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Abstract

In this paper, we study tree–like tableaux, combinatorial objects which exhibit
a natural tree structure and are connected to the partially asymmetric simple ex-
clusion process (PASEP). There was a conjecture made on the total number of
corners in tree–like tableaux and the total number of corners in symmetric tree–like
tableaux. In this paper, we prove both conjectures. Our proofs are based on the
bijection with permutation tableaux or type–B permutation tableaux and conse-
quently, we also prove results for these tableaux. In addition, we derive the limiting
distribution of the number of occupied corners in random tree–like tableaux and
random symmetric tree–like tableaux.

Keywords: tree–like tableaux, permutation tableaux, type–B permutation
tableaux

1 Introduction

Tree–like tableaux are relatively new objects which were introduced in [1]. They are in
bijection with permutation tableaux and alternative tableaux but are interesting in their
own right as they exhibit a natural tree structure (see [1]). They also provide another
avenue in which to study the partially asymmetric simple exclusion process (PASEP),
an important model from statistical mechanics. See [1] and [11] for more details on the
connection between tree–like tableaux and the PASEP. See also [3], [6], [7], [8], [13], [14]
and [15] for more details on permutation and alternative tableaux.

In the original paper [1], an insertion procedure was introduced which defines a cor-
respondence between tree–like tableaux of size n and tree–like tableaux of size n+ 1 ([1,
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Definition 2.2]). This correspondence has been the main tool in working with tree–like
tableaux. Relevant to this paper, the number of occupied corners in tree–like tableaux
and the number of occupied corners in symmetric tree–like tableaux were computed in [11]
(see Section 2 for definitions). In addition, it was conjectured (see Conjectures 4.1 and 4.2
in [11]) that the total number of corners in tree–like tableaux of size n is n!× n+4

6
and the

total number of corners in symmetric tree–like tableaux of size 2n+ 1 is 2n × n!× 4n+13
12

.
In this paper, we prove both conjectures. Our proofs are based on the bijection with

permutation tableaux or type–B permutation tableaux and consequently, we also prove
results for these tableaux (see Theorems 5 and 10 below for precise statements). It should
be noted that Gao et al. were able to prove independently the conjectures for tree–like
tableaux using a different method (see [9, Theorem 4.1] and [9, Theorem 4.3]).

In addition, we derive the limiting distribution of the number of occupied corners in
random tree–like tableaux and random symmetric tree–like tableaux. Laborde Zubieta
[11] showed that on average a tree–like tableau has one occupied corner (regardless of
the size of the tableau). He also showed that the variance of the number of occupied
corners in a random tree–like tableau of size n is 1 − 2/n and obtained similar results
for symmetric tree–like tableaux. This suggests that the asymptotic distribution of the
number of occupied corners of either type of tableaux is Poisson and we prove that this
is, indeed, the case.

The rest of the paper is organized as follows. In the next section we introduce the
necessary definitions and notation. Sections 3 and 4 contain the proofs of the conjectures
for the tree–like tableaux, and the symmetric tree–like tableaux, respectively. Finally, in
Section 5 we present our results on the limiting distributions of the number of occupied
corners in tree–like and symmetric tree–like tableaux.

2 Preliminaries

A Ferrers diagram, F , is a left–aligned sequence of cells with weakly decreasing rows. The
half–perimeter of F is the number of rows plus the number of columns. The border edges
of a Ferrers diagram are the edges of the southeast border, and the number of border
edges is equal to the half–perimeter. We will occasionally refer to a border edge as a step
(south or west). A shifted Ferrers diagram is a diagram obtained from a Ferrers diagram
with k columns by adding k rows above it of lengths k, (k − 1), . . . , 1, respectively. The
half–perimeter of the shifted Ferrers diagram is the same as the original Ferrers diagram
(and similarly, the border edges are the same). The right–most cells of added rows are
called diagonal cells.

Let us recall the following two definitions introduced in [1] and [14], respectively.

Definition 1. A tree–like tableau of size n is a Ferrers diagram of half-perimeter n + 1
with some cells (called pointed cells) filled with a point according to the following rules:

1. The cell in the first column and first row is always pointed (this point is known as
the root point).
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2. Every row and every column contains at least one pointed cell.

3. For every pointed cell, all the cells above are empty or all the cells to the left are
empty.

Definition 2. A permutation tableau of size n is a Ferrers diagram of half–perimeter n
filled with 0’s and 1’s according to the following rules:

1. There is at least one 1 in every column.

2. There is no 0 with a 1 above it and a 1 to the left of it simultaneously.

We will also need a notion of type–B tableaux originally introduced in [12]. Our
definition follows a more explicit description given in [5, Section 4].

Definition 3. A type–B permutation tableau of size n is a shifted Ferrers diagram of
half–perimeter n filled with 0’s and 1’s according to the following rules:

1. There is at least one 1 in every column.

2. There is no 0 with a 1 above it and a 1 to the right of it simultaneously.

3. If one of the diagonal cells contains a 0 (called a diagonal 0), then all the cells in
that row are 0.

(i) (ii) (iii)

•

•
••

•
•

•
•
•

•

•
•

•

1
0
0
0
0 1

0
1

0
1
1

0
1
1

1 1 1
0 0

10 1
0 1

00

Figure 1: (i) A tree–like tableau of size 13. (ii) A permutation tableau of size 12. (iii) A
type-B permutation tableau of size 6.

Let Tn be the set of all tree–like tableaux of size n, Pn denote the set of all permutation
tableaux of size n, and Bn denote the set of all type–B permutation tableaux of size n. In
addition to these tableaux, we are also interested in symmetric tree–like tableaux, a subset
of tree–like tableaux which are symmetric about their main diagonal (see [1, Section 2.2]
for more details).

As noticed in [1], the size of a symmetric tree–like tableau must be odd, and thus, we
let T sym

2n+1 denote the set of all symmetric tree–like tableaux of size 2n + 1. It is a well–
known fact that |Pn| = n! and |Bn| = 2nn!. Consequently, |Tn| = n! and |T sym

2n+1| = 2nn!
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since by [1], there are bijections between these objects. We let Xn ∈ {Tn, T sym
2n+1,Pn,Bn}

be any of the four sets of tableaux defined above.
In permutation tableaux and type–B permutation tableaux, a restricted 0 is a 0 which

has a 1 above it in the same column. An unrestricted row is a row which does not contain
any restricted 0’s (and for type–B permutation tableaux, also does not contain a diagonal
0). We let Un(T ) denote the number of unrestricted rows in a tableau T of size n. It is
also convenient to denote a topmost 1 in a column by 1T and a right-most restricted 0 by
0R.

Corners of a Ferrers diagram (or the associated tableau) are the cells in which both
the right and bottom edges are border edges (i.e. a south step followed by a west step). In
tree–like tableaux (symmetric or not) occupied corners are corners that contain a point.

For convenience, let Mk denote the direction of the kth step (border edge), i.e. Mk = S
denotes a south step and Mk = W denotes a west step. Thus,

Cn =
n−1∑
k=1

IMk=S,Mk+1=W , (1)

where IA is the indicator random variable of the event A.
Our proofs will rely on techniques developed in [4] (see also [10]). These two papers

used probabilistic language and we adopt it here, too. Thus, instead of talking about the
number of corners in tableaux we let Pn be the uniform probability measure on Xn and
consider the random variable Cn on the probability space (Xn,Pn) where Cn(T ) is the
number of corners of T . A tableau chosen from Xn according to the probability measure
Pn is usually referred to as a random tableau of size n and Cn is referred to as the number
of corners in a random tableau of size n. We let En denote the expected value with respect
to the measure Pn. If c(Xn) denotes the total number of corners in tableaux in Xn then
we have the following simple relation:

EnCn =
c(Xn)

|Xn|
or, equivalently, c(Xn) = |Xn|EnCn. (2)

We will use several properties of permutation tableaux that were derived in [4]. They
were obtained as a consequence of a recursive argument that constructed Pn (denoted by
Tn−1 in [4] and [10]) by considering all extensions of tableaux of size n−1 to tableaux of size
n. Specifically, given any tableau in Pn−1 we can extend it to a tableau of size n by adding
a row (south step) or adding a new column (west step) and filling its entries with 0 or 1
according to the rules of permutation tableaux. By a simple counting argument, it was
shown that there are 2Un−1(P ) different extensions of a permutation tableau P ∈ Pn−1 to a
permutation tableau of size n (we refer to [4] or [10, Section 2] for a detailed explanation
but it is clear that only one of these extensions added a south step to P ). Using this
construction, a relationship between the measures Pn and Pn−1 was derived in [4] and is
given by [4, Equation (5)] (see also [10, Section 2, Equation (2.1)]),

En(Xn−1) =
1

n
En−1(2

Un−1Xn−1) (3)
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where Xn−1 is any random variable defined on Pn−1. Let us denote by Fn−1 the σ-
subalgebra on Pn obtained by grouping together all tableaux of size n obtained from the
same tableau of size n− 1. The conditional distribution of Un given Fn−1 was determined
to be the following,

L(Un|Fn−1) = 1 + Bin(Un−1), (4)

where Bin(m) denotes a binomial random variable with parameters m and 1/2 (see [4]).

3 Corners in Tree-Like Tableaux

The main result of this section is the proof of the first conjecture of Laborde Zubieta.

Theorem 4. (see [11, Conjecture 4.1]) For n > 2 we have

c(Tn) = n!× n+ 4

6
.

To prove this, we will use the bijection between tree–like tableaux and permutation
tableaux. According to Proposition 1.3 of [1], there exists a bijection between permutation
tableaux and tree–like tableaux which transforms a tree–like tableau of shape F to a
permutation tableau of shape F ′ which is obtained from F by removing the SW–most
edge from F and the cells of the left–most column (see Figure 2).

0
0 0

1

1 1 1
←→

•

•

•

• •
•
•

Figure 2: An example of the bijection between permutation tableaux and tree–like
tableaux of size 7.

The number of corners in F is the same as the number of corners in F ′ if the last edge
of F ′ is horizontal and it is one more than the number of corners in F ′ if the last edge
of F ′ is vertical. Furthermore, as is clear from a recursive construction described in [4,
Section 2], any permutation tableau of size n whose last edge is vertical is obtained as
the unique extension of a permutation tableau of size n− 1. Therefore, there are (n− 1)!
such tableaux and we have a simple relation

c(Tn) = c(Pn) + |{P ∈ Pn : Mn(P ) = S}| = c(Pn) + (n− 1)!. (5)

Thus, it suffices to determine the number of corners in the permutation tableaux of size
n. Since |Pn| = n!, Equation (2) becomes

c(Pn) = n!EnCn. (6)
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Combining (5) with (6) we immediately see that Theorem 4 will be proved once we
establish the following result.

Theorem 5. For permutation tableaux of size n we have

EnCn =
n+ 4

6
− 1

n
.

Proof. In view of (1) we are interested in

En

(
n−1∑
k=1

IMk=S,Mk+1=W

)
=

n−1∑
k=1

En

(
IMk=S,Mk+1=W

)
.

First calculate En

(
IMk=S,Mk+1=W

)
using the techniques developed in [4]. Specifically, if

k + 1 6 n− 1 then IMk=S,Mk+1=W is a random variable on Pn−1. Therefore, by (3)

En

(
IMk=S,Mk+1=W

)
=

1

n
En−1

(
2Un−1IMk=S,Mk+1=W

)
=

1

n
En−1E

(
2Un−1IMk=S,Mk+1=W |Fn−2

)
,

where Fn−2 is the σ–subalgebra on Pn−1 obtained by grouping into one set all tableaux
in Pn−1 that are obtained by extending the same tableau in Pn−2 (see Section 2). Now, if
k+ 1 6 n− 2 then IMk=S,Mk+1=W is measurable with respect to the σ-algebra Fn−2. Thus
by the properties of conditional expectation the above is:

En

(
IMk=S,Mk+1=W

)
=

1

n
En−1IMk=S,Mk+1=WE

(
2Un−1|Fn−2

)
.

By (4) and the fact that EaBin(m) =
(
a+1
2

)m
, we obtain by the same computation as in

[10] (see (2.2) and (2.3) there),

1

n
En−1IMk=S,Mk+1=WE

(
2Un−1 |Fn−2

)
=

1

n
En−1IMk=S,Mk+1=WE

(
21+Bin(Un−2)|Fn−2

)
=

2

n
En−1IMk=S,Mk+1=W

(
3

2

)Un−2

=
2

n(n− 1)
En−2IMk=S,Mk+1=W3Un−2 (7)

where the last step follows from (3). Iterating (n− 1)− (k + 1) times, we obtain

2 · 3 · · · · · (n− k − 1)

n(n− 1) · · · · · (k + 2)
Ek+1IMk=S,Mk+1=W (n− k)Uk+1 . (8)

Thus, we need to compute

Ek+1IMk=S,Mk+1=W (n− k)Uk+1 (9)
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for 1 6 k 6 n − 1 (note that k + 1 = n gives EnIMn−1=S,Mn=W which is exactly the
summand omitted earlier by the restriction k + 1 6 n − 1). This can be computed as
follows. First, by the tower property of the conditional expectation and the fact that
{Mk = S} is Fk–measurable, we obtain

Ek+1IMk=S,Mk+1=W (n− k)Uk+1 = Ek+1IMk=SE(IMk+1=W (n− k)Uk+1|Fk).

And now

E(IMk+1=W (n− k)Uk+1|Fk) = E((n− k)Uk+1|Fk)− E(IMk+1=S(n− k)Uk+1|Fk)

because the two indicators are complementary. By the same computation as above (see
(7)), the first conditional expectation on the right–hand side is

(n− k)E
(
(n− k)Uk+1|Fk

)
= (n− k)

(
n− k + 1

2

)Uk

. (10)

To compute the second conditional expectation, note that on the set {Mk+1 = S}, Uk+1 =
1 + Uk so that

E(IMk+1=S(n− k)Uk+1|Fk) = (n− k)1+UkE(IMk+1=S|Fk)

= (n− k)1+UkP(IMk+1=S|Fk)

= (n− k)1+Uk
1

2Uk

where the last equation follows from the fact that for every tableau P ∈ Pk only one of
its 2Uk(P ) extensions to a tableau in Pk+1 has Mk+1 = S (see Section 2 and also [4, 10] for
more details). Combining with (10) yields

E(IMk+1=W (n− k)Uk+1|Fk) = (n− k)

((
n− k + 1

2

)Uk

−
(
n− k

2

)Uk

)

and thus (9) equals

(n− k)Ek+1

(
IMk=S

((
n− k + 1

2

)Uk

−
(
n− k

2

)Uk

))
.

The expression inside the expectation is a random variable on Pk so we can use (3) to
reduce the size by one and obtain that the expression above is

n− k
k + 1

EkIMk=S

(
(n− k + 1)Uk − (n− k)Uk

)
.

Furthermore, on the set {Mk = S}, Uk = Uk−1 + 1 so that the above is

n− k
k + 1

Ek

((
(n− k + 1)1+Uk−1 − (n− k)1+Uk−1

)
E(IMk=S|Fk−1)

)
,
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which, by the same argument as above, equals

n− k
k + 1

Ek

((
(n− k + 1)1+Uk−1 − (n− k)1+Uk−1

) 1

2Uk−1

)
.

After reducing the size one more time we obtain

n− k
(k + 1)k

(
Ek−1 (n− k + 1)1+Uk−1 − Ek−1 (n− k)1+Uk−1

)
. (11)

As computed in [10, Equation (2.4)] for a positive integer m the generating function of
Um is given by

Emz
Um =

Γ(z +m)

Γ(z)m!
.

(There is an obvious omission in (2.4) there; the z + n in the third expression should be
z + n − 1.) Using this with m = k − 1 and z = n − k + 1 and then with z = n − k we
obtain

Ek−1

(
(n− k + 1)1+Uk−1

)
= (n− k + 1)

(n− 1)!

(n− k)!(k − 1)!
(12)

and

Ek−1

(
(n− k)1+Uk−1

)
= (n− k)

(n− 2)!

(n− k − 1)!(k − 1)!
. (13)

Combining Equations (8), (11), (12), and (13),

En

(
IMk=S,Mk+1=W

)
=

(n− k − 1)!(k + 1)!

n!
· n− k
k(k + 1)

(
(n− k + 1)(n− 1)!

(k − 1)!(n− k)!
− (n− k)(n− 2)!

(k − 1)!(n− k − 1)!

)
=
n− k + 1

n
− (n− k)2

n(n− 1)
.

Summing from k = 1 to n− 1, we get

EnCn =
n−1∑
k=1

n− k + 1

n
−

n−1∑
k=1

(n− k)2

n(n− 1)
=

n∑
j=2

j

n
−

n−1∑
j=1

j2

n(n− 1)

=
n(n+ 1)

2n
− 1

n
− (n− 1)n(2n− 1)

6n(n− 1)
=
n+ 4

6
− 1

n

as desired.

4 Corners in Symmetric Tree-Like Tableaux

The main result of this section is the proof of the second conjecture of Laborde Zubieta.
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Theorem 6. (see [11, Conjecture 4.2]) For n > 2 we have

c(T sym
2n+1) = 2n × n!× 4n+ 13

12
.

As in Section 3, we will use a bijection between symmetric tree–like tableaux and type–
B permutation tableaux to relate the corners of T sym

2n+1 to the corners of Bn. In Section 2.2
of [1], it was mentioned that there exists such a bijection; however, no details were given.
Thus, we give a description of one such bijection which will be useful to us (see Figure 3).

1

1

10
0 0

←→

•
•

•
•

•

•

•
•
•
• •

Figure 3: An example of the bijection F as defined in Lemma 7 between type–B permu-
tation tableaux of size 5 and symmetric tree–like tableaux of size 11.

Lemma 7. Consider F : T sym
2n+1 → Bn defined by the following rules,

1. Replace the topmost point in each column with 1T ’s.

2. Replace the leftmost points in each row with 0R’s

3. Fill in the remaining cells according to the rules of type–B permutation tableaux.

4. Remove the cells above the diagonal.

5. Remove the first column.

and F−1 : Bn → T sym
2n+1 defined by:

1. Add a column and point all cells except those in a restricted row.

2. Replace all 0R’s with points unless that 0R is in the same row as a diagonal 0.

3. Replace all non-diagonal 1T ’s with points.

4. Delete the remaining numbers, add a pointed box in the upper–left–hand corner (the
root point), and then add the boxes necessary to make the tableau symmetric.

Then F is a bijection between T sym
2n+1 and Bn.
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Proof. First, we show that F and F−1 are well–defined. For arbitrary T ∈ T sym
2n+1, each

column in T contains a point and thus, there is always a topmost point. Therefore,
each column in F (T ) contains a 1T and Definition 3(1) is satisfied. The condition (2) in
Definition 3 is satisfied since the only zeros in F (T ) are from the leftmost pointed cells
(therefore, there is no topmost one to the left) or from rule (3) which would not violate
this condition. Condition (3) in Definition 3 is satisfied similarly.

For arbitrary B ∈ Bn, F−1(B) satisfies Definition 1(1) by rule (4). Because of sym-
metry, F−1(B) satisfies Definition 1(2) if every row contains a point. All restricted rows
(excluding rows with a diagonal 0) will get mapped to a pointed row since the 0R gets
pointed by rule (2). All unrestricted rows will get pointed in the new column by rule (1).
Now consider the rows which contain a diagonal 0. There must be a 1T in the column
below the diagonal 0 (Definition 3(1)). This cell will get pointed after applying F−1.
Therefore, there will be a pointed cell to the right of the diagonal in F−1(B) which is in
the same row as the diagonal 0 after applying rule (4). Therefore, all diagonal zero rows
also get mapped to pointed rows. Finally, condition Definition 1(3) is met since points
added in the new column clearly have no points to the left of them. In addition, the
points which come from a 0R have no points to the left of them and the points which
come from a 1T have no points above them.

Now to prove F is one-to-one, consider arbitrary B1, B2 ∈ Bn such that B1 6= B2. If the
Ferrers diagrams of B1 and B2 are different, then it is obvious that F−1 (B1) 6= F−1 (B2)
since these are tree-like tableaux of different shapes. If the Ferrers diagrams are the same,
then there must be at least one cell which is labeled differently. Consider the highest,
rightmost such cell, say (i, j). W.L.O.G. assume that B1(i, j) = 0 and B2(i, j) = 1.

Consider two cases.

Case 1. B1(i, j) = 0R.

In this case, there exists a cell above (i, j) that is filled with a 1 in both B1 and B2.
By rule (2), F−1(B1(i, j)) is pointed but F−1(B2(i, j)) is not since it is not the highest
one in its column (note that this 0R can’t be on a diagonal 0 row since we have picked
the highest, rightmost point that is different). Therefore, F−1 (B1) 6= F−1 (B2).

Case 2. B1(i, j) 6= 0R.

In this case, all cells above (i, j) are filled with 0’s in both B1 and B2. If such cells exist,
by rule (3) F−1 (B2(i, j)) is pointed but F−1 (B1(i, j)) is not since it is not a restricted
zero. If there are no cells above (i, j), then B1(i, j) = 0 is a diagonal 0 and thus, none of
the cells in this row get pointed.

But since B2(i, j) = 1, this row is either unrestricted and the added cell (from the
added column) gets pointed (rule (1)) or it is a restricted row (and does not contain a
diagonal 0) and the 0R gets pointed (rule (2)). Therefore, F−1 (B1) 6= F−1 (B2).

As mentioned earlier, Lemma 7 will allow us to relate the corners of symmetric tree–
like tableaux to the corners of type–B permutation tableaux. To carry out the calculations
for type–B permutation tableaux we will develop techniques similar to those developed in
[4] for permutation tableaux. We first briefly describe an extension procedure for B–type
tableaux that mimics a construction given in [4, Section 2]. Fix any B ∈ Bn−1 and let
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Un−1 = Un−1(B) be the number of unrestricted rows in B. We can extend the size of B to
n by inserting a new row or a new column. The only way to insert a new row is by adding
a south step to the shape. The ways to insert a new column depend on the filling of that
column. Any restricted row forces a 0 in the new cell in that row. The remaining Un−1 +1
cells (the one additional cell is the diagonal cell on the top row) to be filled with either a
1 or 0 so that there is at least one 1. Thus, there are 2Un−1+1− 1 possible fillings of a new
column and 2Un−1+1 different extensions of our tableau to a type–B tableau of size n. Let
Un be the number of unrestricted rows in the extended tableau, Un = 1, . . . , Un−1 + 1. If
a row is inserted, then Un = Un−1 + 1. Since the row is inserted in precisely one of the
possible 2Un−1+1 cases, the (conditional) probability that Un = Un−1 + 1 is

P(Un = Un−1 + 1|Fn−1) = P(Mn = S|Fn−1) =
1

2Un−1+1
. (14)

(Here, analogously to permutation tableaux (see the proof of Theorem 5 above or [10,
Section 2]) Fn−1 is a σ–subalgebra on Bn obtained by grouping together all tableaux in
Bn that are obtained as the extension of the same tableau from Bn−1.)

If a column is inserted, the number of unrestricted rows depends on two cases. First,
if a 1 is inserted in the new diagonal cell, then any 0 below it in an unrestricted row
becomes restricted. Thus, for the extension to have k unrestricted rows, there must be
k− 1 1’s placed below the diagonal cell and there are

(
Un−1

k−1

)
ways do so. If a 0 is inserted

in the new diagonal cell, then this reduces to adding a column to a permutation tableaux
with Un−1 unrestricted rows. The number of ways to do so was already found in [4] and
is
(
Un−1

k−1

)
. Thus,

P(Un = k|Fn−1) =
1

2Un−1+1

((
Un−1

k − 1

)
+

(
Un−1

k − 1

))
=

1

2Un−1

(
Un−1

k − 1

)
,

for k = 1, . . . , Un−1. This agrees with (14) when k = Un+1. Thus,

L(Un|Fn−1) = 1 + Bin(Un−1),

where the left–hand side means the conditional distribution of Un given Un−1 and Bin(m)
denotes a binomial random variable with parameters m and 1/2. Note that this is the
same relationship as for permutation tableaux (see [10, Equation (2.2)] or [4, Equation 4]).

As in the case of permutation tableaux, the uniform measure Pn on Bn induces a
measure (still denoted by Pn) on Bn−1 via a mapping Bn → Bn−1 that assigns to any
B′ ∈ Bn the unique tableau of size n − 1 whose extension is B′. These two measures on
Bn−1 are not identical, but the relationship between them can be easily calculated (see [4,
Section 2] or [10, Section 2] for more details and calculations for permutation tableaux).
Namely,

Pn(B) = 2Un−1(B)+1 |Bn−1|
|Bn|

Pn−1(B), B ∈ Bn−1.
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This relationship implies that for any random variable X on Bn−1,

EnX =
2|Bn−1|
|Bn|

En−1(2
Un−1(Bn−1)X). (15)

This allows us to provide a direct proof of the following well known fact,

Proposition 8. For all n > 0, |Bn| = 2nn!.

Proof. By considering all the extensions of a type–B permutation tableaux of size n− 1,
we have the following relationship,

|Bn| =
∑

B∈Bn−1

2Un−1(B)+1.

Thus,

|Bn| = |Bn−1|En−1
(
2Un−1+1

)
= 2|Bn−1|En−1E

(
2Un−1|Un−2

)
= 2|Bn−1|En−1E

(
21+Bin(Un−2)|Un−2

)
= 2 · 2|Bn−1|En−1

(
3

2

)Un−2

= 2 · 2|Bn−1|
2|Bn−2|
|Bn−1|

En−2

(
2Un−2

(
3

2

)Un−2
)

= 22 · 2! |Bn−2|En−23
Un−2 .

Iterating n times,

|Bn| = 23 · 3! |Bn−3|En−34
Un−3 = 2n−1(n− 1)!|B1|E1n

U1

= 2nn!,

where the final equality holds because |B1| = 2 and U1 ≡ 1.

Given Proposition 8 (15) reads

EnX =
1

n
En−1(2

Un−1(Bn−1)X). (16)

This is exactly the same expression as [4, Equation (7)] which means that the relationship
between En and En−1 is the same regardless of whether we are considering Pn or Bn. Thus,
any computation for B–type tableaux based on (16) will lead to the same expression as
the analogous computation for permutation tableaux based on [4, Equation (7)].

Now we have the tools necessary to obtain a relationship between corners in symmetric
tree–like tableaux and type–B permutation tableaux which is analogous to (5).
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Lemma 9. The number of corners in symmetric tree–like tableaux is given by,

c(T sym
2n+1) = 2c(Bn) + 2n(n− 1)! + 2n−1n!. (17)

Proof. The bijection described in Lemma 7 transforms a tree–like tableau of shape F to
a permutation tableau of shape F ′ that is obtained from F by removing all the cells on
and above the diagonal of F , removing the SW–most edge from F , and removing the cells
of the left–most column of F (see Figure 3 for an example). The number of corners in
F is the same as the number of corners in F ′ unless the last edge of F ′ is vertical or the
first edge of F ′ is vertical. In the former case, F has two additional corners. In the latter
case, F has one additional corner. This leads to the following relationship,

c(T sym
2n+1) = 2c(Bn) + 2|{B ∈ Bn : Mn(B) = S}|+ |{B ∈ Bn : M1(B) = W}|. (18)

By the extension process described above, it is clear that

|{B ∈ Bn : Mn(B) = S}| = |Bn−1| = 2n−1(n− 1)!. (19)

In addition,
|{B ∈ Bn : M1(B) = W}| = 2nn!En(IM1=W ).

Furthermore, by the same argument as in the proof of Proposition 8:

En(IM1=W ) =
1

n
En−1(2

Un−1IM1=W ) =
1

n
En−1

(
IM1=WE(2Un−1|Un−2)

)
=

2

n
En−2

(
IM1=W3Un−2

)
=

(n− 1)!

n!
E1

(
IM1=Wn

U1
)

=
1

2
.

Hence
|{B ∈ Bn : M1(B) = W}| = 2n−1n!

and the result is obtained by combining this with (18) and (19).

It follows from Lemma 9 that to prove Theorem 6, it suffices to determine the number
of corners in type–B permutation tableaux of size n. Since |Bn| = 2nn!, Equation (2)
becomes

c(Bn) = 2nn!EnCn. (20)

Combining (17) with (20), we immediately see that Theorem 6 will be proved once we
establish the following result.

Theorem 10. For type–B permutation tableaux of size n we have

EnCn =
4n+ 7

24
− 1

2n
.
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Proof. As in the proof of Theorem 5 we will compute

En

(
n−1∑
k=1

IMk=S,Mk+1=W

)
=

n−1∑
k=1

En

(
IMk=S,Mk+1=W

)
.

By (16),

En

(
IMk=S,Mk+1=W

)
=

2 · 3 · · · · · (n− k − 1)

n(n− 1) · · · · · (k + 2)
Ek+1IMk=S,Mk+1=W (n− k)Uk+1 (21)

as obtained in (8). Now, we need to compute

Ek+1IMk=S,Mk+1=W (n− k)Uk+1 = Ek+1IMk=SE(IMk+1=W (n− k)Uk+1|Fk) (22)

for 1 6 k 6 n− 1. The conditional expectation is,

E(IMk+1=W (n− k)Uk+1|Fk) = E((n− k)Uk+1|Fk)− E(IMk+1=S(n− k)Uk+1|Fk)

since the two indicators are complementary. The first conditional expectation on the
right–hand side was computed in Theorem 5 (see (10)). To compute the second conditional
expectation, note that on the set {Mk+1 = S}, Uk+1 = 1 + Uk so that

E(IMk+1=S(n− k)Uk+1|Fk) = (n− k)1+UkE(IMk+1=S|Fk)

= (n− k)1+UkP(Mk+1 = S|Fk)

= (n− k)1+Uk
1

2Uk+1

where the last equality follows from (14). Combining with (10) yields

E(IMk+1=W (n− k)Uk+1 |Fk) = (n− k)

((
n− k + 1

2

)Uk

− 1

2

(
n− k

2

)Uk

)

and thus (22) equals

(n− k)Ek+1

(
IMk=S

((
n− k + 1

2

)Uk

− 1

2

(
n− k

2

)Uk

))
.

The expression inside the expectation is a random variable on Pk so that we can use (16)
to obtain

n− k
k + 1

EkIMk=S

(
(n− k + 1)Uk − 1

2
(n− k)Uk

)
.

Furthermore, on the set {Mk = S}, Uk = Uk−1 + 1 so that the above is

n− k
k + 1

Ek

((
(n− k + 1)1+Uk−1 − 1

2
(n− k)1+Uk−1

)
E(IMk=S|Fk−1)

)
,
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which, by (14), equals

n− k
k + 1

Ek

((
(n− k + 1)1+Uk−1 − 1

2
(n− k)1+Uk−1

)
1

2Uk−1+1

)
.

After reducing the size one more time we obtain

n− k
2(k + 1)k

(
Ek−1 (n− k + 1)1+Uk−1 − 1

2
Ek−1 (n− k)1+Uk−1

)
. (23)

Combining (21) and (23) and applying (12) and (13),

En

(
IMk=S,Mk+1=W

)
=

(n− k − 1)!(k + 1)!

n!
· n− k

2k(k + 1)

(
(n− k + 1)(n− 1)!

(k − 1)!(n− k)!
− (n− k)(n− 2)!

2(k − 1)!(n− k − 1)!

)
=
n− k + 1

2n
− (n− k)2

4n(n− 1)
.

Summing from k = 1 to n− 1, we get

EnCn =
1

2

n−1∑
k=1

n− k + 1

n
− 1

4

n−1∑
k=1

(n− k)2

n(n− 1)
=

1

2

n∑
j=2

j

n
− 1

4

n−1∑
j=1

j2

n(n− 1)

=
n(n+ 1)

4n
− 1

2n
− (n− 1)n(2n− 1)

24n(n− 1)
=

4n+ 7

24
− 1

2n

as desired.

5 Occupied Corners

In this section we study the asymptotic distribution of the number of occupied corners in
random tree–like tableau and random symmetric tree–like tableau. Laborde Zubieta [11]
derived a recurrence for the generating polynomials for the number of occupied corners
and used it to obtain the expected value and the variance of the number of occupied
corners in tree–like tableaux. He also obtained similar results in the symmetric case.
Building on Laborde Zubieta’s work we extend these results and identify the limiting
distribution of the number of occupied corners in each of these two cases.

We begin with the following simple statement.

Proposition 11. Let Pn(x) =
∑m

k=0 an,kx
k be a sequence of polynomials satisfying the

recurrence
P
′

n(x) = fnPn−1(x) + gn(x− 1)P
′

n−1(x) (24)

for some sequences of constants (fn) and (gn). We assume that an,k > 0,
∑

k an,k > 0
for every n > 1, and that m = mn may depend on n. Consider a sequence of random
variables Xn defined by

P(Xn = k) =
an,k
Pn(1)

=
an,k∑
j an,j

.
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If

gn = o(fn) and fn
Pn−1(1)

Pn(1)
→ c > 0, as n→∞ (25)

then
Xn

d→ Pois(c) as n→∞,
where Pois(c) is a Poisson random variable with parameter c > 0.

Proof. By [2, Theorem 20, Chapter 1] it is enough to show that for every r > 1 the
factorial moments

E(Xn)r = EXn(Xn − 1) . . . (Xn − (r − 1)),

of (Xn) converge to cr as n → ∞. Recall that for a random variable X with generating
function h(x) = ExX we have

E(X)r = h(r)(1),

where h(r)(x) is the rth derivative of h(x). Thus, we need to show that

P
(r)
n (1)

Pn(1)
→ cr, as n→∞.

Using (24) we have

P (r)
n (x) =

(
P
′

n(x)
)(r−1)

= fnP
(r−1)
n−1 (x) + gn

(
(x− 1)P

′

n−1(x)
)(r−1)

= fnP
(r−1)
n−1 (x) + gn

(
(x− 1)P

(r)
n−1(x) +

(
r − 1

1

)
P

(r−1)
n−1 (x)

)
where in the last step we used Leibniz formula for the differentiation of the product of
two functions. It follows that

P (r)
n (1) = (fn + (r − 1)gn)P

(r−1)
n−1 (1)

and, consequently,

P
(r)
n (1)

Pn(1)
= (fn + (r − 1)gn)

P
(r−1)
n−1 (1)

Pn(1)

= fn
Pn−1(1)

Pn(1)

(
1 + (r − 1)

gn
fn

)
P

(r−1)
n−1 (1)

Pn−1(1)
.

Therefore,

P
(r)
n (1)

Pn(1)
=

(
r−1∏
k=0

fn−k
Pn−k−1(1)

Pn−k(1)

(
1 + (r − k − 1)

gn−k
fn−k

))
P

(r−r)
n−r (1)

Pn−r(1)
.

Since the last factor is 1, it follows from (25) that for every r > 1 as n→∞,

P
(r)
n (1)

Pn(1)
→ cr

as desired.
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For occupied corners, Laborde Zubieta obtained (24) with fn = n and gn = −2. Since
in that case Pn(1) = n!, the assumptions of Proposition 11 are clearly satisfied, with
c = 1. Thus we obtain the following.

Corollary 12. As n→∞, the limiting distribution of the number of occupied corners in
a random tree–like tableau of size n is Pois(1).

5.1 Symmetric Tableaux

For the symmetric tableaux of size 2n + 1, the generating polynomial of the number of
occupied corners is

Qn(x) =
∑
k>0

bn,kx
2k

where
2k · bn,k = 2[2k · bn−1,k + (n− 2(k − 1))bn−1,k−1], (26)

see [11]. Set

Rn(z) =
∑
k

bn,kz
k, so that Qn(x) = Rn(x2).

Then (26) translates to

2zR
′

n(z) = 4zR
′

n−1(z) + 2nzRn−1(z)− 4z2R
′

n−1(z).

Therefore,
R
′

n(z) = nRn−1(z) + 2(1− z)R
′

n−1(z).

By Proposition 8, Rn(1) = 2nn!. Thus, the conditions of Proposition 11 are satisfied with
fn = n, gn = −2, and c = 1/2. That is, as n→∞,

R
(r)
n (1)

Rn(1)
→
(

1

2

)r

.

Thus, if Yn is a random variable with the probability generating function Rn(z)/Rn(1),
then (Yn) converges in distribution to a Pois(1/2) random variable. Moreover, since
Qn(x)/Qn(1) is the probability generating function of 2Yn, we have the following.

Corollary 13. As n→∞, the limiting distribution of the number of occupied corners in
a random symmetric tree–like tableau of size 2n+ 1 is 2× Pois(1/2).
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