aq+1, we
have cq+1 = aqb+ bqa, that is

a0b1 + a1b0 = c20 + νc21 + c0c1,

On the other hand, from c0 = a0 + b0 and c1 = a1 + b1 we obtain c0c1 =
a0a1 + a0b1 + a1b0 + b0b1 that is

a0a1 + b0b1 = c20 + νc21.

Now (c20 + νc21 + c0c1)(c
2
0 + νc21) = (a0b1 + a1b0)(a0a1 + b0b1) = a0b0(a

2
1 + b21) +

a1b1(a
2
0 + b20) = a0b0c

2
1 + a1b1c

2
0 and thus (21) becomes

α =
c0 + c1

1 + c20 + νc21 + c0c1
+

(c0 + c1)
2

(1 + c20 + νc21 + c0c1)2
;
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so, α has trace 0.
Hence just subcases (C1.1) and (C3.1) may occur and

|Q ∩ H|= N + 2q2 + 1 ∈ {q3 + 2q2 − q + 1, q3 + 3q2 − q + 1}.

2. If Ξ∞ is degenerate, then cases (C2) and (C4)–(C8) may happen.
When rank(Ξ∞) = 2, it follows from Lemma 4.2 that only subcases (C7.1) in
(C7) and (C8.1) in (C8) may occur.
Now, we need a preliminary lemma. Recall that a quadric Q meeting a Her-
mitian surface H in at least 3 lines of a regulus is permutable with H; see [14,
§19.3, pag. 124]. We have the following statement.

Lemma 4.4. Suppose Q to be hyperbolic and C∞ to be the union of two lines;
then |H ∩ Q|= q3 + 3q2 + 1 cannot happen.

Proof. The case |H ∩ Q|= q3 + 3q2 + 1 may happen just for case (C4.1). Let
R be a regulus of Q and denote by r1, r2, r3 respectively the numbers of 1–
tangents, (q + 1)–secants and (q2 + 1)-secants to H in R. A direct counting
gives {

r1 + r2 + r3 = q2 + 1

r1 + (q + 1)r2 + r3(q
2 + 1) = q3 + 3q2 + 1.

(22)

By straightforward algebraic manipulations we obtain

qr1 + (q − 1)r2 = q(q2 − q − 1).

In particular, r2 = qt with t ≤ q. If it were t = q, then r1 = −1 — a
contradiction; so r2 ≤ q(q − 1). Solving (22) in r1 and r3, we obtain

r3 =
q2 + 2q − r2

q
≥ q2 + 2q − q2 + q

q
= 3.

In particular, there are at least 3 lines of R contained in H. This means that
Q is permutable with H, see [14, §19.3, pag. 124] or [20, §86, pag. 154] and
|Q ∩ H|= 2q3 + q2 + 1, a contradiction.

So, by Lemma 4.4 only subcase (C4.2) in (C4) is possible.
Thus we get

|Q ∩ H|= N + 2q2 + 1 ∈ {q3 + q2 + 1, q3 + 2q2 + 1, 2q3 + q2 + 1}

and the proof is completed.

It is straightforward to see, by means of a computer aided computation for small values
of q, that all the cardinalities enumerated above may occur.
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5 Extremal configurations

As in the case of odd characteristic, it is possible to provide a geometric description of
the intersection configuration when the size is either q2 + 1 or 2q3 + q2 + 1. These values
are respectively the minimum and the maximum yielded by Theorem 1.1. and they can
happen only when Q is an hyperbolic quadric. Throughout this section we assume that
the hypotheses of Theorem 1.1 hold, namely that H and Q share a tangent plane at some
point P .

Theorem 5.1. Suppose |H∩Q|= q2 +1. Then, Q is a hyperbolic quadric and Ω = H∩Q
is an ovoid of Q.

Proof. By Theorem 1.1, Q is hyperbolic. Fix a regulus R on Q. The q2 + 1 generators of
Q in R are pairwise disjoint and each has non-empty intersection with H; so there can be
at most one point of H on each of them. It follows that H∩Q is an ovoid. In particular,
by the above argument, any generator of Q through a point of Ω must be tangent to H.
Thus, at all points of Ω the tangent planes to H and to Q are the same.

Theorem 5.2. Suppose |H∩Q|= 2q3+q2+1. Then, Q is a hyperbolic quadric permutable
with H.

Theorem 5.2 can be obtained as a consequence of the analysis contained in [8, §5.2.1],
in light of [14, Lemma 19.3.1].
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