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Abstract

In this paper we study the cycle descent statistic on permutations. Several
involutions on permutations and derangements are constructed. Moreover, we con-
struct a bijection between negative cycle descent permutations and Callan perfect
matchings.
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1 Introduction

Let Sn be the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}. We
write an element π in Sn as π = π(1)π(2) · · · π(n). An excedance in π is an index i such
that π(i) > i and a fixed point in π is an index i such that π(i) = i. A fixed-point-
free permutation is called a derangement. Denote by Dn the set of derangements of [n].
As usual, let exc (π), fix (π) and cyc (π) denote the number of excedances, fixed points
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and cycles in π respectively. For example, the permutation π = 3142765 has the cycle
decomposition (1342)(57)(6), so cyc (π) = 3, exc (π) = 3 and fix (π) = 1.

The Eulerian polynomials An(x) are defined by

A0(x) = 1, An(x) =
∑
π∈Sn

xexc (π) for n > 1,

and have been extensively investigated. Foata and Schützenberger [7] introduced a q-
analog of the Eulerian polynomials defined by

An(x; q) =
∑
π∈Sn

xexc (π)qcyc (π).

Brenti [2, 3] further studied q-Eulerian polynomials and established the link with q-
symmetric functions arising from plethysm. Brenti [3, Proposition 7.3] obtained the
exponential generating function for An(x; q):

1 +
∑
n>1

An(x; q)
zn

n!
=

(
1− x

ez(x−1) − x

)q
.

Remarkably, Brenti [3, Corollary 7.4] derived the following identity:∑
π∈Sn

xexc (π)(−1)cyc (π) = −(x− 1)n−1. (1)

From then on, there is a large of literature devoted to various generalizations and refine-
ments of the joint distribution of excedances and cycles (see [1, 6, 9, 15] for instance).
For example, Ksavrelof and Zeng [9] constructed bijective proofs of (1) and the following
formula: ∑

π∈Dn

xexc (π)(−1)cyc (π) = −x− x2 − · · · − xn−1.

In particular, their bijection leads to a refinement of the above identity:∑
π∈Dn,i

xexc (π)(−1)cyc (π) = −xn−i,

where Dn,i is the set of derangements π of [n] such that π(n) = i.
A standard cycle decomposition of π ∈ Sn is defined by requiring that each cycle is

written with its smallest element first, and the cycles are written in increasing order of
their smallest element. A permutation is said to be cyclic if there is only one cycle in its
cycle decomposition. Let (c1, c2, . . . , ci) be a cycle in the standard cycle decomposition of
π. We say that cj is a cycle descent if cj > cj+1, where 1 < j < i. Denote by CDES(π) the
set of cycle descents of π and let cdes (π) = |CDES(π)| be the number of cycle descents
of π. For example, for π = (1342)(57)(6), we have CDES(π) = {4} and cdes (π) = 1.
For π ∈ Sn, it is clear that exc (π) + cyc (π) + cdes (π) = n. Thus

An(x; q) = qn
∑
π∈Sn

(
x

q

)exc (π)(
1

q

)cdes (π)

.
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Let Sn,i be the set of permutations π ∈ Sn with π(i) = 1. For any π ∈ Sn, let π−1

denote the inverse of π, so π−1(1) = i if π ∈ Sn,i. For n > 2, we recently observed the
following formulas:

∑
π∈Sn,i

(−1)cdes (π)tπ
−1(1) =


2n−2t if i = 1,
0 if i = 2, . . . , n− 1,
2n−2tn if i = n,∑

π∈Sn

(−1)cdes (π)tπ
−1(1) = 2n−2(t+ tn),

∑
π∈Dn

xexc (π)(−1)cdes (π)tπ
−1(1) =

n∑
i=2

(−1)n−ixi−1ti,

∑
π∈Dn

(−1)cdes (π) =
1

2
[1− (−1)n−1].

The above formulas can be easily proved by taking x = 1 in Theorem 1 of Section 2.
Motivated by these formulas, we shall study the cycle descent statistic of permutations.
In the next section, we present the main results of this paper and collect some notation
and definitions that will be needed in the rest of the paper.

2 Definitions and main results

Consider the following enumerative polynomials

Pn,i(x, y, q, t) =
∑
π∈Sn,i

xexc (π)ycdes (π)qfix (π)tπ
−1(1).

It is remarkable that the polynomials Pn,i(x,−1, 1, t) and Pn,i(x,−1, 0, t) have simple
closed formulas. We state them as the first main result of this paper.

Theorem 1. For n > 2, we have

Pn,i(x,−1, 1, t) =


t(1 + x)n−2 if i = 1,
0 if i = 2, . . . , n− 1,
tnx(1 + x)n−2 if i = n,

(2)

and
Pn,i(x,−1, 0, t) = (−1)n−ixi−1ti. (3)

A signed permutation (π, φ) of [n] is a permutation π ∈ Sn together with a map
φ : [n] 7→ {+1,−1} and we call φ(i) the sign of i. For simplicity, we indicate the sign of
π(i) by writing π(i)+ or π(i)−. The group, which consists of all the signed permutations
of [n] with composition as the group operation, is called the signed permutation group of
order n.
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Let (π, φ) be a signed permutation. Let NEG(π, φ) be the set of numbers π(i) with
the sign −1, i.e.

NEG(π, φ) = {π(i) | φ(π(i)) = −1},

and let neg (π, φ) = |NEG(π, φ)|.

Definition 2. A negative cycle descent permutation (π, φ) of [n] is a signed permutation
(π, φ) such that NEG(π, φ) ⊆ CDES(π).

Let

bn(y, q) =
n∑
i=1

Pn,i(1, y, q, 1) =
∑
π∈Sn

ycdes (π)qfix (π).

It is easy to verify that bn(2, 1) is the number of negative cycle descent permutations of
[n] since

bn(2, 1) =
∑
π∈Sn

2cdes (π)

and bn(2, 0) is the number of negative cycle descent derangements of [n] since

bn(2, 0) =
∑
π∈Sn

2cdes (π)0fix (π) =
∑
π∈Dn

2cdes (π).

We present the second main result of this paper as follows.

Theorem 3. For n > 1, we have

bn+1(y, 1) = bn(y, 1) +
n∑
i=1

bi(y, 1)

(
n

i− 1

)
(y − 1)n−i (4)

with the initial condition b1(y, 1) = 1, and

bn+1(y, 0) =
n−1∑
i=0

(
n

i

)
[bi+1(y, 0) + bi(y, 0)] (y − 1)n−i−1 (5)

with initial conditions b0(y, 0) = 1, b1(y, 0) = 0.

By taking y = 2 in the identity (4), we obtain Klazar’s recurrence for w12(n) (see [8,
Eq. (39)] for details), which can be written as follows:

bn+1(2, 1) = bn(2, 1) +
n∑
i=1

bn+1−i(2, 1)

(
n

i

)
. (6)

In [4, 8, 12], the sets of some combinatorial objects, which have cardinality bn(2, 1), were
studied. We list some of them as follows:

(i) The set of drawings of rooted plane trees with n+ 1 vertices (see [8]);
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(ii) The set of Klazar trees with n+ 1 vertices (see [4]);

(iii) The set of perfect matchings on the set [2n] in which no even number is matched to
a larger odd number (see [4]).

(iv) The set of ordered partitions of [n] all of whose left-to-right minima occur at odd
locations (see [12]).

Now we begin to introduce the concept of perfect matchings (see [5, 11] for instance).
Let PA = A × {0, 1}, where A = {i1, . . . , ik} is a finite set of positive integers with
i1 < i2 < · · · < ik. When A = [n], we write PA as Pn. A perfect matching is a partition of
PA into 2-element subsets or matches. For any match {(i, x), (j, y)} in a perfect matching,
we say that (i, x) is the partner of (j, y). For convenience, we represent a perfect matching
as a dot diagram with vertices arranged in two rows.

Example 4. We give a dot diagram of a perfect matching M of P8 as follows:

( , )1 0 ( , )2 0 ( , )3 0 ( , )4 0 ( , )5 0 ( , )6 0 ( , )7 0 ( , )8 0

( , )1 1 ( , )2 1 ( , )3 1 ( , )4 1 ( , )5 1 ( , )6 1 ( , )7 1 ( , )8 1

Fig.1. A perfect matching M of P8

Thus, for any perfect matching M of PA, we say that PA is the vertex set of M and every
match is an edge of M . We use V (M) and E(M) to denote vertices set and edges set in
M respectively. Moreover, an edge is called an arc if it joins two dots in the same row;
otherwise, this edge is called a line. For any line {(i, 0), (j, 1)}, it is said to be a upline
if i < j, a downline if i > j and a vertical line if i = j. For any perfect matching M , let
arc (M), down (M) and ver (M) be the numbers of arc, down lines and vertical lines in
M , respectively.

Example 5. In the perfect matching of Example 4, the edge {(1, 1), (1, 0)} is a verti-
cal line, the edges {(5, 1), (2, 0)}, {(7, 1), (5, 0)} and {(8, 1), (4, 0)} are three uplines, the
edges {(3, 1), (6, 0)} and {(6, 1), (8, 0)} are two downlines, and the edges {(2, 1), (4, 1)}
and {(3, 0), (7, 0)} are two arcs; finally, arc(M) = 2, down(M) = 2, ver(M) = 1.

Definition 6. A perfect matching M of Pn is a Callan perfect matching if M has no
uplines.

Example 7. We give a dot diagram of a Callan perfect matching M of P8 as follows:

( , )1 0 ( , )2 0 ( , )3 0 ( , )4 0 ( , )5 0 ( , )6 0 ( , )7 0 ( , )8 0

( , )1 1 ( , )2 1 ( , )3 1 ( , )4 1 ( , )5 1 ( , )6 1 ( , )7 1 ( , )8 1

Fig.2. A Callan perfect matching M of P8
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Let mn be the number of Callan perfect matchings of Pn. Callan [4] proved that mn

satisfies the recurrence (6). So the number of negative cycle descent permutations of [n]
equals to the number of Callan perfect matching of Pn.

Let M be a perfect matching of Pn. We say that M ′ is a sub-perfect matching of M
if M ′ is a perfect matching such that V (M ′) ⊆ V (M) and E(M ′) ⊆ E(M). For any
V ⊆ [n], if there is a sub-perfect matching M ′ of M with V (M ′) = V × {0, 1}, then M ′

is said to be the sub-perfect matching induced by V and is denoted by M [V ].
Denote by G(M) a graph which is obtained from M by identifying each two vertices

(i, 0) and (i, 1) as a new vertex i for any i ∈ [n]. It is easy to see that the graph G(M) is
the union of some disjoint cycles. For a cycle C in G(M), suppose C has the vertices set
V . Note that there is a sub-perfect matching of M induced by V . We say that M [V ] is
a connected component of M . Let com (M) be the number of connected components in
a perfect matching M . If a perfect matching M has exactly one connected component,
i.e., com (M) = 1, then we say that M is a connected perfect matching.

Example 8. For the perfect matching M of Example 7, we draw the graph G(M) as
follows:

1 2

3

4 5

6 7 8

Fig.3. A graph G(M).

So we have com (M) = 3.

We state the third main result of this paper as follows.

Theorem 9. There is a bijection Γn between the set of negative cycle descent permutations
of [n] and the set of Callan perfect matchings of Pn. Moreover, for any negative cycle
descent permutation (π, φ) of [n], we have

com (Γn(π, φ)) = cyc (π), ver (Γn(π, φ)) = fix (π),

and

down (Γn(π, φ)) =

{
neg (π, φ) if (1, 1) and its partner are in the same row,
neg (π, φ) + 1 otherwise.

Let Γ|Dn denote the restriction of Γn on the set of negative cycle descent derangements
of [n]. So the following corollary is immediate.

Corollary 10. Γ|Dn is a bijection between the set of negative cycle descent derangements
of [n] and the set of Callan perfect matchings of Pn which have no vertical lines.

The rest of this paper is organized as follows. In Section 3 and Section 4, we re-
spectively prove (2) and (3) in Theorem 1. In Section 5 and Section 6, we respectively
prove (4) and (5) in Theorem 3. In Section 7, we construct the bijection Γn in Theorem 9.
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3 Proof of the explicit formula (2) in Theorem 1

Suppose that π = π(i1) . . . π(ik) is a permutation on the set {i1, . . . , ik} of positive integers
with i1 < i2 < · · · < ik. Throughout this paper, we always let

red (π) := red (π(i1)) · · · red (π(ik)) ∈ Sk,

where red is a increasing map from {i1, . . . , ik} to {1, 2, . . . , k} defined by red (ij) = j for
any j = 1, 2, . . . , k.

Let Pn(x, y, 1, 1) =
n∑
i=1

Pn,i(x, y, 1, 1). We give a recurrence for Pn,i(x, y, 1, 1) in the

following lemma.

Lemma 11. For any n > 2, we have

Pn+1,i(x, y, 1, 1) =


Pn(x, y, 1, 1) if i = 1,

xPn−1(x, y, 1, 1) + x
i−1∑
j=2

Pn,j(x, y, 1, 1)+

y
n∑
j=i

Pn,j(x, y, 1, 1) if i = 2, . . . , n+ 1,

with initial conditions

P1,1(x, y, 1, 1) = 1, P2,1(x, y, 1, 1) = 1, P2,2(x, y, 1, 1) = x.

Proof. For any π = π(1)π(2) . . . π(n + 1) ∈ Sn+1,1, we have π(1) = 1. Let π̃ =
π(2) . . . π(n + 1). Then π̃ is a permutation on the set {2, 3, . . . , n} and red (π̃) ∈ Sn.
Obviously,

exc (π) = exc (red (π̃)) and cdes (π) = cdes (red (π̃)).

So we have Pn+1,1(x, y, 1, 1) = Pn(x, y, 1, 1).
For any i > 2, let π = π(1)π(2) . . . π(n + 1) ∈ Sn+1,i. Let σ = (1, c1, c2, . . . , cm) be

the cycle in the standard cycle decomposition of π which contains the entry 1. So π can
be split into the cycle σ and a permutation τ on the set {1, 2, . . . , n+ 1} \ {1, c1, . . . , cm},
i.e., π = σ · τ . Clearly, m > 1, i > 2 and cm = i since π ∈ Sn+1,i. We distinguish between
the following two cases:

Case 1. m = 1.
Deleting the cycle (1, c1) = (1, i) from the standard cycle decomposition of π, we

obtain the permutation

τ = π(2) · · · π(i− 1)π(i+ 1) · · · π(n+ 1)

which is defined on the set {1, 2, . . . , n+ 1} \ {1, i}. Note that red (τ) ∈ Sn−1 and

exc (π) = exc (red (τ)) + 1, cdes (π) = cdes (red (τ)).
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This provides the term
xPn−1(x, y, 1, 1).

Case 2. m > 2.
Suppose that cm−1 = j for some 2 6 j 6 n+ 1. Deleting the number cm = i from the

standard cycle decomposition of π, we obtain a permutation

π̃ = (1, c1, . . . , cm−1) · τ

which is defined on the set {1, . . . , i− 1, i+ 1, . . . , n+ 1}. Hence red (π̃) ∈ Sn. Moreover,
if cm−1 = j 6 i− 1, then

red (π̃) ∈ Sn,j, exc (π) = exc (red (π̃)) + 1, cdes (π) = cdes (red (π̃)).

This provides the term

x
i−1∑
j=2

Pn,j(x, y, 1, 1).

If cm−1 = j > i+ 1, then

red (π̃) ∈ Sn,j−1, exc (π) = exc (red (π̃)), cdes (π) = cdes (red (π̃)) + 1.

This provides the term

y
n∑
j=i

Pn,j(x, y, 1, 1).

In conclusion, for any i > 2 we have

Pn+1,i(x, y, 1, 1) = xPn−1(x, y, 1, 1) + x
i−1∑
j=2

Pn,j(x, y, 1, 1) + y
n∑
j=i

Pn,j(x, y, 1, 1).

A proof of the identity (2) in Theorem 1:
Note that∑

π∈Sn,i

xexc (π)(−1)cdes (π)tπ
−1(1) = ti

∑
π∈Sn,i

xexc (π)(−1)cdes (π) = tiPn,i(x,−1, 1, 1).

In order to prove the identity (2) in Theorem 1, it is sufficient to show that

Pn,i(x,−1, 1, 1) =


(1 + x)n−2 if i = 1,
0 if i = 2, . . . , n− 1,
x(1 + x)n−2, if i = n.

(7)
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(i) An inductive proof of the explicit formula (7).

Proof. It is easy to verify that P2,1(x,−1, 1, 1) = 1, P2,2(x,−1, 1, 1) = x. Assume that the
explicit formula (7) holds for any 2 6 k 6 n. By Lemma 11, we have

Pn+1,1(x,−1, 1, 1) = Pn(x,−1, 1, 1)

= Pn,1(x,−1, 1, 1) + Pn,n(x,−1, 1, 1)

= (1 + x)n−2 + x(1 + x)n−2 = (1 + x)n−1,

Pn+1,n+1(x,−1, 1, 1) = xPn−1(x,−1, 1, 1) + x

n∑
j=2

Pn,j(x,−1, 1, 1)

= xPn−1,1(x,−1, , 1, 1) + xPn−1,n−1(x,−1, 1, 1) + xPn,n(x,−1, 1, 1)

= x(1 + x)n−2 + x2(1 + x)n−2 = x(1 + x)n−1

and

Pn+1,i(x,−1, 1, 1) = xPn−1(x,−1, 1, 1) + x
i−1∑
j=2

Pn,j(x,−1, 1, 1)−
n∑
j=i

Pn,j(x,−1, 1, 1)

= xPn−1,1(x,−1, 1, 1) + xPn−1,n−1(x,−1, 1, 1)− Pn,n(x,−1, 1, 1)

= x(1 + x)n−2 − Pn,n(x,−1, 1, 1) = 0

for any 2 6 i 6 n.

(ii) A bijective proof of the explicit formula (7).
Now we give a bijective proof of (7) by establishing an involution ψn,i on Sn,i.

For any π ∈ Sn, suppose that π = C1 . . . Ck is the standard cycle decomposition of π.
Let

π̂ = a1a2 · · · an
be the permutation obtained from π by erasing the parentheses in its standard cycle
decomposition. Furthermore, for any i = 1, 2, . . . , n − 1, the number ai is said to be a
value-descent of π if ai > ai+1 in the sequence π̂, and let qπ be the last value-descent
which appears in the sequence π̂. For example, the permutation π = 1472365 in S7

has the standard cycle decomposition (1)(24)(375)(6), so π̂ = 1243756, it has exactly
two value-descents 4 and 7, and qπ = 7. The process of erasing the parentheses from
the standard cycle decomposition of a permutation is well-known bijection of Foata and
Schützenberger, the “fundamental transformation”, see also [7].

We define a map Φ : Sn 7→ Sn as follows:
For any π ∈ Sn, if qπ is the last element of a cycle Ci for some i, then let Φ(π)

be the permutation obtained from π by erasing the right and left parentheses “)(” after
the number qπ in the standard cycle decomposition of π; otherwise, let Φ(π) be the
permutation obtained from π by inserting a right parenthesis “)” and a left parenthesis
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“(” after the number qπ in the standard cycle decomposition of π. For example, if π =
(1)(24)(375)(6), then π̂ = 1243756 and qπ = 7, and so Φ(π) = (1)(24)(37)(5)(6). If
σ = (1)(24)(37)(5)(6), then Φ(σ) = (1)(24)(375)(6). Clearly, we have

π̂ = Φ̂(π), qπ = qΦ(π), exc (π) = exc (Φ(π)), cdes (π)− cdes (Φ(π)) = ±1.

Denote by Ωn,1 the set of the permutations π ∈ Sn,1 such that π̂ = 123 · · ·n. For any
π ∈ Ωn,1, suppose that

π = (1)C1C2 · · ·Ck−1Ck

is the standard cycle decomposition of π. Let is be the largest number in the cycle Cs for
every s = 1, 2, . . . , k−1. Then the set {i1, i2, . . . , ik−1} is a subset of the set {2, 3, . . . , n−1}
and i1 < i2 < · · · < ik−1.

Conversely, suppose that {i1, i2, . . . , ik−1} is a subset of the set {2, 3, . . . , n − 1} and
i1 < i2 < · · · < ik−1. Let

π = (1)(2, 3, . . . , i1)(i1 +1, i1 +2, . . . , i2) · · · (ik−2 +1, ik−2 +2, . . . , ik−1)(ik−1 +1, ik−1 +2, . . . , n).

We have π ∈ Ωn,1 and exc (π) = n− k − 1. Thus, the weight of Ωn,1 is

∑
π∈Ωn,1

xexc (π)(−1)cdes (π) =
∑
π∈Ωn,1

xexc (π) =
n−1∑
k=1

(
n− 2

k − 1

)
xn−k−1 = (x+ 1)n−2.

For any permutation π ∈ Sn,1 \Ωn,1, we have Φ(π) ∈ Sn,1 \Ωn,1. So for any π ∈ Sn,1,
let

ψn,1(π) =

{
Φ(π) if π ∈ Sn,1 \ Ωn,1,
π if π ∈ Ωn,1.

Note that ∑
π∈Sn,1\Ωn,1

xexc (π)(−1)cdes (π) = −
∑

π∈Sn,1\Ωn,1

xexc (Φ(π))(−1)cdes (Φ(π))

= −
∑

π′∈Sn,1\Ωn,1,π=Φ(π′)

xexc (Φ(π))(−1)cdes (Φ(π))

= −
∑

π′∈Sn,1\Ωn,1

xexc (π′)(−1)cdes (π′).

This implies that ∑
π∈Sn,1\Ωn,1

xexc (π)(−1)cdes (π) = 0.

Hence,∑
π∈Sn,1

xexc (π)(−1)cdes (π) =
∑
π∈Ωn,1

xexc (π)(−1)cdes (π) +
∑

π∈Sn,1\Ωn,1

xexc (π)(−1)cdes (π)

=
∑
π∈Ωn,1

xexc (π)(−1)cdes (π) =
∑
π∈Ωn,1

xexc (π) = (1 + x)n−2.
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For example, we list all π ∈ S4,1 and ψ4,1(π) in Table 1.

π ∈ S4,1 xexc (π)(−1)cdes (π) π̂ qπ ψ4,1(π)
(1)(2)(3)(4) 1 1234 (1)(2)(3)(4)
(1)(23)(4) x 1234 (1)(23)(4)
(1)(2)(34) x 1234 (1)(2)(34)
(1)(234) x2 1234 (1)(234)
(1)(24)(3) x 1243 4 (1)(243)
(1)(243) −x 1243 4 (1)(24)(3)

Table.1. Involution ψ4,1

For 2 6 i 6 n, denote by An,i the set of permutations π ∈ Sn,i such that the number
qπ isn’t in the first cycle in the standard cycle decomposition of π. Let A∗n,i = Sn,i \ An,i
for short. For any π ∈ A∗n,i, let π = C1 . . . Ck be the standard cycle decomposition of π,
suppose the length of the cycle C1 is l + 1 and

π̂ = 1, . . . , i, a1, . . . , an−l−1.

Then we have
a1 < a2 < · · · < an−l−1,

since qπ is an element in the cycle C1.
Now suppose that C1 = (1, c11, . . . , c1l). Let Q be the set of indices j ∈ {1, 2, . . . , l}

such that c1j is not the largest number in the set {1, 2, . . . , n} \ {c1,j+1, . . . , c1l}, i.e.,

Q = {j | 1 6 j 6 l and c1j < max{1, 2, . . . , n} \ {c1,j+1, . . . , c1l}}.

Let Ωn,i be the set of permutations π ∈ A∗n,i such that Q = ∅. For any i = 2, . . . , n − 1,
we have l ∈ Q since i < n, and so Ωn,i = ∅. Moreover, π ∈ Ωn,n if and only if

π̂ = 1, k, k + 1, . . . n− 1, n, 2, 3, . . . , k − 2, k − 1

for some k > 1.
We define a map Ψ from A∗n,i \ Ωn,i to itself as follows:
For any π ∈ A∗n,i \Ωn,i, let m = mπ = minQ since Q 6= ∅. If m = 1, then there are at

least two cycles in the standard cycle decomposition of π. If m > 2, then we have

c11 < · · · < c1,m−1 and c1,m−1 > c1m.

Furthermore, we distinguish between the following two cases:

Case 1. 2 6 m 6 l.
Let

Ψ(π) = (1, c1m, . . . , c1l) · C2 . . . Ck · (c11, . . . , c1,m−1).

Then Ψ(π) has at least two cycles, mΦ(π) = 1 since c1m < c1,m−1, and so Ψ(π) ∈ A∗n,i\Ωn,i.
Moreover, we have exc (π) = exc (Ψ(π)) and cdes (π) = cdes (Ψ(π)) + 1
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Case 2. m = 1.
Suppose that C1 = (1, c11, . . . , c1l) and Ck = (ck1, . . . , cks) are the first cycle and the

last cycle in the standard cycle decomposition of π respectively, where s is the length of
the cycle Ck. Let

Ψ(π) = (1, ck1, . . . , cks, c11, . . . , c1l) · C2 . . . Ck−1.

Then
mΨ(π) = s+ 1 > 2,

and so Ψ(π) ∈ A∗n,i \ Ωn,i. Moreover, we have exc (π) = exc (Ψ(π)) and cdes (π) =
cdes (Ψ(π))− 1

When 2 6 i 6 n− 1, for any π ∈ Sn,i, let

ψn,i(π) =

{
Φ(π) if π ∈ An,i,
Ψ(π) if π ∈ Sn,i \ An,i.

For example, we list all π ∈ S4,2 and ψ4,2(π) in Table 2, and π ∈ S4,3 and ψ4,3(π) in Table
3.

π ∈ S4,2 xexc (π)(−1)cdes (π) π̂ qπ mπ ψ4,2(π)
(12)(3)(4) x 1234 1 (142)(3)
(142)(3) −x 1423 4 2 (12)(3)(4)
(12)(34) x2 1234 1 (1342)
(1342) −x2 1342 4 3 (12)(34)
(1432) x 1432 3 2 (132)(4)
(132)(4) −x 1324 3 1 (1432)

Table.2. Involution ψ4,2

π ∈ S4,3 xexc (π)(−1)cdes (π) π̂ qπ mπ ψ4,3(π)
(13)(2)(4) x 1324 3 1 (143)(2)
(143)(2) −x 1432 3 2 (13)(2)(4)
(13)(24) x2 1324 3 1 (1243)
(1243) −x2 1243 4 3 (13)(24)
(1423) −x2 1423 4 2 (123)(4)
(123)(4) x2 1234 1 (1423)

Table.3. Involution ψ4,3

Hence,∑
π∈Sn,i

xexc (π)(−1)cdes (π) =
∑
π∈An,i

xexc (π)(−1)cdes (π) +
∑

π∈Sn,i\An,i

xexc (π)(−1)cdes (π) = 0.

When i = n, we claim that the weight of Ωn,n is x(1 + x)n−2. For any π ∈ Ωn,n,
suppose that

π = (1, c11, c12, . . . , c1s)C1C2 . . . Ck
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is the standard cycle decomposition of π, where c1s = n. Let

π′ = (1)C1C2 . . . Ck(c11, c12, . . . , c1s).

Then π′ ∈ Ωn,1 and exc (π) = exc (π′) + 1. So, the weight of Ωn,n is∑
π∈Ωn,n

xexc (π)(−1)cdes (π) =
∑

π∈Ωn,n

xexc (π) =
∑

π′∈Ωn,1

xexc (π′)+1 = x(1 + x)n−2.

For any π ∈ Sn,n, let

ψn,n(π) =


Φ(π) if π ∈ An,n,
Ψ(π) if π ∈ Sn,n \ (An,n ∪ Ωn,n),
π if π ∈ Ωn,n.

For example, we list all π ∈ S4,4 and ψ4,4(π) in Table 4.

π xexc (π)(−1)cdes (π) π̂ qπ mπ ψ4,4(π)
(14)(2)(3) x 1423 4 (14)(2)(3)
(14)(23) x2 1423 4 (14)(23)
(134)(2) x2 1342 4 (134)(2)
(1234) x3 1234 (1234)

(124)(3) x2 1243 4 1 (1324)
(1324) −x2 1324 3 2 (124)(3)

Table.4. Involution ψ4,4

Hence,∑
π∈Sn,n

xexc (π)(−1)cdes (π)

=
∑

π∈An,n

xexc (π)(−1)cdes (π) +
∑

π∈Sn,n\(An,n∪Ωn,n)

xexc (π)(−1)cdes (π) +
∑

π∈Ωn,n

xexc (π)(−1)cdes (π)

=
∑

π∈Ωn,n

xexc (π)(−1)cdes (π) = x(1 + x)n−2.

4 Proof of the explicit formula (3) in Theorem 1

Let Pn(x, y, 0, 1) =
n∑
i=1

Pn,i(x, y, 0, 1). We first give the recurrence for Pn(x, y, 0, 1).

Lemma 12. For any n > 2 and 2 6 i 6 n+ 1, we have

Pn+1,i(x, y, 0, 1) = xPn−1(x, y, 0, 1) + x
i−1∑
j=2

Pn,j(x, y, 0, 1) + y
n∑
j=i

Pn,j(x, y, 0, 1).
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Proof. For any π = π(1)π(2) . . . π(n + 1) ∈ Dn+1,i, let σ = (1, c1, c2, . . . , cl) be the cycle
in the standard cycle decomposition of π which contains the number 1. So π can be split
into the cycle σ and a permutation τ on the set {1, 2, . . . , n + 1} \ {1, c1, . . . , cl}, i.e.,
π = σ · τ . Clearly, l > 1, i > 2 and cl = i since π ∈ Dn+1,i. We distinguish between the
following two cases:

Case 1. l = 1.
Deleting the cycle (1, c1) = (1, i) from the standard cycle decomposition of π, we

obtain the permutation

τ = π(2) . . . π(i− 1)π(i+ 1) . . . π(n+ 1)

which is defined on the set {2, . . . , i− 1, i+ 1, . . . , n+ 1}. Note that red (τ) ∈ Dn−1,

exc (π) = exc (red (τ)) + 1 and cdes (π) = cdes (red (τ)).

This provides the term xPn−1(x, y, 0, 1).

Case 2. l > 2.
Suppose that cl−1 = j for some 2 6 j 6 n + 1. Deleting the number cl = i from the

standard cycle decomposition of π, we obtain a permutation

π̃ = (1, c1, . . . , cl−1) · τ

which is defined on the set {1, . . . , i−1, i+1, . . . , n+1}. Note that red (π̃) ∈ Dn. Moreover,
if cl−1 = j 6 i− 1, then

red (π̃) ∈ Dn,j, exc (π) = exc (red (π̃)) + 1, cdes (π) = cdes (red (π̃)).

This provides the term

x
i−1∑
j=2

Pn,j(x, y, 0, 1).

If cl−1 = j > i+ 1, then

red (π̃) ∈ Dn,j−1, exc (π) = exc (red (π̃)), cdes (π) = cdes (red (π̃)) + 1.

This provides the term

y
n∑
j=i

Pn,j(x, y, 0, 1).

Thus, for any i > 2 we have

Pn+1,i(x, y, 0, 1) = xPn−1(x, y, 0, 1) + x
i−1∑
j=2

Pn,j(x, y, 0, 1) + y
n∑
j=i

Pn,j(x, y, 0, 1).
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A proof of the identity (3) in Theorem 1:

Proof. Note that∑
π∈Dn,i

xexc (π)(−1)cdes (π)tπ
−1(1) = ti

∑
π∈Dn,i

xexc (π)(−1)cdes (π) = tiPn,i(x,−1, 0, 1).

Therefore, it is sufficient to show that

Pn,i(x,−1, 0, 1) = (−1)n−ixi−1 (8)

for any n > 2 and 2 6 i 6 n.

(i) An inductive proof of the explicit formula (8):
It is easy to check that

P2,2(x,−1, 0, 1) = x.

Assume that the formula holds for any 2 6 k 6 n. By Lemma 12, we have

Pn+1,i(x,−1, 0, 1) = xPn−1(x,−1, 0, 1) + x

i−1∑
j=2

Pn,j(x,−1, 0, 1)−
n∑
j=i

Pn,j(x,−1, 0, 1)

= x
n−1∑
j=2

Pn−1,j(x,−1, 0, 1) + x
i−1∑
j=2

Pn,j(x,−1, 0, 1)−
n∑
j=i

Pn,j(x,−1, 0, 1)

=
n−1∑
j=2

(−1)n−1−jxj +
i−1∑
j=2

(−1)n−jxj −
n∑
j=i

(−1)n−jxj−1

= (−1)n+1−ixi−1

for any 2 6 i 6 n.

(ii) A bijective proof of the explicit formula (8):
Next we give a bijective proof of the explicit formula (8) by establishing an involution ϕn,i
on Dn,i. Fix i ∈ {2, . . . , n}. By definition, the weight of each π ∈ Dn,i is (−1)cdes (π)xexc (π),
hence the weight of the cyclic permutation

σi = (1, 2, . . . , i− 1, n, n− 1, . . . , i) ∈ Dn,i

is (−1)n−ixi−1.
For any π ∈ Dn,i, suppose that π = C1 . . . Ck is the standard cycle decomposition of π

and Ck = (ck,1, . . . , ck,s). We distinguish among the following three cases:

Case 1. k = 1 and Ck = (1, 2, . . . , i− 1, n, n− 1, . . . , i).
Then let ϕn,i(π) = π.
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Case 2. k > 2 and red (Ck) = (1, 2, . . . , r − 1, s, s− 1, . . . , r) for some r = 2, 3, . . . , s.
Suppose that Ck−1 = (ck−1,1, ck−1,2, . . . , ck−1,t) and ck,j is the largest number in the set

{ck,1, ck,2, . . . , ck,s} for some j ∈ {1, 2, . . . , s}. If ck−1,2 < ck,j−1, then let

ϕn,i(π) = C1 · · ·Ck−2 · (ck−1,1, ck1, ck2, . . . , cks, ck−1,2, . . . , ck−1,t),

and so we have

exc (π) = exc (ϕn,i(π)) and cdes (π) = cdes (ϕn,i(π))− 1.

For example, we consider a permutation π = (1397)(24586) ∈ D9,7. The largest
number in the cycle (24586) is 8, and so j = 4. Since c1,2 = 3 < c2,3 = 5, we have

ϕ9,7(π) = (124586397)

and
exc (π) = exc (ϕ9,7(π)) = 5, cdes (π) = 2, cdes (ϕ9,7(π)) = 3.

If ck−1,2 > ck,j−1, then let

ϕn,i(π) = C1 · · ·Ck−2 · (ck−1,1, ck1, . . . , ck,j−2, ckj . . . , cks, ck,j−1, ck−1,2, . . . , ck−1,t),

and so we have

exc (π) = exc (ϕn,i(π)) and cdes (π) = cdes (ϕn,i(π))− 1.

For example, we consider a permutation π = (1793)(24586) ∈ D9,3. The largest
number in the cycle (24586) is 8, and so j = 4. Since c1,2 = 7 > c2,3 = 5, we have

ϕ9,3(π) = (124865793)

and
exc (π) = exc (ϕ9,3(π)) = 5, cdes (π) = 2, cdes (ϕ9,3(π)) = 3.

Case 3. red (Ck) 6= (1, 2, . . . , r − 1, s, s− 1, . . . , r) for any r = 2, 3, . . . , s.
There exists a unique index s̃ such that

red (ck1, ck2, . . . , cks̃) = 1, 2, . . . , r − 1, s̃, s̃− 1, . . . , r

for some r = 2, 3, . . . , s̃ and

red (ck1, ck2, . . . , ck,s̃+1) 6= 1, 2, . . . , r̃ − 1, s̃+ 1, s̃, . . . , r̃

for any r̃ = 2, 3, . . . , s̃ + 1. It is easy to check 3 6 s̃ 6 s− 1. Moreover, suppose that ckj
is the largest number in the set {ck1, ck2, . . . , cks̃}. Then we have

ck,s̃+1 < ck,j−1 or ck,s̃+1 > cks̃.
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If ck,s̃+1 < ck,j−1 then

ϕn,i(π) = C1 · · ·Ck−2 · (ck1, ck,s̃+1, . . . , cks) · (ck2, . . . , cks̃),

we have
exc (π) = exc (ϕn,i(π)) and cdes (π) = cdes (ϕn,i(π)) + 1.

For example, we consider a permutation π = (124586397) ∈ D9,7. Then s̃ = 6 and the
largest number in the set {1, 2, 4, 5, 8, 6} is 8, and so j = 5. Since c1,7 = 3 > c1,4 = 5, we
have

ϕ9,7(π) = (1397)(24586)

and
exc (π) = exc (ϕ9,7(π)) = 5, cdes (π) = 3, cdes (ϕ9,3(π)) = 2.

If ck,s̃+1 > ck,s̃, then let

ϕn,i(π) = C1 · · ·Ck−2 · (ck1, ck,s̃+1, . . . , cks) · (ck2, . . . , ck,j−1, ck,s̃, ckj, . . . , ck,s̃−1),

we have
exc (π) = exc (ϕn,i(π)) and cdes (π) = cdes (ϕn,i(π)) + 1.

For example, we consider a permutation π = (124865793) ∈ D9,3. Then s̃ = 6 and the
largest number in the set {1, 2, 4, 8, 6, 5} is 8, and so j = 4. Since c1,7 = 7 > c1,6 = 5, we
have ϕ9,3(π) = (1793)(24586) and

exc (π) = exc (ϕ9,3(π)) = 5, cdes (π) = 3, cdes (ϕ9,3(π)) = 2.

For the case with n = 4, we list all π and ϕn,i(π) in Table. 5.

π ∈ D4,2 ϕ4,2(π) π ∈ D4,3 ϕ4,3(π) π ∈ D4,4 ϕ4,4(π)
(12)(34) (1342) (13)(24) (1423) (14)(23) (1324)
(1342) (12)(34) (1423) (13)(24) (1324) (14)(23)
(1432) (1432) (1243) (1243) (1234) (1234)

Table. 5. Involutions ϕn,i(π) for n = 4

Hence,∑
π∈Dn,i

xexc (π)(−1)cdes (π) = (−1)n−ixi−1 +
∑

π∈Dn,i\{σi}

xexc (π)(−1)cdes (π) = (−1)n−ixi−1.
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5 Proof of the recurrence relation (4)

Suppose that y is a positive integer. Let Sn(y) denote the set of pairs [π, φ] such that
π ∈ Sn and φ is a map from the set CDES(π) to the set {0, 1, . . . , y − 1}. It is easy to
see that Sn(y) is a subset of the wreath product of Zy oSn and bn(y, 1) = |Sn(y)|.

For any [π, φ] ∈ Sn+1(y), we distinguish the following two cases:

Case 1. π(1) = 1.
Let τ = π(2) . . . π(n+ 1). Then τ is a permutation defined on the set {2, 3, . . . , n+ 1}

and
red (τ) ∈ Sn.

Define a map φ′ : [n] 7→ {0, 1, . . . , y − 1} by letting φ′(i) = φ(red −1(i)) for i = 1, 2, . . . , n.
Then

[red (τ), φ′] ∈ Sn(y),

and so this provides the term bn(y, 1).

Case 2. π(1) 6= 1.
Let σ = (1, c1, c2, . . . , cl) be the cycle in the standard cycle decomposition of π which

contains the number 1. So, π is split into the cycle σ and a permutation τ on the set
{1, 2, . . . , n+ 1} \ {1, c1, . . . , cl}, i.e., π = σ · τ . Clearly, l > 1 since π(1) 6= 1.

Note that there is a unique index k > 1 which satisfies ck−1 < ck and ck > ck+1 >
· · · > cl. For the sequence ck . . . cl, if φ(ci) = 0 for some k 6 i 6 l − 1 then let k′ be the
largest index in {k, k + 1, . . . , l − 1} such that φ(ck′) = 0; otherwise, k′ = k − 1. Let

σ′ = (1, c1, . . . , ck′) and π′ = σ′ · τ.

Then π′ is a permutation defined on the set [n+ 1] \B, where

B = {ck′+1, . . . , cl},

and
red (π′) ∈ Sn+1−|B|.

Define a map φ′ : [n+ 1− |B|] 7→ {0, 1, . . . , y − 1} by letting

φ′(i) = φ(red −1(i))

for any 1 6 i 6 n+ 1− |B|. Then

[red (π′), φ′] ∈ Sn+1−|B|(y).

Note that 1 6 |B| 6 n and B \ {cl} ⊆ CDESn+1(π). For any k 6 i 6 l − 1, let
θ(ci) = φ(ci). Then θ is a map from the set {ck′+1, . . . , cl−1} to {1, 2, . . . , y− 1}. So there
are

(
n
|B|

)
ways to form the set B and (y − 1)|B|−1 ways to form the map θ. This provides

the term
n∑
i=1

bn+1−i(y, 1)

(
n

i

)
(y − 1)i−1
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Hence we derive the recurrence relation

bn+1(y, 1) = bn(y, 1) +
n∑
i=1

bn+1−i(y, 1)

(
n

i

)
(y − 1)i−1

= bn(y, 1) +
n∑
i=1

bi(y, 1)

(
n

i− 1

)
(y − 1)n−i.

6 Proof of the recurrence relation (5)

Clearly, we have b0(y, 0) = 1 and b1(y, 0) = 0. Suppose that y is a positive integer.
Let Dn(y) denote the set of pairs [π, φ] such that π ∈ Dn and φ is a map from the set
CDES(π) to the set {0, 1, · · · , y − 1}. Hence bn(y, 0) = |Dn(y)|.

For any [π, φ] ∈ Dn+1(y), let σ = (1, c1, c2, . . . , cl) be the cycle in the standard cycle
decomposition of π which contains the number 1. So, π is split into the cycle σ and a
permutation τ on the set [n + 1] \ {1, c1, . . . , cl}, i.e., π = σ · τ . Clearly, l > 1 since
π(1) 6= 1.

Note that there is a unique index k > 1 which satisfies ck−1 < ck and ck > ck+1 >
· · · > cl. For the sequence ck . . . cl, if φ(ci) = 0 for some k 6 i 6 l − 1 then let k′ be the
largest index in {k, k + 1, . . . , l − 1} such that φ(ck′) = 0; otherwise, k′ = k − 1.

We distinguish between the following two cases:

Case 1. k′ = 0.
Let

B = {c1, . . . , cl}.

Note that τ is a permutation defined on the set [n+ 1] \ {1, c1, . . . , cl} and

red (τ) ∈ Sn−|B|.

Define a map φ′ : [n− |B|] 7→ {0, 1, . . . , y − 1} by letting

φ′(i) = φ(red −1(i))

for any 1 6 i 6 n− |B|. Then

[red (τ), φ′] ∈ Sn−|B|(y)

and there are bn−|B|(y, 0) ways to form the pairs [red (τ), φ′].
Note that 1 6 |B| 6 n and B \ {cl} ⊆ CDESn+1(π). For any k 6 i 6 l − 1, let

θ(ci) = φ(ci). Then θ is a map from the set {ck, . . . , cl−1} to {1, 2, . . . , y − 1}. So there
are

(
n
|B|

)
ways to form the set B and (y − 1)|B|−1 ways to form the mapping θ.

This provides the term

n∑
i=1

bn−i(y, 0)

(
n

i

)
(y − 1)i−1.
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Case 2. k′ > 1.
Let

σ′ = (1, c1, . . . , ck′) and π′ = σ′ · τ.
Then π′ is a permutation defined on the set [n+ 1] \B, where

B = {ck′+1, . . . , cl},

and
red (π′) ∈ Sn+1−|B|.

Define a map φ′ : [n+ 1− |B|] 7→ {0, 1, . . . , y − 1} by letting

φ′(i) = φ(red −1(i))

for any 1 6 i 6 n+ 1− |B|. Then

[red (π′), φ′] ∈ Dn+1−|B|(y)

and there are bn+1−|B|(y, 0) ways to form the pairs (red (π′), φ′).
Note that 1 6 |B| 6 n − 1 and B \ {cl} ⊆ CDES(π). For any k 6 i 6 l − 1, let

θ(ci) = φ(ci). Then θ is a map from the set {ck′+1, . . . , cl−1} to {1, 2, . . . , y− 1}. So there
are

(
n
|B|

)
ways to form the set B and (y − 1)|B|−1 ways to form the map θ.

This provides the term

n−1∑
i=1

bn+1−i(y, 0)

(
n

i

)
(y − 1)i−1.

Hence we have

bn+1(y, 0) =
n∑
i=1

(
n

i

)
bn−i(y, 0)(y − 1)i−1 +

n−1∑
i=1

(
n

i

)
bn+1−i(y, 0)(y − 1)i−1.

7 Proof of Theorem 9

Lemma 13. There is a bijection Θn from the set of cyclic negative cycle descent permu-
tations of [n] to the set of connected Callan perfect matchings of Pn.

Proof. Let (π, φ) be a cyclic negative cycle descent permutation of [n]. Then there is
exactly one cycle C in the standard cycle decomposition of π. Suppose C = (c1, c2, . . . , cn),
where c1 = 1. Erase the parentheses, draw a bar after each element ci which has sign +1,
and add a bar before c1. Regard the numbers between two consecutive bars as “blocks”.
So, we decompose (π, φ) into a sequence of blocks

B1, B2, . . . , Bk.

Suppose that the i-th block Bi contains ti number bi1, . . . , biti with bi1 > · · · > biti . We
construct a perfect matchings M as follows:
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• Step 1. For every block Bi, we connect the vertex (bi,j, 0) to the vertex (bi,j+1, 1) as
a downline of M for any 1 6 j 6 ti − 1.

• Step 2. For any odd integer i ∈ {1, 2, . . . , k − 1}, we connect the vertex (bi,ti , 0) to
the vertex (bi+1,ti+1

, 0) as an arc of M . For any even integer i ∈ {1, 2, . . . , k− 1}, we
connect the vertex (bi,1, 1) to the vertex (bi+1,1, 1) as an arc of M .

• Step 3. If k is odd, we connect the vertex (b1,1, 1) = (1, 1) to the vertex (bk,tk , 0) as a
downline of M ; otherwise, connect the vertex (b1,1, 1) = (1, 1) to the vertex (bk1, 1)
as an arc of M .

It is easy to check that M is connected and has no uplines. So, M is a connected Callan
perfect matching. Define Θn as a map from the set of cyclic negative cycle descent
permutations of [n] to the set of connected Callan perfect matchings of Pn by letting
Θn(π, φ) = M . Let (π, φ) and (π′, φ′) be two different cyclic negative cycle descent
permutations of [n]. Then the sequence of blocks of (π, φ) and (π′, φ′) are different. This
implies Θn(π, φ) 6= Θn(π′, φ′), and so the map Θn is an injection.

Conversely, let M be a connected Callan perfect matching of Pn. Delete the edge
incident with the vertex (1, 1) from M , identify two vertices (i, 0) and (i, 1) in M as a
new vertex i for each i = 1, 2, . . . , n, denote by G∗(M) the graph obtained from M . Then
the graph G∗(M) is a path on the vertex set [n] and can be written as

a1a2 · · · an,

where a1 = 1 and the set {a1a2, a3a4, . . . , an−1an} is the edge set of G∗(M). Draw a bar
after each number ai which satisfies either (1) i = n or (2) there is an arc of M in

{{(ai, 0), (ai+1, 0)}, {(ai, 1), (ai+1, 1)}},

and add a bar before a1. Regard the numbers between two consecutive bars as “blocks”.
So, we obtain a sequence of blocks

B′1, B
′
2, . . . , B

′
k.

We construct a cyclic negative cycle descent permutations (π, φ) of [n] as follows:

• Step 1′. For each block B′i, we write the numbers in B′i in decreasing order, denote
by τi the obtained sequence, and let π = (τ1, τ2, . . . , τk).

• Step 2′. For any number j ∈ [n], suppose j is in a block B′i for some 1 6 i 6 k. If j
is the smallest number in B′i, then let the sign of j be +1; otherwise, let the sign of
j be −1. In fact, this defines a map φ from [n] to {+1,−1}.

Then (π, φ) is a cyclic negative cycle descent permutation of [n].
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Example 14. Let us consider a cyclic negative cycle descent permutation

(1+6−4−3+2+8−7−5+)

on the set {1, 2, . . . , 8}. We erase the parentheses, draw a bar after each element which
has sign +1, and add a bar before 1. Thus we obtain

|1|643|2|875|

and the sequence of blocks

B1 = 1, B2 = 643, B3 = 2, B4 = 875.

By Steps 1,2,and 3 in the proof of Lemma 13, we construct the following dot diagram.

( , )1 1 ( , )2 1( , )3 1 ( , )4 1 ( , )5 1( , )6 1 ( , )7 1 ( , )8 1

( , )1 0 ( , )2 0( , )3 0 ( , )4 0 ( , )5 0( , )6 0 ( , )7 0 ( , )8 0

Fig.4. A dot diagram constructed by Step 1,2, and 3 in the proof of Lemma 13

Finally, we obtain a connected Callan perfect matching M corresponding with

(1+6−4−3+2+8−7−5+)

as follows:

( , )1 0 ( , )2 0 ( , )3 0 ( , )4 0 ( , )5 0 ( , )6 0 ( , )7 0 ( , )8 0

( , )1 1 ( , )2 1 ( , )3 1 ( , )4 1 ( , )5 1 ( , )6 1 ( , )7 1 ( , )8 1

Fig.5. A connected Callan perfect matching M corresponding with (1+6−4−3+2+8−7−5+)

Conversely, let us consider the connected perfect matching M in Fig.5. After deleting
the edge {(1, 1), (8, 1)}, we can obtain the graph G∗(M) = 13462578, which has the edge
set {13, 34, 46, 62, 25, 57, 78}. Note that there are 3 arcs

{(1, 0), (3, 0)}, {(6, 1), (2, 1)}, {(2, 0), (5, 0)}

in M . So, we draw bars after the numbers 1, 6, 2, 8, and add a bar before 1. Thus we
obtain

|1|346|2|578|
and the sequence of blocks

B′1 = 1, B′2 = 346, B′3 = 2, B′4 = 578.

By Steps 1′ and 2′ in the proof of Lemma 13, we construct a cyclic negative cycle descent
permutation (1+6−4−3+2+8−7−5+) on the set {1, 2, . . . , 8}.
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A bijective proof of Theorem 9

Proof. Let (π, φ) be a negative cycle descent permutation of [n]. Suppose that π =
C1 · · ·Ck is the standard cycle decomposition of π and

Ci = (ci1, . . . , ci,li)

for each i = 1, 2, . . . , k. Then red (Ci) ∈ Sli . Define a map φi : [li] 7→ {+1,−1} by letting

φi(j) = φ(red −1(j)),

i.e., the sign of red (cij) is the same as that of cij. Then

(red (Ci), φ
i)

is a cyclic negative cycle descent permutation of [li]. By Lemma 13, Θli(red (Ci), φ
i) is a

connected Callan perfect matching. For any 1 6 j 6 li, we replace the labels (j, 0) and
(j, 1) of vertices in Θli(red (Ci), φ

i) with (red −1(j), 0) and (red −1(j), 1) respectively and
denote by M i the perfect matching obtained from Θli(red (Ci), φ

i). At last, let

M = M1 ∪M2 ∪ · · · ∪Mk,

where the notation M ∪M ′ denotes the union of two perfect matchings M and M ′ such
that the vertex set ofM∪M ′ is V (M)∪V (M ′) and the edge set ofM∪M ′ is E(M)∪E(M ′).
So M is a Callan perfect matching of Pn. Define Γn as a map from the set of negative
cycle descent permutations of [n] to the set of Callan perfect matchings of Pn by letting
Γn(π, φ) = M . Note that Γn is injective, and so it is a bijection.

By the definition of Γn, it is easy to see that

com (Γn(π, φ)) = cyc (π) and ver (Γn(π, φ)) = fix (π).

If the vertices (1, 1) and its partner are in the same row, then down (Γn(π, φ)) = neg (π, φ);
otherwise, down (Γn(π, φ)) = neg (π, φ) + 1.

Example 15. Let us consider a negative cycle descent permutation

(1+6−3+4+)(2+8−7+)(5+)

of the set {1, 2, . . . , 8}. We draw the perfect matchings M1, M2 and M3 corresponding
with the cycles C1, C2 and C3 respectively as follows:

Cycles C1 C2 C3

(1+6−3+4+) (2+8−7+) (5+)
Perfect matchings M1 M2 M3

( , )1 0 ( , )3 0 ( , )4 0( , )6 0

( , )1 1 ( , )3 1 ( , )4 1( , )6 1

( , )2 0 ( , )7 0 ( , )8 0

( , )2 1 ( , )7 1 ( , )8 1

( , )5 0

( , )5 1

Finally, we obtain a Callan perfect matching M = M1 ∪ M2 ∪ M3, which is given in
Example 7.
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