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Abstract

Motivated by a conjecture of Liang, we introduce a restricted path packing prob-
lem in bipartite graphs that we call a V-free 2-matching. We verify the conjecture
through a weakening of the hypergraph matching problem. We close the paper
by showing that it is NP-complete to decide whether one of the color classes of a
bipartite graph can be covered by a V-free 2-matching.
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1 Introduction

Throughout the paper, graphs are assumed to be simple. Given an undirected graph
G = (V,E) and a subset F ⊆ E of edges, F (v) denotes the set of edges in F incident to
a node v ∈ V , and dF (v) := |F (v)| is the degree of v in F . We say that F covers a
subset of nodes X ⊆ V if dF (v) > 1 for every v ∈ X. Let b : V → Z+ be an upper bound
function. A subset N ⊆ E of edges is called a b-matching if dN(v) is at most b(v) for
every node v ∈ V . For some integer t > 2, by a t-matching we mean a b-matching where
b(v) = t for every v ∈ V . If t = 1, then a t-matching is simply called a matching.

A hypergraph is a pair H = (V, E) where V is a finite set of nodes and E is a collection
of subsets of V . The members of E are called hyperedges, and for a hyperedge e ∈ E let
|e| denote its cardinality (as a subset of V ). In hypergraphs –unlike in graphs– we will
allow hyperedges of cardinality 1 in this paper. A matching in a hypergraph is a collection
of pairwise disjoint hyperedges, and the matching is said to be perfect if the union of the
hyperedges in the matching contains every node. The hypergraph matching problem
is to decide whether a given hypergraph has a perfect matching. Given a hypergraph
H = (V, E), we can represent it as a bipartite graph GH = (UV , UE ;E), where nodes of
UV correspond to nodes in V , nodes in UE correspond to hyperedges in E , and there is
an edge in G between a node uv ∈ UV (corresponding to v ∈ V ) and a node ue ∈ UE
(corresponding to e ∈ E) if and only if v ∈ e (GH is also called the Levi graph of H).
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Let G = (S, T ;E) be a bipartite graph. A path P = {uv, vw} of length 2 with u,w ∈ S
is called an S-link, and a T -link can be defined analogously. In [14], Liang proposed the
following conjecture and showed that, if it is true, the conjecture implies that 4-regular
graphs are antimagic (where a simple graph G = (V,E) is said to be antimagic if there
exists a bijection f : E → {1, 2, . . . , |E|} such that

∑
e∈E(v1)

f(e) 6= ∑
e∈E(v2)

f(e) for

every pair v1, v2 ∈ V ).

Conjecture 1. Assume that G = (S, T ;E) is a bipartite graph such that each node in S
has degree at most 4 and each node in T has degree at most 3. Then G has a matching M
and a family F of node-disjoint S-links such that every node v ∈ T of degree 3 is covered
by an edge in M ∪ (∪P∈FP ).

Observe that it suffices to verify the conjecture for the special case when each node
in T has degree exactly 3, as we can simply delete nodes of degree less than 3. Although
it was recently proved that regular graphs are antimagic independently in [1] and [2], we
prove the conjecture in Section 3 as it is interesting in its own. The proof is based on a
weakening of the hypergraph matching problem.

While working on the proof of the conjecture, an interesting restricted path factor
problem came to our attention. For simplicity, we will call a T -link a V-path (the name
comes from the shape of these paths when T is placed ‘above’ S, see Figure 1 for an
illustration). It is easy to see that a 2-matching consists of pairwise node-disjoint paths
and cycles. We call a 2-matching V-free if it does not contain a V-path as a connected
component.

T

S

Figure 1: An illustration for Liang’s conjecture. Nodes in T have degree at most 3, and
those in S have degree at most 4. The matching is highlighted with blue, the family of
S-links is highlighted with red.

Consider the problem of finding a matching M and a family F of node-disjoint S-links
such that M ∪ (∪P∈FP ) covers T . We can assume that M does not contain any edge of⋃F , as such edges can be simply deleted from M . Furthermore, we may assume that
each node v ∈ T has degree at most 2 in M ∪ (∪P∈FP ). Indeed, if a node v ∈ T has
degree 3 in M ∪ (∪P∈FP ) then it is covered by both M and (∪P∈FP ), so the edge in M
incident to v can be deleted (see Figure 1). It is not difficult to see that M ∪ (∪P∈FP ) is
a V-free 2-matching covering T in this case.

Conversely, given an arbitrary V-free 2-matching N that covers T , edges can be left
out from N in such a way that the resulting V-free 2-matching N ′ still covers T and
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consists of paths of length 1 and 4, the latter having both end-nodes in T . Then N ′ can
be partitioned into a matching and a family of node-disjoint S-links.

By the above, the problem of finding a matching M and a family F of node-disjoint
S-links whose union covers T is equivalent to finding a V-free 2-matching N that covers
T . The proof of Conjecture 1 shows that these problems can be solved when nodes in S
have degree at most 4, and those in T have degree at most 3. However, in Section 4 we
show that the problem of finding a V-free 2-matching in a bipartite graph G = (S, T ;E)
covering T is NP-complete in general.

Let us now recall some well known results from matching theory that will be used
below.

Theorem 2. In a bipartite graph there exists a matching that covers every node of max-
imum degree.

Theorem 3 (Dulmage and Mendelsohn [4]). Given a bipartite graph G = (S, T ;E) and
subsets X ⊆ S, Y ⊆ T , if there exist two matchings MX and MY in G such that MX

covers X and MY covers Y then there exists a matching M in G that covers X ∪ Y .

Theorem 4 (Gallai-Edmonds Decomposition Theorem for graphs, see eg. [16]). Given a
graph G = (V,E), let D be the set of nodes which are not covered by at least one maximum
matching of G, A be the set of neighbours of D and C := V − (D ∪ A). Then (a) the
components of G[D] are factor-critical, (b) G[C] has a perfect matching, and (c) G has
a matching covering A.

The paper is organized as follows. Section 2 gives a brief overview of earlier results on
restricted path packing problems. In Section 3, we introduce a variant of the hypergraph
matching problem and prove a general theorem which in turn implies the conjecture.
The paper is closed with a complexity result on V-free 2-matchings in a bipartite graph
G = (S, T,E) covering T , see Section 4.

2 Previous work

For a set F of connected graphs, a spanning subgraph M of a graph G is called an F-
factor of G if every component of M is isomorphic to one of the members of F . The
path and cycle having n nodes are denoted by Pn and Cn, respectively. The length of
Pn is n− 1, the number of its edges.

The problem of packing F -factors is widely studied. Kaneko presented a Tutte-type
characterization of graphs admitting a {Pn|n > 3}-factor [9]. Kano, Katona and Király
[10] gave a simpler proof of Kaneko’s theorem and also a min-max formula for the maxi-
mum number of nodes that can be covered by a 2-matching not containing a single edge
as a connected component. Such a 2-matching is often called 1-restricted. These results
were further generalized by Hartvigsen, Hell and Szabó [7] by introducing the so-called
k-piece packing problem, where a k-piece is a connected graph with highest degree ex-
actly k. In contrast with earlier approaches, their result is algorithmic, and so it provides
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a polynomial time algorithm for finding a 1-restricted 2-matching covering a maximum
number of nodes. Later Janata, Loebl and Szabó [8] described a Gallai-Edmonds type
structure theorem for k-piece packings and proved that the node sets coverable by k-piece
packings have a matroidal structure.

In [6], Hartvigsen considered the edge-max version of the 1-restricted 2-matching prob-
lem, that is, when a 1-restricted 2-matching containing a maximum number of edges is
needed. He gave a min-max theorem characterizing the maximum number of edges in
such a subgraph, and he also presented a polynomial algorithm for finding one. The no-
tion of 1-restricted 2-matchings was generalized by Li [13] by introducing j-restricted
k-matchings that are k-matchings with each connected component having at least j+ 1
edges. She considered the node-weighted version of the problem of finding a j-restricted
k-matching in which the total weight of the nodes covered by the edges is maximal and
presented a polynomial algorithm for the problem as well as a min-max theorem in the
case of j < k. She also proved that the problem of maximizing the number of nodes
covered by the edges in a j-restricted k-matching is NP-hard when j > k > 2.

A graph is called cubic if each node has degree 3. Cycle-factors and path-factors
of cubic graphs are well-studied. The fundamental theorem of Petersen states that each
2-connected cubic graph has a {Cn|n > 3}-factor [15]. From Kaneko’s theorem it follows
that every connected cubic graph has a {Pn|n > 3}-factor. Kawarabayashi, Matsuda, Oda
and Ota proved that every 2-connected cubic graph has a {Cn|n > 4}-factor, and if the
graph has order at least six then it also has a {Pn|n > 6}-factor [12]. For bipartite graphs,
these results were improved by Kano, Lee and Suzuki by showing that every connected
cubic bipartite graph has a {Cn|n > 6}-factor, and if the graph has order at least eight
then it also has a {Pn|n > 8}-factor [11].

Although the V-free 2-matching problem shows lots of similarities to these problems,
it does not seem to fit in the framework of earlier approaches.

3 Extended matchings

While working on Conjecture 1, we arrived at a relaxation of the hypergraph matching
problem that we call the extended matching problem. An extended matching of
a hypergraph H = (V, E) is a disjoint collection of hyperedges and pairs of nodes where
a pair (u, v) may be used only if there exists a hyperedge e ∈ E with u, v ∈ e. An
extended matching is perfect if it covers the node-set of H. Note that one can decide
in polynomial time if a hypergraph has a perfect extended matching by the results of
[3] (see also Theorem 4.2.16 in [17]). Indeed, given a hypergraph H = (V, E), consider
its bipartite representation GH = (UV , UE ;E). Then a perfect extended matching in H
corresponds to a subgraph in GH in which nodes of UV have degree one, and a node
ue ∈ UE corresponding to e ∈ E has degree |e|, or any even number not greater than |e|.

However, we have found a simple proof of the following result, a special case of the
extended matching problem, which implies Conjecture 1, as we show below.

Theorem 5. In a 3-uniform hypergraph H = (V, E) there exists an extended matching
that covers the nodes of maximum degree in H.
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Theorem 5 is the special case of a more general result (Corollary 9) that we introduce
below. Before doing so, we show that Theorem 5 implies Conjecture 1.

Proof of Conjecture 1. Recall that it suffices to verify the conjecture for graphs G =
(S, T ;E) with dE(v) = 3 for every v ∈ T . Such a G is the incidence graph (or Levi graph)
of a 3-uniform hypergraph H = (S, E) in which each node has degree at most 4.

Let S ′ ⊆ S denote the set of nodes having degree 4 in H. By Theorem 5, H has an
extended matching covering S ′. That is, S ′ can be covered by disjoint S-links and S-claws
of G, where an S-claw is a star with 3 edges having its center node in T . We denote the
edge-set of these S-links and claws by N .

Let T ′ be the set of nodes in T not covered by N . As dE−N(v) 6 3 for each v ∈ S,
T ′ can be covered by a matching M disjoint from N , by Theorem 2. By leaving out an
edge from each S-claw of N , we get a matching M and a family of S-links whose union
together covers T .

Let us now introduce and prove a generalization of Theorem 5. We call a hypergraph
H = (V, E) oddly uniform if every hyperedge has odd cardinality. The quasi-degree
of a node v ∈ V is defined as d−(v) :=

∑
[|e| − 1 : v ∈ e ∈ E ], and the hypergraph

is ∆-quasi-regular (or quasi-regular for short) if d−(v) = ∆ for each v ∈ V where
∆ ∈ Z+. Note that a uniform regular hypergraph is quasi-regular.

Theorem 6. Every oddly uniform quasi-regular hypergraph has a perfect extended match-
ing.

Proof. Assume that H = (V, E) is an oddly uniform ∆-quasi-regular hypergraph, and let
G = (V,E) denote the graph obtained by replacing each hyperedge e ∈ E with a complete
graph on node-set e ⊆ V . That is, there are as many parallel edges between u and v in
E as the number of hyperedges containing both u and v. Note that the quasi-regularity
of H is equivalent to the regularity of G.

If G admits a perfect matching M , then M is a perfect extended matching of H and
we are done.

Assume that G does not have a perfect matching. Take the Gallai-Edmonds decom-
position of G into sets D, A and C (see Theorem 4). Let G′ = (D′, A;F ) denote the
bipartite graph obtained from G by deleting the nodes of C and the edges induced by
A, and by contracting each component of G[D] to a single node (the set of new nodes is
denoted by D′).

Let D1 be the union of those connected components of G[D] that span a hyperedge
e ∈ E in H, and D2 := D − D1. Nodes of D′ are partitioned into sets D′1 and D′2
accordingly.

Claim 7. Every component K of G[D1] has a perfect extended matching in H.

Proof. As K is factor-critical, it has a perfect matching after deleting the nodes of any
of its odd cycles (including the case when the cycle consists of a single node). Let e ∈ E
be a hyperedge spanned by K. By the above, G[K − e] has a perfect matching, which
together with e form a perfect extended matching of K, proving the claim.
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Claim 8. dG′(v) > ∆ for each v ∈ D′2.

Proof. Let K be the component of G[D2] whose contraction results in v and let u ∈ K
be an arbitrary node. K does not span a hyperedge in H, hence for every hyperedge e
containing u we have e ∩K 6= ∅, e ∩ A 6= ∅ and e ⊆ K ∪ A. By the definition of G, there
are

∑
[|e ∩K| · |e ∩ A| : u ∈ e ∈ E ] >

∑
[|e| − 1 : u ∈ e ∈ E ] = ∆ edges between K and

A, thus concluding the proof of the claim.

As dG′(v) 6 ∆ for each v ∈ A, Claim 8 and Theorem 2 imply that G′ has a matching
covering D′2. By Theorem 4 (c), G′ has a matching covering A, hence the result of
Dulmage and Mendelsohn (Theorem 3) implies that G′ has a matching M ′ covering A
and D′2 simultaneously. Considering M ′ as a matching in G and using Theorem 4 (a) and
(b), M ′ can be extended to a matching M of G that covers every node that is in C ∪ A
or in a component of G[D] that is incident to an edge in M ′. By Claim 7, there is an
extended matching covering the nodes of the remaining components. The union of M
and this extended matching forms a perfect extended matching of H. This completes the
proof of the theorem.

As a consequence, we get the following result.

Corollary 9. Every oddly uniform hypergraph has an extended matching that covers the
set of nodes having maximum quasi-degree.

Proof. Let H = (S, E) be an oddly uniform hypergraph and let ∆ denote the maximum
quasi-degree in H. The deficiency of a node v ∈ S is γ(v) := ∆− d−(v). A node v ∈ S
is called deficient if γ(v) > 0. As H is oddly uniform, γ(v) is even for every node v.

It suffices to show that H can be extended to a ∆-quasi-uniform hypergraph H ′ =
(V ′, E ′) by adding further nodes and hyperedges. Indeed, by Theorem 6, H ′ admits a
perfect extended matching whose restriction to the original hypergraph gives an extended
matching covering each node having quasi-degree ∆.

If there is no deficient node in H, then we are done. Otherwise consider the hypergraph
obtained by taking the disjoint union of three copies of H, denoted by H1, H2 and H3,
respectively. For each deficient node v ∈ S, add γ(v) copies of the hyperedge {v1, v2, v3} to
the hypergraph, where vi denotes the copy of v in Hi. The hypergraph H ′ thus obtained
is clearly ∆-quasi-regular.

4 Complexity result

In what follows we show that deciding the existence of a V-free 2-matching covering T
is NP-complete in general. We will use reduction from the following problem (see [5,
(SP2)]).

Theorem 10 (3-dimensional matching). Let H = (X, Y, Z; E) be a tripartite 3-regular
3-uniform hypergraph, meaning that each node v ∈ X ∪ Y ∪ Z is contained in exactly
3 hyperedges, and each hyperedge e ∈ E contains exactly one node from all of X, Y and
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Z. It is NP-complete to decide whether H has a perfect matching, that is, a 1-regular
sub-hypergraph.

Our proof is inspired by the construction of Li for proving the NP-hardness of maxi-
mizing the number of nodes covered by the edges in a 2-restricted 2-matching [13].

Theorem 11. Given a bipartite graph G = (S, T ;E) with maximum degree 4, it is NP-
complete to decide whether G has a V-free 2-matching covering T .

Proof. We prove the theorem by reduction from the 3-dimensional matching problem.
Take a 3-uniform 3-regular tripartite hypergraph H = (X, Y, Z; E). For a hyperedge
e ∈ E , we use the following notions: xe := e ∩X, ye := e ∩ Y and ze := e ∩ Z.

tx

te1

te2 te3se2se1

ty

sx sy

tz1

tf1

tf2 tf3sf2sf1

tz2

Figure 2: Gadgets corresponding to hyperedges e = {x, y, z1} and f = {x, y, z2}

We construct an undirected bipartite graph as follows. For each node x ∈ X and
y ∈ Y , add a pair of nodes sx, tx and sy, ty to G, respectively, with sx, sy ∈ S and
tx, ty ∈ T . For each node z ∈ Z, add a single node tz to T . Furthermore, for each x ∈ X
and y ∈ Y add the edges sxtx and syty to E.

We assign a path Pe := {te1, se1, te2, se2, te3} of length four to each hyperedge e ∈ E and
add edges sxet

e
1, syet

e
1 and tzes

e
1 to E (see Figure 2). It is easy to check that the graph

thus arising is bipartite and has maximum degree 4.
We claim that H admits a perfect matching if and only if G has a V-free 2-matching

covering T , which proves the theorem. Assume first that H has a perfect matching and
let M⊆ E be the set of matching hyperedges. Then

M :=
⋃
e∈M

{sxetxe , syetye , sxet
e
1, syet

e
1, tzes

e
1, Pe − te1se1} ∪

⋃
e 6∈M

{Pe}

is a V-free 2-matching covering T (see Figure 3).
For the other direction, take a V-free 2-matching M of G covering T . Observe that

sxtx, syty ∈ M for each x ∈ X and y ∈ Y as M covers T . Moreover, M is V-free hence
te1s

e
1 6∈ M implies sext

e
1, yext

e
1 ∈ M . We may assume that Pe − te1se1 ⊆ M for each e ∈ E .

Indeed, M has to cover te2 and te3, hence the V-freeness of M implies se1t
e
2, s

e
2t

e
3 ∈ M .

Consequently, te2s
e
2 ∈M can be assumed.

We claim that dM(tz) = 1 for each z ∈ Z. Indeed, if tzes
e
1 ∈ M for some e ∈ E then

sxet
e
1, syet

e
1 ∈ M . In other words, if tzes

e
1 ∈ M then e ‘reserves’ nodes sxe , sye and tze for
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tx

te1

te2 te3se2se1

ty

sx sy

tz

e = {x, y, z} ∈ M

tx

te1

te2 te3se2se1

ty

sx sy

tz

e = {x, y, z} /∈ M

Figure 3: Edges included in M depending on whether e ∈M or not

M being a V-free 2-matching. On the other hand, for each x ∈ X there is at most one
e ∈ E such that sxet

e
1 ∈ M , and the same holds for each y ∈ Y . As the hypergraph is

3-uniform and 3-regular, we have |X| = |Y | = |Z|. Hence the number of edges of form
tzes

e
2 in M can not exceed the cardinality of these sets. Let

M := {e ∈ E : tzes
e
2 ∈M}.

By the above, M is a 1-regular subhypergraph, thus concluding the proof.
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[10] M. Kano, G. Y. Katona, and Z. Király. Packing paths of length at least two. Discrete
mathematics, 283(1): 129–135, 2004.

[11] M. Kano, C. Lee, and K. Suzuki. Path and cycle factors of cubic bipartite graphs.
Discussiones Mathematicae Graph Theory, 28(3): 551–556, 2008.

[12] K. Kawarabayashi, H. Matsuda, Y. Oda, and K. Ota. Path factors in cubic graphs.
Journal of Graph Theory, 39(3): 188–193, 2002.

[13] Y. Li. The nonnegative node weight j-restricted k-matching problems. Mathematics
of Operations Research, 39(3): 930–948, 2013.

[14] Y.-C. Liang. Anti-magic labeling of graphs. PhD thesis, National Sun Yat-sen Uni-
versity, 2013.
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