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Abstract

For a finite abelian group G with exp(G) = n, the arithmetical invariant sA(G) is
defined to be the least integer k such that any sequence S with length k of elements
in G has a A weighted zero-sum subsequence of length n. When A = {1}, it is the
Erdős-Ginzburg-Ziv constant and is denoted by s(G). For certain class of sets A,
we already have some general bounds for these weighted constants corresponding
to the cyclic group Zn, which was given by Griffiths. For odd integer n, Adhikari
and Mazumdar generalized the above mentioned results in the sense that they hold
for more sets A. In the present paper we modify Griffiths’ method for even n and
obtain general bound for the weighted constants for certain class of weighted sets
which include sets that were not covered by Griffiths for n ≡ 0 (mod 4).

Keywords: the zero-sum problem; Kneser’s theorem.

1 Introduction

Let G be a finite abelian group (written additively). By a sequence over G we mean a
finite sequence of terms from G which is unordered and repetition of terms is allowed
and we view sequences over G as elements of the free abelian monoid F(G) and use
multiplicative notation. So, our notation is consistent with [8], [9] and [11].

For S ∈ F(G), if

S = x1x2 · · ·xt =
∏
g∈G

gvg(S),

then vg(S) > 0 is the multiplicity of g in S, and

|S| = t =
∑
g∈G

vg(S)
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is the length of S. The sequence S contains some g ∈ G if vg(S) > 1. If S and T are
sequences over G, then T is said to be a subsequence of S if vg(T ) 6 vg(S) for every g ∈ G.

For a non-empty subset A of {1, 2, . . . , n− 1}, where n is the exponent of G (denoted
by exp(G)), a sequence S = x1x2 · · ·xt of length t over G is said to be an A-weighted
zero-sum sequence, if there exists ā = (a1, a2, . . . , at) ∈ At such that

∑t
i=1 aixi = 0.

For integers m < n, we shall use the notation [m,n] to denote the set {m,m+1, . . . , n}.
For a finite set A, we denote its size by |A|, which is the number of elements of A. If G is
a finite abelian group with exp(G) = n, then for a non-empty subset A of [1, n− 1], one
defines sA(G) to be the least integer k such that any sequence S with length k of elements
in G has an A-weighted zero-sum subsequence of length exp(G) = n. Taking A = {1}, one
recovers the classical Erdős-Ginzburg-Ziv constant s(G). The above weighted versions
and some other invariants with weights were introduced by Adhikari, Chen, Friedlander,
Konyagin and Pappalardi [3], Adhikari and Chen [2] and Adhikari, Balasubramanian,
Pappalardi and Rath [1]. For developments regarding bounds on the constant sA(G) in
the case of abelian groups G with higher rank and related references, we refer to the recent
paper of Adhikari, Grynkiewicz and Sun [5].

When A = Z∗n = {a ∈ [1, n− 1]|(a, n) = 1}, the set of units of Zn = Z/nZ, Luca [13]
and Griffiths [10] proved independently the following result which had been conjectured
in [3]:

sA(Zn) 6 n+ Ω(n), (1)

where Ω(n) denotes the number of prime factors of n, counted with multiplicity. An
example in [3] had already established the inequality in the other direction:

sA(Zn) > n+ Ω(n).

Now we state the following results of Griffiths [10] which generalizes result (1) for
integer n:

Theorem 1. Let n = pa11 · · · p
ak
k be an odd integer and let a =

∑
s as. For each s, let

As ⊂ Zpass be a subset with its size |As| > pass /2, and let A = A1 × · · · × Ak. Then for
m > a, every sequence x1 · · ·xm+a over Zn has 0 as an A-weighted m-sum.

Theorem 2. Let n = 2a1 · · · pakk be an even integer and let a =
∑

s as. Let A1 ⊂ Z2a1 be
such that |A1| > 2a1−1 or |A1| > 2a1−2 and A1 ⊂ Z∗2a1 . For each s > 2, let As ⊂ Zpass be
a subset with |As| > (1/2)pass , and let A = A1 × · · · × Ak. Then for any even m, every
sequence x1 · · · xm+a over Zn has 0 as an A-weighted m-sum.

For odd integer n with suitable modifications in the method of Griffiths [10], Adhikari
and Mazumdar established the following result in [6]:

Theorem 3. Let n = pa11 · · · p
ak
k be an odd integer and let a =

∑
s as. For each s, let

As ⊂ Zpass be a subset with |As| > (4/9)pass , and let A = A1× · · · ×Ak. Then for m > 2a,
every sequence x1 · · ·xm+2a over Zn has 0 as an A-weighted m-sum.
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For general n, consider the set A of squares in the group of units in the cyclic group
Zn, it was proved by Adhikari, Chantal David and Urroz [4] that if n is a square-free
integer, coprime to 6, then

sA(Zn) = n+ 2Ω(n). (2)

Later, removing the requirement that n is square-free, Chintamani and Moriya [7]
showed that if n is a power of 3 or n is coprime to 30 = 2 × 3 × 5, then the result (2)
holds, where A is again the set of squares in the group of units in Zn.

But still we lack any information on bounds in case when n is an even integer. In
this paper we mainly focus on the case when n is an even integer and get the following
theorem:

Theorem 4. Let n = 2a1 · · · pakk be an even integer and let a =
∑

s as. Let A1 ⊂ Z2a1 such
that |A1| > 2a1−1. For each s > 2, let As ⊂ Zpass be a subset with |As| > (5/12)pass , and
let A = A1 × · · · ×Ak. Then for any integer m multiple of 4, every sequence x1 · · ·xm+3a

over Zn has 0 as an A-weighted m-sum.

For a1 > 2 from Theorem 4 it follows that any sequence of length n + 3a of elements
of Zn has 0 as an A-weighted n-sum. In other words, if A is as in Theorem 4,

sA(Zn) 6 n+ 3Ω(n),

for n ≡ 0 (mod 4).
It has been observed in [3] that if we consider n ≡ 0 (mod 4) such that n is the

product of Ω(n) (not neccessarily distinct) primes n = q1 · · · qΩ(n) and A = Z∗n, then
the sequence 1, q1, q1q2, . . . , q1q2 · · · qΩ(n)−1 has no non-empty subset with weighted sum 0.
Thus adjoining n−1 zeros we have a sequence of length n+Ω(n)−1 which does not have
0 as a A-weighted n-sum. So in this case we can conclude that

n+ Ω(n) 6 sA(Zn) 6 n+ 3Ω(n),

for n ≡ 0 (mod 4).
Clearly, in the Theorem 4 we include more sets which are not covered by the results

of Griffiths.
In the next section we shall give the proof of Theorem 4 and discuss some results. But

before that let us first state the Kneser’s theorem ([12], also see [14, Chapter 4]), which
is one of the most useful tools for Section 2.

Recall that the stabilizer of a subset S of an abelian group G is defined as

stab(S) = {x ∈ G : x+ S = S}.

Theorem 5 (Kneser’s Theorem). Let G be an abelian group and A,B be finite, non-empty
subsets of G. Then

|A+B| > |A+H|+ |B +H| − |H|,

where H is the stabilizer of A+B.
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2 Proof of Theorem 4

To prove Theorem 4 we need the following lemmas.

Lemma 6. Let A ⊂ Z2a be a subset such that |A| > 2a−1. If x, y, z, w ∈ Z∗2a, the group of
units in Z2a, then given any even t ∈ Z2a, there exist α, β, γ, δ ∈ A such that

αx+ βy + γz + δw = t.

Proof. There are two cases.

• When |A| = 2a−1 and A contains all odd elements or all even elements of Z2a . Given
x, y, z, w ∈ Z∗2a and A ⊂ Z2a with |A| = 2a−1, Ax+Ay+Az+Aw will contain only
even elements from Z2a which will imply

|Ax+ Ay + Az + Aw| 6 2a−1.

Now we calculate the cardinality |Ax+ Ay + Az + Aw|. As we observed that

|Ax+ Ay + Az + Aw| > |Ax| = |A| = 2a−1,

it follows that Ax+Ay+Az+Aw = Z2a−1 . Thus we have the theorem in this case.

• When A contains even as well as odd elements of Z2a . Using Theorem 5 we get

|Ax+ Ay| > |Ax+H1|+ |Ay +H1| − |H1|,

where H1 is the stabilizer of Ax+Ay. For |H1| = 2a, Ax+Ay = Z2a . For |H1| = 2a−1,
H1 contains all even elements of Z2a and the order of Z2a/H1 will be 2. For an even
u ∈ A we have u+H1 = H1 and for an odd v ∈ A we have v +H1 6= H1. Therefore
we get

Z2a = H1

⋃
(v +H1).

Thus by Theorem 5 we have

|Ax+ Ay| > |Ax+H1|+ |Ay +H1| − |H1| > |Ax+H| = 2a.

and hence Ax+ Ay = Z2a . If |H1| 6 2a−2, then

|Ax+ Ay| > |Ax+H1|+ |Ay +H1| − |H1| > 3.2a−2.

Similarly, using Theorem 5 we have

|t− Az − Aw| > |t− Az +H2|+ |(−Aw) +H2| − |H2|,

where H2 is the stabilizer of t−Az−Aw. Now, for |H2| = 2a or 2a−1, t−Az−Aw =
Z2a . For |H2| 6 2a−2, |t− Az − Aw| > 3.2a−2. In all the cases we will find that

|Ax+ Ay|+ |t− Az − Aw| > 2a.

So, by the pigeonhole principle, we conclude that any even number t can be written
as αx+ βy + γz + δw for some α, β, γ, δ ∈ A.
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Lemma 7. Let pa be an odd prime power and A ⊂ Zpa be a subset such that |A| > 5
12
pa. If

x, y, z, w ∈ Z∗pa, the group of units in Zpa, then given any t ∈ Zpa, there exist α, β, γ, δ ∈ A
such that

αx+ βy + γz + δw = t.

Proof. Consider the following sets

A1 = {αx : α ∈ A}, B1 = {βy : β ∈ A},

C1 = {−γz : γ ∈ A}, D1 = {t− δw : δ ∈ A}.

Observe that |A1| = |B1| = |C1| = |D1| = |A|. Therefore by using Theorem 5, we have

|A1 +B1| > |A1|+ |B1| − |H1|, (3)

where H1 is the stabilizer of A1 + B1. Now if H1 = Zpa then it would imply that
A1 + B1 = Zpa . Thus we get A1 + B1 + γz + δw = Zpa and we are through. Otherwise,
we have

|H1| 6 pa−1 =
pa

p
6
pa

3
.

Hence using (3) we have

|A1 +B1| > |A1|+ |B1| − |H1| >
5pa

6
− pa

3
=
pa

2
.

Similarly, if the stabilizer of C1 +D1 has cardinality pa then we are through. Otherwise

|C1 +D1| >
pa

2
,

and therefore we get

|A1 +B1|+ |C1 +D1| >
pa

2
+
pa

2
= pa,

which implies that the sets A1 +B1 and C1 +D1 intersect and we are done.

Lemma 8. Let A ⊂ Z2a be such that |A| > 2(a−1). Let x1 · · ·xm be a sequence over Z2a

such that for each b ∈ [1, a], the cardinality of the set {i | xi 6= 0 (mod 2b)} is divisible by
4. Then x1 · · ·xm is an A-weighted zero-sum sequence.

Proof. Let c be minimal such that {i | xi 6= 0 (mod 2c)} is non-empty. If no such c
exists then all terms are 0 and we are done instantly. Therefore, {i | xi 6= 0 (mod 2c)}
has at least four elements; without loss of generality let x1, x2, x3, x4 6= 0 (mod 2c). Also
there are only even number of elements in x5, . . . , xm which are 6= 0 (mod 2c) and ≡ 0
(mod 2c−1). Others are congruent to 0 modulo 2c. Set

x′i = xi/2
c−1 ∈ Z2a−(c−1) ,
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for i ∈ [1,m]. Therefore x′i for i = 1, 2, 3, 4 are odd elements and −x′5 − · · · − x′m is even
element in Z2a−(c−1) . Also if elements of A meet less than 2a−(c−1)−1 congruence classes
modulo 2a−(c−1), then |A| < 2a−(c−1)−1 × 2(c−1) = 2a−1, which is a contradiction to our
assumption. Therefore, the elements of A must meet at least 2a−(c−1)−1 congruence classes
modulo 2a−(c−1). Let α ∈ A be any element. Therefore, −αx′5 − · · · − αx′m is an even
element in Z2a−(c−1) . Now using Lemma 6, there exist α1, α2, α3, α4 ∈ A such that

α1x
′
1 + α2x

′
2 + α3x

′
3 + α4x

′
4 = −αx′5 − · · · − αx′m

in Z2a−(c−1) , and we are through in Z2a taking α = α5 = · · · = αm.

Remark. For an odd prime power n = pa, the same condition on a sequence x1 · · ·xm
in Zpa ( namely that A ⊂ Zpa be such that |A| > 5

12
pa and the cardinality of the set

{i | xi 6= 0 (mod pb)} is divisible by 4 for all b = 1, . . . , a) is sufficient to imply that
x1 · · ·xm is an A-weighted zero-sum sequence. For a proof we should proceed as above.
Only at the last part we need to apply Lemma 7 instead of Lemma 6.

Lemma 9. Given disjoint subsets X1, . . . , Xa of the set V = [1,m + 3a], where m is a
multiple of 4, there exists a set I ⊂ [1,m+3a] with |I| = m such that |I∩Xs| is a multiple
of 4, for all s = 1, . . . , a.

Proof. Let Xa+1 = V \ ∪a
b=1Xb. For b = 1, . . . , a + 1, let Wb ⊂ Xb, be a maximal sized

subset whose cardinality is a multiple of 4. Then, |Wb| ∈ {|Xb|, |Xb|−1, |Xb|−2, |Xb|−3}.
So, | ∪a+1

b=1 Wb| =
∑a+1

b=1 |Wb| >
∑a+1

b=1 (|Xb| − 3) = (m + 3a) − 3(a + 1) = m − 3. For
each b ∈ [1, a + 1], |Wb| is divisible by 4 and also it is given that m is divisible by 4.
Therefore, | ∪a+1

b=1 Wb| > m. Thus we can obtain an I with cardinality m having the
required property.

Remark. The same is true for a nested family X1 ⊂ X2 ⊂ · · · ⊂ Xa. To see this, set
Y1 = X1, and Yb = Xb�Xb−1, for b = 2, . . . , a. These sets are disjoint. Now by applying
Lemma 9 to Y1, . . . , Ya, we obtain I ⊂ {1, 2, . . . ,m+3a} with |I| = m and |I∩Yb| multiple
of 4, for b = 1, . . . , a. Hence we are done because this implies |I ∩Xb| is multiple of 4 for
all b = 1, . . . , a.

Observation : Let n = pa11 · · · p
ak
k be a positive integer. Then, Zn is isomorphic to

Zp
a1
1
× · · · × Zp

ak
k

and an element x ∈ Zn can be written as x = (x(1), . . . , x(k)), where

x(s) ≡ x (mod pass ) for each s. It has been observed in [10] that if A = A1×A2×· · ·×Ak

is a subset of Zn, where As ⊂ Zpass for each s ∈ [1, k], then a sequence x1 · · ·xm over Zn

is an A-weighted zero-sum sequence in Zn if and only if for each s ∈ [1, k], the sequence

x
(s)
1 · · ·x

(s)
m is an As-weighted zero-sum sequence in Zpass .

Proof of Theorem 4. Given a sequence x1 · · · xm+3a over Zn, we define X
(s)
b ⊂ [1,m+ 3a]

for s ∈ [1, k] and b ∈ [1, as] by

X
(s)
b = {i : xi 6= 0 (mod pbs)}.
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Using Lemma 9 and the Remark just after that, we can say that there exists I ⊂
[1,m+3a] such that |I| = m and |I∩X(s)

b | is a multiple of 4 for all s, b. Let I = {i1, . . . , im}.
For s = 1, by Lemma 8, x

(1)
i1
· · ·x(1)

im
is an A1- weighted zero-sum sequence. For s > 2, by

remark just after Lemma 8 x
(s)
i1
· · · x(s)

im
is a As- weighted zero-sum sequence. Now using

the above observation it follows that xi1 , . . . , xim is an A-weighted zero-sum sequence.
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