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Abstract

We examine some self-orthogonal codes constructed from a rank-5 primitive per-
mutation representation of degree 1100 of the sporadic simple group HS of Higman-
Sims. We show that Aut(C) = HS:2, where C is a code of dimension 21 associated
with Higman’s geometry.
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1 Introduction

The study of binary linear codes invariant under the Higman-Sims group (HS), in par-
ticular those constructed from the primitive permutation representations of degrees 100,
176 and 1100 respectively has been carried in [3, 18] and in [15]. Recently, Knapp and
Schaeffer [13] using representation theoretic methods provided an elegant account on the
binary codes of length 100 related with the Higman-Sims graph. In the paper [16], the
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second author offers an account on non-binary codes from the representations of degree
100 and constructs new 2-designs from the representation of degree 176. It is well known
that the Higman-Sims group possesses two inequivalent rank-5 primitive representations
of degree 1100, one on the set of edges of G, the Higman-Sims graph with parameters
(100, 22, 0, 6), with edge stabilizer isomorphic to L3(4):21, and the other on the set of con-
ics of G. Higman’s geometry (see [4, 9]) with stabilizer of a conic isomorphic to S8. The
orbits of the action on the cosets of L3(4):21 have lengths 1, 42, 105, 280 and 672 respec-
tively, while those of the action on the cosets of S8 have lengths 1, 28, 105, 336 and 630.
In [15], using the orbit of length 672 we constructed the unique and minimal degree faith-
ful irreducible F2-representation (20-dimensional) of the Higman-Sims group, as a binary
[1100, 20, 480]2 code. A review of our paper [On some designs and codes invariant under
the Higman-Sims group’ (Util. Math., 2011), MR2884789 (2012m:05082)] prompted us
to examine the extent of a possible relation between the 20-dimensional code constructed
in [15] and Higman’s geometry. The careful reader will notice that Higman’s geometry
originates from an action on the cosets of S8 and not on the cosets of L3(4):21. Due to this,
it would seem that no relation could be borne between the said 20-dimensional code and
Higman’s geometry. However, on examining the question on the existence of binary codes
related with the geometry of G. Higman we were able to show that the 20-dimensional
code referred to above is a subcode of codimension 1 in a [1100, 21, 420]2 code constructed
in this paper and related to Higman’s geometry. To deal with this question we use a
method proposed in [7], and construct a self-dual symmetric 1-(1100, 420, 420) design D
taking for point set the conjugacy classes of a maximal subgroup isomorphic to L3(4):21

and for block set the conjugacy classes of a maximal subgroup isomorphic to S8. The
binary row span of the incidence matrix of D induces a 21-dimensional [1100, 21, 420]2
code whose properties we examine in the sequel.
The paper is organized as follows: in Section 2 we outline our notation and give a brief
overview of the HS group in Section 3. In Section 4 we describe the construction method
used and in Section 5 and Section 6 we present our results.

2 Terminology and notation

Our notation will be standard, and it is as in [1] and ATLAS [4]. For the structure of
groups and their maximal subgroups we follow the ATLAS notation. The groups G.H,
G:H, and G·H denote a general extension, a split extension and a non-split extension
respectively. For a prime p, the symbol pm denotes an elementary abelian group of that
order. The notation p1+2n

+ and p1+2n
− are used for extraspecial groups of order p1+2n. If

p is an odd prime, the subscript is + or − according as the group has exponent p or p2.
For p = 2 it is + or − according as the central product has an even or odd number of
quaternionic factors.

An incidence structure D = (P ,B, I), with point set P , block set B and incidence I is
a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident with precisely k points, and
every t distinct points are together incident with precisely λ blocks. The complement
of D is the structure D̃ = (P ,B, Ĩ), where Ĩ = P × B − I. The dual structure of D
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is Dt = (B,P , It), where (B, p) ∈ It if and only if (P,B) ∈ I. Thus the transpose of
an incidence matrix for D is an incidence matrix for Dt. We will say that the design
is symmetric if it has the same number of points and blocks, and self dual if it is
isomorphic to its dual.

The code CF of the design D over the finite field F is the space spanned by the
incidence vectors of the blocks over F . We take F to be a prime field Fp, in which case
we write also Cp for CF , and refer to the dimension of Cp as the p-rank of D.

If the point set of D is denoted by P and the block set by B, and if Q is any subset of
P , then we will denote the incidence vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
, and is a

subspace of FP , the full vector space of functions from P to F . The dual or orthogonal
code CF

⊥ of CF is the orthogonal subspace under the standard inner product. The hull
of a design’s code over some field is the intersection CF ∩ CF⊥. If a linear code over
a field of order q is of length n, dimension k, and minimum weight d, then we write
[n, k, d]q to represent this information. A constant word in the code is a codeword all
of whose coordinate entries are the same. The all-one vector will be denoted by , and
is the constant vector of weight the length of the code. Two linear codes of the same
length and over the same field are equivalent if each can be obtained from the other by
permuting the coordinate positions and multiplying each coordinate position by a non-
zero field element. They are isomorphic if they can be obtained from one another by
permuting the coordinate positions. An automorphism of a code is any permutation
of the coordinate positions that maps codewords to codewords. An automorphism thus
preserves each weight class of C.

3 The Higman-Sims group and its automorphism group

As we had in [15], the Higman-Sims simple group can be constructed from the Higman-
Sims graph G. Let G = (Ω, E) be a graph of valence 22 on the set Ω of 100 points
such that any given vertex has 22 neighbours (points) and the remaining 77 vertices are
joined to 6 of these points and may be labelled by the corresponding hexad. Two of the
77 vertices are joined only if the corresponding hexads are disjoint. The hexads form a
Steiner system S(3, 6, 22). The Higman-Sims simple group HS is the subgroup of even
permutations of Aut(G) ∼= HS:2, the automorphism group of HS. The point stabilizer
of Aut(G) on Ω is Aut(S(3, 6, 22)) ∼= M22:2 and the order of the Higman-Sims group
HS is 44352000 = 29·32·53·7·11. The group HS has two inequivalent representations of
degree 1100, one on the set of edges of G with point stabilizer isomorphic to L3(4):21

and the other on the set of conics of G. Higman’s geometry (see [4]) with point stabilizer
isomorphic to S8. The subgroup S8 is also the set stabilizer of a fixed outer automorphism
of HS.
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Result 1. (Magliveras [14]) The Higman-Sims group HS has exactly 12 conjugacy classes
of maximal subgroups, as follows:

M22 U3(5):2 (2 classes)
L3(4):21 S8

24.S6 43:L3(2)
M11 (2 classes) 4·24:S5

2× A6·22 5:4× A5.

The primitive representations described in Result 1 are of degrees 100, 176, 176, 1100,
1100, 3850, 4125, 5600, 5600, 5575, 15400 and 36960 respectively. In TABLE 1 below
the first column depicts the ordering of the primitive representations of HS and HS:2
respectively, as given by Magma (or the ATLAS [4]) and as used in our computations;
the second gives the maximal subgroups; the third gives the degrees (the number of cosets
of the point stabilizer).

TABLE 1: Maximal subgroups of HS and HS:2

No. Max. sub. of HS Deg. Max. sub. of HS:2 Deg.

1 M22 100 HS 2
2 U3(5) : 2 176 M22 : 2 100
3 U3(5) : 2 176 L3(4):22 1100
4 L3(4) : 21 1100 S8 × 2 1100
5 S8 1100 25 · S6 3850
6 24 · S6 3850 43:(L3(2)× 2) 4125

7 43 : L3(2) 4125 21+6
+ :S5 5775

8 M11 5600 2×A6 · 22 · 2 15400
9 M11 5600 51+2:(Q8:4) 22176
10 4.24:S5 5775 5:4× S5 36960
11 2×A6.2

2 15400
12 5 : 4×A5 36960

4 The construction

Crnković and Mikulić in [7] (see also [8]) gave a method that outlines a construction
of 1-designs from finite permutation groups, which are not necessarily symmetric, and
stabilizers of a point and a block that are not necessarily conjugate. This result is a
generalization of an earlier construction of symmetric 1-designs and regular graphs which
was described in [10, Proposition 1], used in [12] and later corrected in [11]. For the sake
of completeness and readiness of use we state the result below.

Result 2. Let G be a finite permutation group acting primitively on the sets Ω1 and Ω2

of size m and n, respectively. Let α ∈ Ω1 and δ ∈ Ω2 and let ∆2 = δGα be the Gα-orbit
of δ ∈ Ω2 and ∆1 = αGδ be the Gδ-orbit of α ∈ Ω1. If ∆2 6= Ω2 and B = {∆2g : g ∈ G},
then D(G,α, δ) = (Ω2,B) is a 1-(n, |∆2|, |∆1|) design with m blocks, and G acts as an
automorphism group, primitive on points and blocks of the design.
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Remark 3. Let M1 and M2 to be two maximal subgroups of a finite group G. We denote
the conjugacy class of Mi, i = 1, 2, by cclG(Mi) and |cclG(Mi)| = [G : NG(Mi)]. The
elements of cclG(Mi), i = 1, 2, are denoted by M g1

i ,M
g2
i , . . . ,M

gji
i and thus we obtain

ji = [G : NG(Mi)].
Observe that G acts primitively on cclG(M1) and cclG(M2) by conjugation. In this way a
primitive 1−design can be constructed such that:

• the point set of the design is cclG(M2), and the block set is cclG(M1),

• the block M gi
1 is incident with the point M

hj
2 if and only if M gi

1 ∩M
hj
2
∼= M1 ∩M2.

In the case when G is a finite simple group and M1 and M2 are two maximal subgroups
of G, then clearly NG(Mi) = Mi and hence ji = [G : Mi] for i = 1, 2.

5 A [1100, 21, 420]2 code invariant under HS:2.

Recall that our interest is in the construction of designs and codes which bear an associa-
tion with Higman’s geometry. To this end, we consider the description given in Section 3
for the Higman-Sims group and the discussion by G. Higman in [9, Section 1, p.75] (see
also [13, Sections 4, and 5] for a model of Higman’s geometry) to construct Higman’s
geometry. Hence, taking for points the edges of the graph G and for blocks the conics of
the geometry we construct a 1-(1100, 420, 420) design D on which HS acts primitively on
points and on blocks. It will be intuitive to notice that if we use Result 2 and Remark 3 we
take for point set Ω2 the conjugacy classes of a maximal subgroup isomorphic to L3(4):21

and for block set Ω1 the conjugacy classes of a maximal subgroup isomorphic to S8. No-
tice that Ω1, and Ω2 are primitive HS-sets of degree 1100. In the sequel we examine the
properties of a binary [1100, 21, 420]2 self-orthogonal and doubly-even code C determined
by the row span of the incidence matrix of D and explore its possible connections with
Higman’s geometry.

Lemma 4. Let G = HS:2 and let D = (Ω2,B) be a design constructed as in Result 2 taking
for point set Ω2 the conjugacy classes of a maximal subgroup isomorphic to L3(4):21 and
for block set Ω1 the conjugacy classes of a maximal subgroup isomorphic to S8. Then D
is a self-dual, symmetric 1-(1100, 420, 420) design with G = Aut(D) acting point- and
block-primitively.

Proof. From Result 2 it is clear that G ⊆ Aut(D). Once again, from Result 2, and also
from the ATLAS [4, p.80] we see that G acts primitively on both Ω2 and Ω1, where Ω1 and
Ω2 represent the point and block sets of D and these are the edges of the Higman-Sims
graph G and the conics of Higman’s geometry, respectively, (in terms of Result 2 these
are the sets of conjugacy classes of a maximal subgroup isomorphic to L3(4):21 and of a
maximal subgroup isomorphic to S8 respectively) with degree |Ω1| = |Ω2| = 1100. This
shows that D is a point primitive, symmetric 1-design. Moreover, the stabilizers Gx and
GB of a point x ∈ Ω2 and of a block B ∈ B have five orbits, namely Φ1 = {x}, Φ2,
Φ3, Φ4, and Φ5 with subdegrees:1, 42, 105, 280, and 672; and three orbits namely Ψ1,
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Ψ2 and Ψ3 with subdegrees: 120, 420 and 560. It remains to show that G = Aut(D).
Now G ⊆ Aut(D) ⊆ S1100, so Aut(D) is a primitive permutation group on Ω2 of degree
1100. Moreover, Aut(D)x must fix ∆2 setwise, and hence Aut(D)x also has orbits of
lengths 1, 42, 105, 280, and 672 in Ω2. The only primitive group of degree 1100, such
that Aut(D)x has orbit lengths 1, 42, 105, 280, and 672 is HS:2, see [17, Table 9,p.178].
Hence G = Aut(D).

Taking the binary row span of the incidence matrix of D we obtain the 21-dimensional
HS:2-invariant [1100, 21, 420]2 code whose properties are discussed in Proposition 5 below.

Proposition 5. Let C be the binary code defined by the incidence matrix of D. Then C
is a self-orthogonal doubly-even [1100, 21, 420]2 code. Its dual code C⊥ is a [1100, 1079, 4]2
with words of weight 4. Furthermore,  ∈ C⊥ and Aut(C) ∼= HS:2.

Proof. The parameters of C were determined through computations with Magma [2].
Since the dimension of the C equals the dimension of C ∩ C⊥, we have C ⊆ C⊥ and
so C is self orthogonal. Since HS is a normal subgroup of HS:2 it follows that C is
HS:2-invariant.

Notice from TABLE 3 that there are exactly 1100 codewords of minimum weight 420
in C. Thus the minimum weight codewords are the incidence vectors of the blocks of the
design D, and hence spanning vectors of C. From this we deduce that Aut(D) ⊆ Aut(C).
Now, order considerations shows that Aut(C) ∼= HS:2. Furthermore, since the spanning
words of C have weight divisible by four, it follows that C is doubly-even.

The weight distribution of C is listed in TABLE 3. In TABLE 3, l represents the
weight of a codeword and Al denotes the number of codewords of weight l.

TABLE 3: The weight distribution of C

l Al l Al

0 1 544 793100

420 1100 548 500500

480 15400 564 308000

484 100 576 231000

500 22176 612 23100

512 7975 672 1100

532 193600

In addition note that the blocks of D are of even size, so  meets evenly every vector
of C, and thus  ∈ C⊥. Finally, using MacWilliams identities and Pless’ power moment
identities we obtain the minimum weight 4 for C⊥.

Remark 6. The code and designs found above can be described geometrically: the 1100
codewords of weight 420 are the incidence vectors of the blocks of the design D, and these
represent the conics of Higman’s geometry.
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5.1 Stabilizer in HS:2 of a word of weight l

Let L = {420, 480, 484, 500, 512, 672} and L = {532, 544, 548, 564, 576, 612}. For l ∈ L∪L
we define Wl = {wl ∈ C | wt(wl) = l}. Since Aut(C) ∼= HS:2, in this section we determine
the structures of the stabilizers (HS:2)wl

, for all nonzero weight l.
We show in Lemma 7 that for l ∈ L the stabilizer (HS:2)wl

is a maximal sub-
group of HS:2, where (HS:2)w420

∼= S8 × 2, (HS:2)w480
∼= 2 × A6 · 22 · 2, (HS:2)w484

∼=
M22:2, (HS:2)w500

∼= 51+2:(Q8:4), (HS:2)w5121

∼= 25 · S6, (HS:2)w5122

∼= 43:(L3(2)× 2) and
(HS:2)w672

∼= L3(4):22. Now for wl ∈ Wl we take the support of wl and orbit it under

HS:2 to form the blocks of the 1-(1100, l, kl) designs Dwl
, where kl = |(wl)HS:2| × l

1100
.

We show that for all l ∈ L, HS:2 acts primitively on these designs. Information on these
designs is given in TABLE 4 and TABLE 5.

Next in Lemma 8 by considering wl where l ∈ L we describe the structures of (HS:2)wl

and show that these are not maximal in HS:2.

Lemma 7. Let l ∈ L and wl ∈ Wl. Then (HS:2)wl
is a maximal subgroup of HS:2.

Furthermore HS:2 is primitive on Dwl
for each l.

Proof. First assume that l ∈ {420, 480, 484, 500, 672}. Since HS is transitive on Wl,
so is HS:2. Hence for l ∈ L, each Wl forms an orbit under the action of HS:2, so
that (HS)wl

is subgroup of index 2 in (HS:2)wl
. Therefore by the orbit stabilizer The-

orem and the ATLAS (or right hand side of TABLE 1) we have [HS:2 : (HS:2)wl
] ∈

{1100, 15400, 100, 22176, 4125, 3850}. Using the list of maximal subgroups of HS:2 (see
right hand side of TABLE 1), we deduce that (HS:2)w420 ∈ {L3(4):22, S8 × 2, S}, where
S possibly is a subgroup of M22:2 of index 11. Examining the list of maximal subgroups
of M22:2 in [4] or [5], we can easily see that M22:2 contains no subgroup of index 11. Also
direct calculations of the composition factors of (HS:2)w420 excludes the first possibility,
namely L3(4):22. Hence (HS)w420

∼= S8 × 2.
Similarly we can deduce that (HS:2)w480 ∈ {2 × A6 · 22 · 2, H, K, M,N}, where,

possibly, H is a subgroup of index 154 in M22:2, K of index 4 in 25 · S6, M of index 14 in
S8 × 2 and N of index 14 in L3(4):22. We deal with the elimination of H, K, M and N
in the following:

(i) From the list of maximal subgroups of M22:2, there are two possible candidates
for H, either a subgroup of index 7 in L3(4):22 or of index 2 in 24:S6. The list of
maximal subgroups of L3(4) shows that it contains no subgroup of index 7. The
group 24:S6 is a maximal subgroup of M22:2 and computations with Magma show
that its non-trivial normal subgroups are of type 24, and hence it cannot have a
subgroup of index 2.

(ii) We constructed the maximal subgroup 25 ·S6 inside HS:2 and found out that it does
not contain a subgroup of index 4.

(iii) Lists of maximal subgroups of S8×2 and L3(4):22 (see [4]) eliminate the possibilities
of M and N .
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Therefore (HS:2)w480 = 2× A6 · 22 · 2.
Further, we can deduce that (HS:2)w484 ∈ {M22:2, A}, where, possibly, A is a subgroup

of index 11 in L3(4):22 or S8 × 2, or A is a subgroup of index 154 in 2 × A6 · 22 · 2. A
careful verification of each case rules out all other possibilities except M22:2. Hence we
deduce that (HS:2)w484

∼= M22:2.
Similarly by using the composition factors we deduce that (HS:2)w500

∼= 51+2:(Q8:4).
For l = 672, we argue similarly as in the case l = 420, since A672 = A420. Thus, we

deduce that (HS:2)w672 ∈ {L3(4):22, S8× 2, B}, where B possibly is a subgroup of M22:2
of index 11. Since M22:2 contains no subgroup of index 11 we deduce that B is either a
subgroup of L3(4):22 or a subgroup of S8× 2. An examination of the composition factors
of (HS:2)w672 excludes the second possibility, namely S8×2. Hence (HS:2)w672 = L3(4):22.

It follows by the above case by case analysis that (HS:2)w420 , (HS:2)w480 , (HS:2)w484 ,
(HS:2)w500 and (HS:2)w672 are all maximal subgroups of HS:2.

Now, by the transitivity of HS:2 on the code coordinates, the codewords of Wl form a
1-design Dwl

with Al blocks. This implies that HS:2 is transitive on the blocks of Dwl
for

each wl and since (HS:2)wl
, for l ∈ {420, 480, 484, 500, 672} is a maximal subgroup of HS:2,

we deduce that HS:2 acts primitively on Dwl
for l ∈ {420, 480, 484, 500, 672}. Note that

Dw420 , Dw480 , Dw484 , Dw500 , and Dw672 are 1-designs with parameters 1-(1100, 420, 420),
1-(1100, 480, 6720), 1-(1100, 484, 44), 1-(1100, 500, 10080), and 1-(1100, 672, 672) respec-
tively with 1100, 15400, 100, 22176, and 1100 blocks.

Finally for l = 512, W512 splits into two orbits of lengths 3850 and 4125, namely W(512)1

and W(512)2 respectively. Let u = w(512)1 ∈ W(512)1 and v = w(512)2 ∈ W(512)2. Then (HS:2)u
is a subgroup of order 23040, and from the right hand side of TABLE 1 we deduce that
(HS:2)u ∼= 25 ·S6. Similarly |(HS:2)v| = 21504 and (HS:2)v is a maximal subgroup of HS:2
isomorphic to 43:(L3(2) × 2). Notice that Du is a 1-(1100, 512, 1792) design having 3850
blocks, while Dv is a 1-(1100, 512, 1920) design with 4125 blocks. HS:2 acts primitively
on Du and Dv.

Lemma 8. Let l ∈ L and wl ∈ Wl. Then (HS:2)wl
is a non-maximal subgroup of HS:2.

Proof. We give a description of the cases l = 532, l = 544 and l = 548 since the sets
of codewords of these weights split into a number of orbits. The remaining cases, i.e.,
l = 564, 576, and 612 are much simpler to be dealt with using similar arguments. Let
l = 532. Then W532 splits into two orbits of lengths 61600 and 132000, namely W(532)1 ,
and W(532)2 respectively. Let a = w(532)1 ∈ W(532)1 and b = w(532)2 ∈ W(532)2. Then (HS:2)a
is a subgroup of order 1440, and thus not maximal in HS:2. Using the composition factors
of (HS:2)a and the information in [6] and [5] we deduce that (HS)a ∼= A6:2:2. Similarly
|(HS:2)b| = 672 and (HS:2)b is a non-maximal subgroup of HS:2 isomorphic to L2(7):2:2.

For l = 544 we have that W544 splits into three orbits of lengths 77000, 346500 and
369600, namely W(544)1 , W(544)2 and W(544)3 respectively. Set x = w(544)1 ∈ W(544)1 , x

′ =
w(544)2 ∈ W(544)2 and x′′ = w(544)3 ∈ W(544)3 . We used Magma and [6], and also the
information on maximal subgroups of HS:2, to determine the structure of (HS:2)x and
deduce that (HS:2)x = ((HS)x):2 ∼= (24:(S3 × S3)):2. Similarly, since |(HS:2)x′ | = 256,
and so not a maximal subgroup of HS:2. We determined that (HS:2)x′ ∼= X:2 where
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X = ((((4 × 2):2):2):2):2, and X:2 6 P :2 with P :2 ∈ Syl2(HS:2). We can easily show
that

P :2 ∼= ((4.24):D8):2 ∼= 21+6
+ :D8.

Clearly, (HS:2)x′′ ∼= S5:2.
If l = 548, then W548 splits into two orbits of lengths 38500 and 462000, namely

W(548)1 , and W(548)2 . Let s = w(548)1 ∈ W(548)1 and t = w(548)2 ∈ W(548)2. Then (HS:2)s is
a subgroup of order 2304, and thus not maximal in HS:2. Using the composition factors
of (HS:2)a and the information in [6] we deduce that (HS)s ∼= 24:S3:S3:2 × 2. Similarly
|(HS:2)t| = 192 and (HS:2)t is a non-maximal subgroup of HS:2 isomorphic to 21+4:S3.

Using similar arguments for l = 564, 576 and 612 we deduce that (HS:2)w564
∼= (23 ×

S3):S3, and (HS:2)w576
∼= (23·S4):2, and (HS:2)w612

∼= ((24:A5):2):2.

TABLES 4 and 5 below, list the structures of (HS:2)wl
and Dwl

for all l, respectively.

5.2 Observations

(i) In TABLE 4 the first column represents the codewords of weight l and the second
column represents the stabilizer in HS:2 of a codeword wl of Wl. In the final column
we test the maximality of (HS:2)wl

in HS:2.

TABLE 4
Stabilizer in HS:2 of a word wl

l (HS:2)wl
Maximality l (HS:2)wl

Maximality

420 S8 × 2 Yes (544)2 21+6
+ :D8 No

480 2×A6.2
2 Yes (544)3 S5:2 No

484 M22:2 Yes (548)1 24:S3:S3:2× 2 No

500 51+2:(Q8:4) Yes (548)2 21+4:S3 No

(512)1 25 · S6 Yes 564 (23 × S3):S3 No

(512)2 43(L3(2)× 2) Yes 576 (23·S4):2 No

(532)1 A6:2:2 No 612 ((24:A5):2):2 No

(532)2 L2(7):2:2 No 672 L3(4) : 22 Yes

(544)1 (24:(S3 × S3)):2 No

(ii) In TABLE 5 the first column represents the codewords of weight l and the second
column gives the parameters of the designs Dwl

which were constructed in Sec-
tion 5.1. In the third column we list the number of blocks of Dwl

. We test the
primitivity for the action of HS:2 on Dwl

in the final column.
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TABLE 5
1-designs Dwl from HS:2

l Dwl No. of blocks Primitivity
420 1-(1100, 420, 420) 1100 Yes

480 1-(1100, 480, 6720) 15400 Yes

484 1-(1100, 484, 44) 100 Yes

500 1-(1100, 500, 10080) 22176 Yes

(512)1 1-(1100, 512, 1792) 3850 Yes

(512)2 1-(1100, 512, 1920) 4125 Yes

(532)1 1-(1100, 532, 29792) 61600 No

(532)2 1-(1100, 532, 63840) 132000 No

(544)1 1-(1100, 544, 38080) 77000 No

(544)2 1-(1100, 544, 171360) 346500 No

(544)3 1-(1100, 544, 182784) 369600 No

(548)1 1-(1100, 548, 19180) 38500 No

(548)2 1-(1100, 548, 230160) 462000 No

564 1-(1100, 564, 157920) 308000 No

576 1-(1100, 576, 120960) 231000 No

612 1-(1100, 612, 12852) 23100 No

672 1-(1100, 672, 672) 1100 Yes

6 Binary codes from the complementary design

It is often of interest to know whether a given code contains the all-one vector. We showed
in Proposition 5 that  ∈ C⊥. Since  /∈ C we know that C 6= C̃, where C̃ is the code
of the complementary 1-(1100, 680, 680) design D̃. In Proposition 9 below we collect the
properties of C̃. Observe by the weight distribution that C and C̃ are complementary
codes.

Proposition 9. Let C̃ be the binary code defined by the incidence matrix of the design
D̃. Then C̃ is a self-orthogonal doubly-even [1100, 21, 480]2 code. Its dual code C̃⊥ is a
[1100, 1079, 4]2 with words of weight 4. Furthermore, Aut(C̃) ∼= HS:2.

Proof. The proof follows similar arguments to those used in the proof of Proposition 5.
So we omit the details.

Remark 10. The weight distribution of C̃ is listed in TABLE 6.

TABLE 6: Weight distribution of C̃

l Al l Al

0 1 568 193600

480 15400 576 231000

488 23100 600 22176

512 7975 616 100

536 308000 672 1100

544 793100 680 1100

552 500500
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A closer examination of TABLE 3 and 6 shows that the codewords of C and C̃ appear
in complementary pairs. Hence, an analysis of the structures of the stabilizers, their
maximality and the primitivity of the corresponding designs can be dealt with in a manner
similar to that in the previous results.

7 Concluding remarks

The codes C and C̃ meet in their doubly-even self-orthogonal code C0. It turns out that
C0 is isomorphic to the code constructed in [15]. C0 consists just of the code vectors of C
whose weights are divisible by 32. Let J = 〈〉 denote the repetition code generated by
the all 1-vector . Then C1 = C0 +J is a self-orthogonal doubly-even [1100, 21, 428]2 code
which is isomorphic to the code of the complementary 1-(1100, 428, 428) design discussed
in [15]. We note that C, C̃ and C1 are HS-invariant subcodes of C2 = C + J containing
C0 with codimension 1.
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