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Abstract

Motivated by a geometrical Thue-type problem, we introduce a new variant of
the classical pattern avoidance in words, where jumping over a letter in the pattern
occurrence is allowed. We say that pattern p ∈ E+ occurs with jumps in a word
w = a1a2 . . . ak ∈ A+, if there exist a non-erasing morphism f from E∗ to A∗ and
a sequence (i1, i2, . . . , il) satisfying ij+1 ∈ {ij + 1, ij + 2} for j = 1, 2, . . . , l − 1,
such that f(p) = ai1ai2 . . . ail . For example, a pattern xx occurs with jumps in a
word abdcadbc (for x 7→ abc). A pattern p is grasshopper k-avoidable if there exists
an alphabet A of k elements, such that there exist arbitrarily long words over A
in which p does not occur with jumps. The minimal such k is the grasshopper
avoidability index of p. It appears that this notion is related to two other problems:
pattern avoidance on graphs and pattern-free colorings of the Euclidean plane. In
particular, we show that a sequence avoiding a pattern p with jumps can be a tool
to construct a line p-free coloring of R2.

In our work, we determine the grasshopper avoidability index of patterns αn

for all n except n = 5. We also show that every doubled pattern is grasshopper
(27 + 1)-avoidable, every pattern on k variables of length at least 2k is grasshopper
37-avoidable, and there exists a constant c such that every pattern of length at
least c on 2 variables is grasshopper 3-avoidable (those results are proved using the
entropy compression method).

Keywords: Thue sequence; Avoidable pattern; Entropy compression

1 Introduction

1.1 Avoidance of patterns

A celebrated result by Axel Thue asserts that there exists an infinite sequence on 3
symbols without a square (or repetition), i.e. two consecutive identical blocks of any
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positive length. This theorem can be proved constructively using an infinite sequence on
2 symbols without a cube (or 3-repetition), i.e. three consecutive identical blocks – it was
independently discovered by Prouhet [23] and by Morse [18], and is generally known as
Thue-Morse sequence. The work of Thue [28, 29] inspired a whole branch of combinatorics
called combinatorics on words - an area with many challenging questions and variety of
applications in other fields of mathematics and science in general [17]. For a meticulous
survey on historical roots of the field see the article of Berstel and Perrin [3].

Let A be a finite set of letters and E be a set of variables. We say that a pattern
p ∈ E+ occurs in a word w ∈ A+, if there exists a non-erasing morphism f from E∗ to A∗

such that f(p) is a factor of w. For example, a pattern xyxy occurs in a word abbabbcdc
(for x 7→ ab and y 7→ b). Otherwise, we say that word w avoids pattern p. A pattern p is
said to be k-avoidable if for any alphabet A with k elements, A∗ contains infinitely many
words in which p does not occur. Minimal such k, if it exists, is the avoidability index of
p, denoted by µ(p). A pattern p is avoidable if it is k-avoidable for some k, otherwise it is
unavoidable. The classic Thue’s theorem can be restated in this language in the following
way: the pattern xx is 3-avoidable. Clearly, the pattern xx is not 2-avoidable - xx occurs
in every binary word of length 4. Thus the avoidability index of xx is 3.

Not all patterns are avoidable, for example, xyx. Bea, Ehrenfeucht, McNulty [1] and
Zimin [31] provided a complete characterization of avoidable patterns (it can be checked
using Zimin’s algorithm by reductions of patterns). However, the characterization of k-
avoidability seems to be very hard to establish and there is no known characterization
for an arbitrary k. In fact, it is not known if there exists a constant C such that every
avoidable pattern is C-avoidable. Up to our knowledge, the biggest known avoidability
index of a pattern is 5, which was provided by Clark [7]. Moreover, on the algorithmic
side, the following question is open: Is it decidable, given pattern p and integer k, whether
p is k-avoidable?

Nevertheless, there are some partial results on k-avoidability of patterns. For example,
all binary patterns are completely classified: a finite number of them is unavoidable, a
finite number of them has the avoidability index equal to 3, the rest of binary patterns
(including all of length at least 6) has the avoidability index 2. The classification was
established in parts by Schmidt [25, 26], Roth [24] and Cassaigne [4]. All ternary patterns
are also classified: it was started by Cassaigne [5] and finished by Ochem [20].

Other “simple” class of patterns worth mentioning is the class of doubled patterns, i.e.
in which every variable occurs at least twice. What if some pattern p has a variable used
only once? Assume we are trying to find an occurrence of p in some word w. Then, since
such variable can be mapped to any nonempty subword (without any demanded relation
to the rest of the pattern occurrence), this variable gives us much freedom. Such variable
stands for “jumping” over any positive number of letters in the word when we are trying
to find p in w. Restriction to doubled patterns makes avoiding easier: every such pattern
is 3-avoidable (proved in parts by Bell and Goh [2], Cassaigne [5], Ochem [20, 21]). In
this case, it is also possible to impose 2-avoidability by a stronger condition on the length
of the pattern in terms of the number of variables, see work by Zydroń [32].

Another direction of research is to consider patterns which are sufficiently long in
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terms of the number of variables. Intuitively, it should be easier to avoid such patterns,
and this intuition is confirmed. An important observation in this case is that if a pattern
is long enough, then it contains a doubled pattern as a block. The best results of this
form were presented by Ochem and Pinlou [22]: Assume a pattern p has l variables. If p
has length at least 2l then it is 3-avoidable, and if p has length at least 3 · 2l−1 then it is
2-avoidable.

Furthermore, there are some general bounds on the avoidability index of an avoidable
pattern p in terms of the number of variables of p, although probably far from being
optimal. If l is the number of variables in p, then µ(p) 6 4d l+1

2
e 6 2l + 4 [6]. In fact, for

any l there exists a single infinite word over an alphabet of size 2l + 4 that avoids every
avoidable pattern with the number of variables not greater than l.

For a more detailed introduction to the topic, see [16, Chapter “On avoidable patterns”
by Cassaigne]. For a survey concentrated on interesting open questions, see the article by
Currie [8].

1.2 Grasshopper avoidance of patterns

In our work we consider a new type of pattern avoidability - we allow jumping over letters
in the pattern occurrence. Let us imagine a grasshopper going through some word to the
right - the grasshopper can jump between two consecutive letters or can jump over exactly
one letter. Assume p is a pattern that the grasshopper likes very much. The grasshopper
reads every letter it stands on and tries to choose a sequence of letters admitting an
occurrence of p. Intuitively, pattern p occurs with jumps in a word w if the grasshopper
can choose such a path. Let us define this notion formally.

Definition 1. We say that pattern p ∈ E+ occurs with jumps in a word w = a1a2 . . . ak ∈
A+, if there exist a non-erasing morphism f from E∗ to A∗ and a sequence (i1, i2, . . . , id)
satisfying ij+1 ∈ {ij + 1, ij + 2} for j = 1, 2, . . . , d− 1, such that

f(p) = ai1ai2 . . . aid .

We say, that the word w = ai1ai1+1ai1+2 . . . aid is an occurence with jumps of a pattern
p. If ij+1 = ij + 2 for some j, we say that index ij + 1 and symbol aij+1 are skipped in the
occurence of p.

For example, a pattern xx occurs with jumps in a word abdcadbc (for x 7→ abc).

Definition 2. Pattern p is said to be grasshopper k-avoidable, if for a k-element alphabet
A the set A∗ contains infinitely many words in which p does not occur with jumps.

It is equivalent, by Konig’s Lemma, to the existence of one infinite word (we can also
require this word to be doubly infinite) with letters from A avoiding p with jumps. We
say that this word avoids p with jumps. We use all three definitions depending on context.

Definition 3. Pattern p is grasshopper avoidable, if it is grasshopper k-avoidable for
some finite k. For every such p we define grasshopper avoidability index

µ′(p) = min{k : p is grasshopper k-avoidable}.
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Creating a word avoiding p with grasshopper jumps is more difficult than in the classic
sense - if a pattern does not occur with jumps, then the pattern does not occur in the
classic sense. As an example consider any infinite sequence on 3 symbols. This sequence
cannot avoid xx with jumps. Indeed, if there is the same symbol on some positions i and
i+ 1 or some positions i and i+ 2, then the grasshopper can produce a simple repetition
of the same letter. Otherwise, the sequence would be of the form . . . 012012012012 . . .
which has many repetitions. On the other hand, recall that it is possible to avoid xx with
3 symbols.

1.3 Connections to other problems

The idea of jumps was inspired by a geometrical problem: so-called line nonrepetitive col-
orings of the Euclidean plane. Grytczuk, Kosiński and Zmarz in their work [14] implicitly
constructed a sequence on 6 symbols that avoids the pattern xx with jumps and used it
to construct a line nonrepetitive 36-coloring of the plane. The reader interested in more
Thue type problems with graph-theoretic, geometrical or number-theoretic flavor can be
referred to the survey of Grytczuk [13].

As mentioned before, grasshopper avoidance was partially inspired by research on
avoiding repetitions (or other patterns) in geometrical structures. Let us take a closer
look at this context. Recently, Grytczuk, Kosiński and Zmarz [14] introduced a Thue-type
problem related to the famous Hadwiger–Nelson problem of coloring the Euclidean plane
(see [27]). A line path is a sequence of distinct collinear points in R2 with consecutive
distances equal to 1. Grytczuk, Kosiński and Zmarz presented a 36-coloring of R2 in which
every sequence of colors of a line path avoids pattern x2. This concept was investigated
further for various patterns by Wenus and Wȩsek [30] (including improving the result
for repetitions to 18 colors) and by Dȩbski, Grytczuk, Pastwa, Pilat, Sokó l, Tuczyński,
Wenus and Wȩsek [10] (studies concentrated on 2-colorings). For an arbitrary pattern
p, as one can guess, the goal is to construct a coloring of R2 which avoids p on every
sequence of colors of a line path. A coloring satisfying this condition is called p-free. Let
us call a pattern p line avoidable if there exists a p-free coloring of R2. It is easy to
observe that every line avoidable pattern has to be avoidable. In [30], authors suggested
that the converse implication may also be true (with a confirmation for doubled patterns
and patterns of length at least 2l, where l stands for the number of variables).

Conjecture 4. [30] A pattern is avoidable if and only if it is line avoidable.

Examples of grasshopper avoidance were used to construct a line xx-free colorings in
[14] and [30]. It appears that this is a more general property: for a given pattern p,
sequence avoiding p with jumps can be used as a tool to prove line avoidability of p.

Proposition 5. For every grasshopper k-avoidable pattern p, there exists a line p-free
k2-coloring of R2.

Proof. Let (an)n∈Z be a sequence over a k-elemental alphabet A in which p does not occur
with jumps. Let f : R2 → A2 be the following coloring:

f((x, y)) = (abx
√
2c, aby

√
2c).
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Let P = (x1, y1), (x2, y2), . . . , (xn, yn) be a line path in R2 and L be the straight line
containing P . Without loss of generality we assume that the counterclockwise) angle α
between L and x-axis is in the set [−π

4
, π
4
]. Otherwise, we can reverse the order in P or

switch the names of x and y coordinates. For any natural i, we have xi+1 − xi = cosα ∈
[ 1√

2
, 1]. Hence, bxi+1

√
2c − bxi

√
2c ∈ {1, 2}. Since there is no occurrence with jumps of p

in the sequence (abxi
√
2c)

n
i=1, we conclude that the sequence (f(xi))

n
i=1 avoids p.

We find it also worth pointing out that a bit different concept of jumps can be found
in the literature. Currie and Simpson [9] introduced the following generalization of Thue
sequences, also originating in geometrical problems. Let a sequence a be k-Thue if every
j-subsequence avoids repetitions, for 1 6 j 6 k, where j-subsequence is any sequence
of the form aiai+jai+2j . . . . Grytczuk [11] conjectured that for any k it is possible to
construct a k-Thue sequence with k + 2 symbols. The best effort in this matter is the
recently proved sufficiency of 2k symbols due to Kranjc, Luzar, Mockovciakova and Sotak
[15]. Note the relation with our notion: In the language of grasshopper, the definition of 2-
Thue sequence takes into account only two extremal possible behaviors of the grasshopper
- that means a repetition can occur with jumps in a 2-Thue sequence.

1.4 Major open problems

Consider an arbitrary pattern p. If p can be avoided with jumps in a sequence over k
symbols, then the same sequence is a witness of k-avoidability of p - although, it is possible
that for the classic avoidance less than k symbols may be sufficient. On the other hand,
for a k-avoidable p, it may be reasonable to take into account that k symbols can be far
from being enough to construct a sequence avoiding p with jumps. But are there any
avoidable patterns that are not grasshopper avoidable? Does the possibility of jumping
actually changes the property of being avoidable over a sufficiently large alphabet? We
believe that the answer is negative and hence we state the following conjecture.

Conjecture 6. A pattern is avoidable if and only if it is grasshopper avoidable.

It follows from Proposition 5 that Conjecture 6 would imply Conjecture 4.
Thue-type problems have been considered also in the area of graph colorings. A lot of

studies concentrate on vertex colorings satisfying the condition that the sequence of colors
of every simple path avoids repetitions or, more generally, a given pattern. For a pattern
p, such a coloring is called p-free. In his work, Grytczuk [12] considered the following
concept of pattern avoidance on graphs. We say that a pattern p is avoidable on graphs
if for any ∆ there exists a constant k such that every graph with the maximal degree at
most ∆ h as a p-free k-coloring. Grytczuk stated the following conjecture (again, with a
confirmation for doubled patterns and patterns of length at least 2d, where d stands for
the number of variables).

Conjecture 7. [12] A pattern is avoidable if and only if it is avoidable on graphs.

Consider an infinite graph G defined on the set Z with two integers a, b joined by an
edge if 0 < |a − b| 6 2. Suppose that for a given avoidable pattern p we have a p-free
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k-coloring of G. Then, this coloring produces a sequence avoiding p with jumps (since
any jumping subsequence corresponds to a simple path in G). Therefore, Conjecture 7
would imply Conjecture 6. We can summarize the relation between conjectures stated in
this section:

Conjecture 7 ⇒ Conjecture 6 ⇒ Conjecture 4

We believe that Conjecture 6, besides being interesting in itself, is also a good approach
to make a progress in Conjecture 4. On the other hand, Conjecture 7 seems to be much
stronger - but any step forward in Conjecture 6 may be an important suggestion for
Conjecture 7.

1.5 Our contributions

We investigate grasshopper avoidability of patterns known to be avoidable in the classic
sense, starting with patterns using one variable (that is, xx, xxx, . . .); we determine the
grasshopper avoidability index of xn for all values of n except n = 5 (Theorem 8 ). In
particular, x6 can be avoided with jumps on 2 symbols.

We also show that doubled patterns (that is, patterns where every variable is used
at least twice) are grasshopper avoidable on 27 + 1 symbols (Theorem 18). Note that it
proves Conjecture 6 for this class of patterns. However, 27 + 1 symbols is probably far
from optimal (recall that doubled patterns are 3-avoidable).

Our further investigations concern patterns with low grasshopper avoidability index.
We show that patterns on 2 variables that are sufficiently long are 3-grasshopper avoidable
(Theorem 22). A similar, but weaker statement is given for patterns with more variables:
if a pattern on k variables is longer than 2k, then it is 37-grasshopper avoidable (Theorem
21).

Note that Theorems 18 and 21 are best possible, as far as grasshopper avoidability is
concerned. For every k there exists an unavoidable pattern Zk on k variables such that
the length of Zk is 2k − 1 and exactly one variable appears in Zk once. Those patterns
are known as Zimin words (or: sesquipowers), and are constructed as follows: Z1 = x1
and Zk+1 = Zkxk+1Zk.

Theorem 8 is proved in Section 2, using elementary arguments. A part of it (that
µ′(x2) > 6) is obtained by an extensive computer search, and we do not know any simple
argument. The bounds µ′(x6) 6 2, µ′(x3) 6 3 and µ′(x2) 6 6 are obtained using the
Thue and Thue-Morse sequence, and µ′(x4) > 2 follows from a direct construction of an
occurrence of x4 in any sufficiently large binary word.

Theorems 18, 22 and 21 are proved in Section 3 using the entropy compression method.
The proofs are somewhat similar to earlier applications of this method in pattern avoid-
ance (in [19] and [22]), but involve essential modifications in order to handle the letters
skipped in occurences with jumps of considered patterns.
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2 Avoiding xn

The simplest class of patterns is clearly the class of patterns with just one variable. In
this section we prove Theorem 8, that give the exact value of grasshopper avoidability
index of xn for n = 2, 3, 4 and n > 5. It follows that 2 6 µ′(x5) 6 3.

Theorem 8. For any natural number n we have

µ′(xn) =


2 for n > 6
3 for 4 > n > 3
6 for n = 2

Proof. We divide the proof into four lemmas (Lemma 9, 10, 11 and 13).
By Lemma 9 we have µ′(x6) = 2, and it follows that µ′(xn) = 2 for n > 6.
Lemma 10 says that µ′(x4) > 2, and by Lemma 11 we have µ′(x3) 6 3. Since µ′(x4) 6

µ′(x3), we have µ′(x3) = µ′(x4) = 3.
It was shown in [14] that µ′(x2) 6 6. By Lemma 13 we get µ′(x2) = 6, which completes

the proof.

Lemma 9. Let w be the Thue sequence over the alphabet {0, 1, 2} and let h be a morphism
defined as

h(0) = a5b5

h(1) = a5b5a2b2

h(2) = a5b5a2b2a2b2.

Then x6 doesn’t occur with jumps in h(w).

Proof. Suppose that the grasshopper can read v6 from h(w) for some v ∈ {a, b}∗. Let
v = v0v1v2 . . . vk, where v1, v2, . . . , vk−1 and vkv0 are of the form (a2a∗b3b∗+a3a∗b2b∗)((a+
a2)(b + b2))∗ (we can make this division by starting new vi before every a2a∗b3b∗ or
a3a∗b2b∗). Now, each of the words v1, v2, . . . , vk−1 and vkv0 is read by the grasshopper
from an image of a single symbol: h(0), h(1) or h(2), and we can easily recognize from
which one. Since v6 contains (v1v2 . . . vk−1(vkv0))

5, we can find x5 in w, which contradicts
the properties of Thue sequence.

Lemma 10. The pattern x4 is grasshopper unavoidable on 2 symbols.

Proof. Suppose that there exists an infinite word w on {a, b} in which x4 does not occur
with jumps. Note that w must contain an infinite number of occurences of aa and bb
(otherwise it would contain (ab)4). We can find a subword u in w satisfying |u| > 32 and
u = (AB)∗, where A = aa(a∗)(ba+)∗ and B = bb(b∗)(ab+)∗ (we find first occurence of aa
in w and read it to the next bb, then to the next aa and so on).

Note that if a word from A has length at least 5, then the grasshopper can read a4

from it, and if a word from B has length at least 5, then the grasshopper can read b4

from it. Therefore, we may assume that u = (A′B′)∗, where A′ = {aaa, aaba, aa} and
B′ = {bbb, bbab, bb}.
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The grasshopper can read aa from every word from A′ and bb from every word from
B′ (read the first or the second letter and then read the last letter of the word). Because
u consists of more than 8 words from A′ and B′, the grasshopper can read (aabb)4 from
it, contradicting the choice of w.

Lemma 11. Let w be the Thue-Morse sequence on the alphabet {0, 1} and let h be a
morphism defined as

h(0) = c2a2

h(1) = c2b2.

Then x3 does not occur with jumps in h(w).

Proof. Denote h(w) = a0a1a2a3 . . .. Let us suppose that x3 occurs with jumps in h(w)
and let (i1, i2, . . . , i3l) be a sequence satisfying ij+1 ∈ {ij + 1, ij + 2} for i = 1, 2, . . . , 3l− 1
such that ai1ai2 . . . ai3l = v3, where v is a word from {a, b, c}∗.

Without loss of generality we may assume that v starts with c and ends with another
letter. Indeed, if v ends with c or begins with a or b, let

v′ =


c2u for v = cuc, where u starts and ends with a or b (1a)
c2u for v = uc2, where u starts and ends with a or b (1a)
cu for v = uc, where u starts and ends with a or b (1b)
ua2 for v = aua, where u starts and ends with c (2b)
ub2 for v = bub, where u starts and ends with c (3b).

The grasshopper can read (v′)3 from h(w). Note that v′ is always well-defined. Indeed, if
(1) v ends with c and (1a) v = cuc or v = uc2 for some u, then u can neither start nor
end with c (since, by the definition of h, grasshopper can’t read c2 from h(w)). If we have
(1) and (1a) does not apply, then (1b) v = uc, where u starts and ends with a or b. If (1)
does not apply, then (2) v ends with a or (3) v ends with b. Note that (2a) v = bua is not
possible, because the grasshopper can’t read ab from h(w), so we have (2b) v = aua and
u must start and end with c, since every double occurence of a read by the grasshopper
form h(w) must be proceeded and succeded by at least one c. The case (3) is symmetric
to (2).

Now, we can divide v into subwords from the set

{ca, caa, cca, ccaa, cb, cbb, ccb, ccbb}.

Recall that, by definition of h, h(w) does not contain single occurences of any letter, so
we can replace in v every block from {ca, caa, cca, ccaa} by ccaa (respectively by 0) and
every block from {cb, cbb, ccb, ccbb} by ccbb, obtaining a word x such that x3 is a subword
of h(w). Since h−1(ccaa) = 0 and h−1(ccbb) = 1, (h−1(x))3 is a subword of w, which
contradicts the properties of Thue-Morse sequence.

The following lemma was proved by Grytczuk, Kosiński and Zmarz [14, Lemma 7].
We give the proof for completeness.
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Lemma 12 (Gryczuk, Kosiński, Zmarz [14]). The pattern x2 is grasshopper avoidable on
6 symbols.

Proof. Let w be the Thue sequence over the alphabet {0, 1, 2} and h be a morphism
defined as:

h(0) = aa′

h(1) = bb′

h(2) = cc′.

Denote h(w) = z0z1z2z3 . . .. Let us suppose that x2 occurs with jumps in h(w) and let
(i1, i2, . . . , i2l) be a sequence satisfying ij+1 ∈ {ij + 1, ij + 2} for j = 1, 2, . . . , 2l − 1 such
that zi1zi2 . . . zi2l = v2, where v is a word from {a, a′, b, b′, c, c′}∗.

Note that without loss of generality, we can assume that zil = zi2l ∈ {a′, b′, c′} and
zi1 = zil+1

∈ {a, b, c}. Otherwise, we can consider another occurrence of x2 with jumps:
z∗i1zi1 . . . zil |z

∗
il+1

zil+1
. . . zi2l if zil ∈ {a′, b′, c′} and zil+1

∈ {a′, b′, c′}
zi1 . . . zilz

∗
il
|zil+1

. . . zi2lz
∗
i2l

if zil ∈ {a, b, c} and zil+1
∈ {a, b, c}

z∗i1zi1 . . . zil−1
|zilzil+1

. . . zi2l−1
if zil ∈ {a, b, c} and zil+1

∈ {a′, b′, c′}

Where | divides two occurrences of x and the ∗ operation changes a letter from {a, b, c}
to the corresponding letter from {a’, b’, c’} and vice versa.

Then, zi1zi1+1 . . . zi2l is an occurrence of x2 (without jumps!) in h(w). It follows that
h−1(zi1zi1+1 . . . zi2l) is a repetition in w, which contradicts the property of Thue sequence.
Therefore, the proof is complete.

Lemma 13. The pattern x2 is grasshopper unavoidable on 5 symbols.

Proof. The Lemma follows from an exhaustive computer search (the longest words on 5
symbols without an occurrence of x2 with jumps has length 22).

As mentioned, Theorem 8 leaves one case still open: we do not know whether the
grasshopper avoidability index of x5 equals 2 or 3. However, we feel that the answer
should be 2. The longest binary sequence avoiding x5 with jumps that we found is of
length 104. It was generated by an exhaustive computer search (for bigger lengths, the
program does not finish in reasonable time).

Problem 14. Determine µ′(x5).

3 Avoiding patterns via entropy compression

Fix a pattern p on k variables α1, . . . , αk and an alphabet A. Consider the following
procedure, parametrized by a number m and a sequence S of length m over A. It uses S
to generate some word w over A avoiding p with jumps and produces a log L that will
allow us to recreate S from w.

1. Let w be an empty word
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2. Initialize an empty log L

3. for n = 1, . . . ,m

(a) Append the n-th symbol from S to w

(b) If some suffix r of w is an occurrence with jumps of p

i. Encode r and n in L

ii. Erase r from w

4. return the pair (w,L)

We will show that the output (w,L) uniquely determines the input sequence S, so there
should be |A|m possible outputs (w,L). Moreover, the returned word w avoids p with
jumps. Our plan to show that a pattern p is grasshopper avoidable is the following. First,
we suppose that p is not grasshopper avoidable on some sufficiently large alphabet A, so
that the length of any word over A that avoids p with jumps is bounded by some constant
N . We show that, for sufficiently large m, there are at most (|A|−ε)m different logs L that
can be returned by our procedure - thus the procedure can have at most |A|N (|A| − ε)m
different outputs, which is a contradiction. Therefore, p must be grasshopper avoidable
(and the procedure will return a word w of length > N that avoids p with jumps).

The log L contains the following information:

• The number x (number of erasures)

• The strictly increasing sequence e = (e1, e2, . . . , ex) (steps n in which the erasure
was performed)

• The number v (the total length of all words assigned to all variables in all erased
occurrences of p)

• The sequence ` = (l1, l2, . . . , lkx) (lengths of words assigned to each of the k variables
of p)

• The sequence V of length v over A (concatenation of all words assigned to all
variables in all erased occurrences with jumps of p)

• The number y (the total number of indices skipped in erased occurrences with jumps
of p)

• The sequence Y of length y over A (symbols skipped in erased occurrences with
jumps of p)

• Binary sequence B of length b 6 m− y (that for every index not skipped in occur-
rences with jumps of p encodes if the next index was skipped)
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Assume wi1 . . . wid (with id = n) is the created occurrence with jumps of p. Encoding
of the pair (r, n) is the following: we increase x by 1 and v by the sum of length of
words assigned to all variables of p, we append i to e, we append to ` the sequence
(|f(α1)| , |f(α2)| , . . . , |f(αk)|), we append to V the concatenation f(α1)f(α2) . . . f(αk),
we increase y by the number of indices skipped in r, we append to Y all symbols skipped
in r, for every j ∈ {1 . . . d− 1} we append 0 to B if ij+1 = ij + 1 (meaning that there is
no skipped symbol after index ij), otherwise we append 1.

Note that given the state (wn, Ln) of our procedure after i-th step, we can determine
the n-th symbol of S and the state (wn−1, Ln−1) after (n−1)-th step. Indeed, if ex = n, we
reverse the above encoding and obtain word w′ and log L′, and otherwise we set w′ = w
and L′ = L. Now, the n-th element of S is the last symbol of w′, wn−1 is the first |w| − 1
symbols from w′ and Ln−1 = L′. By induction we get the following claim.

Claim 15. Given the output (w,L), the input sequence S can be uniquely determined.

Claim 16. Let c > 2. If x 6 m
c

and m is sufficiently large, then there are less than γmc
possible sequences e, where

(i) γc 6 2,

(ii) γc goes to 1 when c goes to ∞.

Note that there is a bijection from the set of possible sequences e to the family of
subsets of the set [m] of order at most m

c
, so we immediately have (i). To get (ii), we

observe that the estimated number is at most m
c

(
m
m
c

)
(since there are more subsets of [m]

of size m
c

than of any fixed size less than m
c

) and we bound it using Stirling’s formula. We
have(
m
m
c

)
≈

(
m
e

)m√
2πm(

m
c

e

)m
c √

2πm
c

((
1− 1

c

)
m
e

)(1− 1
c)m

√
2π
(
1− 1

c

)
m

= O(
√
m)

 1

1
c√c

(
1− 1

c

)1− 1
c

m

.

Clearly c
√
c and

(
1− 1

c

)
tend to 1 with c tending to infinity, so we get (ii).

Claim 17. There are at most 2v possible sequences `.

Note that ` is a sequence of positive integers that adds up to v. If we represent the
number v as v intervals separated by v − 1 delimiters, then each possible sequence `
corresponds to a subset of those delimiters, so the claim follows.

Theorem 18. If p is a doubled pattern, then p is grasshopper avoidable on 27+1 symbols.

Proof. Let A be an alphabet of size 27+1 and suppose for the contrary that p is grasshop-
per unavoidable over A and let n be the length of the longest word over A avoiding p.
Let m be larger than some m0 (that implicitly follows from the proofs) and consider the
number of possible outputs of our procedure.
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There are |A|N choices for w and at most m3 possible assignment of values to x, v and
y. By Claim 16 there are less than 2m choices for e and by Claim 17, at most 2v choices
for `. Moreover, we have y 6 m

2
(as every skipped letter is preceded by a non-skipped

letter) and v 6 m−y
2

(as p is doubled, i.e., every variable occurs at least twice). Now,

there are |A|v 6 |A|
m−y

2 choices for V , |A|y choices for Y and at most 2m−y choices for B.
It follows that the number of possible outputs (w,L) of the procedure is at most

|A|N ·m3 · 2m · 2v · |A|
m−y

2 · |A|y · 2m−y = |A|N m3 |A|
m+y

2 2
5
2
m− 3

2
y 6 |A|N m3 |A|

3
4
m 2

7
4
m,

where the inequality follows by the fact that, since |A| > 23, the left side attains
maximum value for y = m

2
. The resulting value is less than |A|m, so we get a contradiction

by Claim 15, which completes the proof.

Lemma 19. If p is a doubled pattern on k variables of length at least 2k, then p is
grasshopper avoidable on 37 symbols.

Proof. For k = 1, 2 the result directly follows by Theorem 8, because in these cases the
pattern must contain a square. For k > 3, the length of p is at least 8. The proof goes
exactly the same as the proof of Theorem 18, but the bound on the number of possible
sequences e obtained from Claim 16 is improved from 2m to γm8 , where a straightforward
calculation shows that γ8 6 1.46 (note that (1.46)4 < 4.6). Therefore the number of
possible outputs (w,L) of the procedure is at most

|A|N ·m3 · γmc · 2v · |A|
m−y

2 · |A|y · 2m−y = |A|N m3 |A|
m+y

2 2
3(m−y)

2 γm8 .

This expression for y = m
2

attains maximum value

|A|N m3 |A|
3
4
m 2

3
4
mγm8 = |A|N m3

(
|A|3 23γ48

)m
4 < |A|N m336.95m.

The resulting value is (for sufficiently large m) smaller than 37m = |A|m, so we get a
contradiction which completes the proof.

We use the following observation of Ochem and Pinlou.

Claim 20 ([22, Claim 1]). If p is a pattern on k variables of length at least 2k, then p
contains as a factor a doubled pattern p′ on k′ variables and of length at least 2k

′
.

As a direct corollary of the above Claim and Lemma 19 we get the following.

Theorem 21. If p is a pattern on k variables of length at least 2k then p is grasshopper
avoidable on 37 symbols.

Theorem 22. There exists a constant c such that every pattern on 2 variables of length
at least c is grasshopper avoidable on 3 symbols.
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Proof. Let A be an alphabet of size 3, let c be sufficiently large constant (so that we have

γc2
4
c |A|

4
c < 1.5m) and take a pattern p on 2 variables of length at least c. Note that if

one of variables of p appears less than c
4

times in p, then p must contain the pattern x3

as a factor, so in this case the result follows by Theorem 8. Therefore, we may assume
that each variable of p appears at least c

4
times.

Now, we repeat the argument from the proof of Theorem 18 with the following modi-
fications:

• Since each variable of p appears at least c
4

times, we have v 6 4m
c

• The bound 2m, obtained from Claim 17, improves to 2
4m
c

• The bound 2m on the number of possible sequences e is replaced by γmc .

Now, the number of possible outputs becomes at most

|A|N ·m3 · γmc · 2v · |A|
4m
c · |A|y · 2m−y = |A|N m3(2

4
c |A|

4
c γc)

m |A|m
(

2

|A|

)m−y
.

By our conditions on c, the above expression is less than |A|N m3
(
2·1.5
3

)m |A|m =

|A|N m3 |A|m, which is less than |A|m for sufficiently largem. It is the desired contradiction
and completes the proof.

It remains an interesting question whether for sufficiently long binary patterns we can
achieve the minimal nontrivial number of symbols, that is, use an alphabet with only 2
elements.

Problem 23. Is it possible to replace ‘ 3 symbols’ with ‘ 2 symbols’ in Theorem 22?

All results from this section remain valid in the list version of the problem (that is,
when we are given a family of alphabets (Ai)i, called lists, and demand that i-th element of
the pattern-avoiding word is from Ai for all i; a pattern p is list grasshopper k-avoidable if
a word avoiding p with jumps can be constructed for every family of k-element lists). The
possibility of such a generalization is inherent to the entropy compression method – for
examples of results in classic pattern avoidance actually proven also for the corresponding
list version see work of Ochem and Pinlou on ‘long’ patterns [22] and the work of Zydroń
[32].

4 Longer jumps

We used grasshopper avoidability of a pattern p to solve the problem of line p-free coloring
of the plane. Our considerations can be generalised to higher dimensions if we allow the
grasshopper to make longer jumps, up to some fixed length. Formally, we say that a
pattern p ∈ E+ occurs with j-jumps in a word w = a1a2 . . . ak ∈ A+, if there exist a
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non-erasing morphism f from E∗ to A∗ and a sequence (i1, i2, . . . , il) satisfying in+1 ∈
{in + 1, in + 2, . . . , in + j} for n = 1, 2, . . . , l − 1, such that

f(p) = ai1ai2 . . . ail .

For example there is an occurence with 3-jumps of a pattern xx in abcdaeb. Pattern p is
said to be j-grasshopper k-avoidable, if for a k-elemental alphabet A the set A∗ contains
infinitely many words in which p does not occur with j-jumps. Pattern p is j-grasshopper
avoidable, if it is j-grasshopper k-avoidable for some finite k. For every such p we define
j-grasshopper avoidability index

µj(p) = min{k : p is j-grasshopper k-avoidable}.

Note that 1-grasshopper avoidability is exactly the classic avoidability.
Proposition 5 generalizes to higher dimensions (the proof is the same, except that

there are more dimensions and
√

2 is replaced by
√
d).

Proposition 24. For every
⌈√

d
⌉

-grasshopper k-avoidable pattern p, there exists a line

p-free k2-coloring of Rd.

The j-grasshopper avoidability index of x2 is at most 3j. To see this, take the Thue
sequence over the alphabet {a, b, c} and replace each letter with a sequence of j distinct
symbols (for example, replace a with a1a2 . . . aj). It is easy to see that the resulting
sequence j-grasshopper avoids x2 (see [30, Remark 9]). The bound µj(x

2) 6 3j is tight
for j ∈ {1, 2} and it is interesting whether it is also the case for larger j.

One can ask for a generalization of Conjecture 6 for grasshopper j-avoidance. We
believe that allowing longer jumps should not change the class of avoidable patterns.

Conjecture 25. A pattern is avoidable if and only if it is j-grasshopper avoidable for
every j ∈ Z+.

Observe that using a similar argument as in Section 1.4 we can show that Conjecture 7
would imply Conjecture 25. Therefore, Conjecture 25 is true for doubled patterns and
patterns of length at least 2k, where k stands for the number of variables.

Our approach from Section 3 (in particular, Theorem 22) can be generalised to j-
grasshopper avoidability. However, the required number of symbols would rapidly grow
with j. It would be interesting to find a way to reduce the required size of the alphabet.
In particular, the following generalization of Theorem 22 seems plausible.

Conjecture 26. For every j there exists a constant c = c(j) such that every pattern on
2 variables of length at least c is j-grasshopper avoidable on 3 symbols.
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Paris VI, 7 1994.

[6] J. Cassaigne. Unavoidable patterns. In Lothaire, editor, Algebraic Combinatorics on
Words. Cambridge University Press, Cambridge, 2002.

[7] R. J. Clark. The existence of a pattern which is 5-avoidable but 4-unavoidable.
International Journal of Algebra and Computation, 16(2):351–367, 2006.

[8] J. D. Currie. Pattern avoidance: themes and variations. Theoretical Computer
Science, 339(1):7–18, 2005.

[9] J. D. Currie and J. Simpson. Non-repetitive tilings. The Electronic Journal of
Combinatorics, 9:2–8, 2002, #R28.
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