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Abstract

A hypergraph H is called universal for a family F of hypergraphs, if it contains
every hypergraph F ∈ F as a copy. For the family of r-uniform hypergraphs
with maximum vertex degree bounded by ∆ and at most n vertices any universal
hypergraph has to contain Ω(nr−r/∆) many edges. We exploit constructions of Alon
and Capalbo to obtain universal r-uniform hypergraphs with the optimal number
of edges O(nr−r/∆) when r is even, r | ∆ or ∆ = 2. Further we generalize the result
of Alon and Asodi about optimal universal graphs for the family of graphs with at
most m edges and no isolated vertices to hypergraphs.

1 Introduction

Let F (r)(n,∆) be the family of r-uniform hypergraphs (short r-graphs) on at most n
vertices and with maximum vertex degree bounded by ∆. An r-graph is called F (r)(n,∆)-
universal (or universal for F (r)(n,∆)) if it contains every F ∈ F (r)(n,∆) as a copy.
The purpose of this paper is to show that the existence and almost optimal explicit
constructions of many universal hypergraphs follow from the corresponding results about
universal graphs.

The problem of finding various universal graphs has a long history, see an excel-
lent survey of Alon [1] and the references therein. Alon, Capalbo, Kohayakawa, Rödl,
Ruciński and Szemerédi studied in [5, 6] explicit constructions of F (2)(n,∆)-universal
graphs and the universality of the random graph G(n, p) as well. Thus, in [6] they con-
structed first nearly optimal F (2)(n,∆)-universal graphs (∆ > 3) with O(n) vertices and
O(n2−2/∆ ln1+8/∆ n) edges, while it was noted by the same authors that any such univer-
sal graph has to contain Ω(n2−2/∆) edges. Notice further, that in the case ∆ = 2 the
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square of a Hamilton cycle is F (2)(n,∆)-universal [3] (and thus 2n edges are enough in
this case). In two subsequent papers, Alon and Capalbo [3, 4] improved the result of [6]
and obtained F (2)(n,∆)-universal graphs with the optimal number Θ(n2−2/∆) of edges
and only O(n) vertices and also provided F (2)(n,∆)-universal graphs on n vertices with
almost optimal number of edges.

Theorem 1 (Alon and Capalbo [3, 4]). For any ∆ > 2 there exist explicitly constructible
F (2)(n,∆)-universal graphs on O(n) vertices with O(n2−2/∆) edges and on n vertices with
O(n2−2/∆ ln4/∆ n) edges.

Universality of random graphs has been also a subject of intensive study by various
researchers. Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi proved in [5]
that the random graph G((1 + ε)n, p) is F (2)(n,∆)-universal for p > Cε,∆(lnn/n)1/∆

a.a.s., where Cε,∆ is a constant that depends only on ∆ and ε. Since then several im-
provements of this result have been given. So, for example, in the spanning case Della-
monica, Kohayakawa, Rödl and Ruciński [9] showed that G(n, p) is F (2)(n,∆)-universal
for p > C∆(lnn/n)1/∆ (for ∆ > 3) a.a.s., while the case ∆ = 2 was covered by Kim and
Lee [11]. In the almost spanning case, Conlon, Ferber, Nenadov and Škorić [8] recently
showed that for every ε > 0 and ∆ > 3 the random graph G((1 + ε)n, p) is F (2)(n,∆)-
universal for p = ω(n−1/(∆−1) ln5 n) a.a.s.

The study of universal graphs has been extended recently in [14] to universal hyper-
graphs by the second and third author, who showed that the random r-graph H(r)(n, p)
is F (r)(n,∆)-universal a.a.s. for p > C(lnn/n)1/∆, where C is a constant depending
on r and ∆ only. On the other hand, it follows from the asymptotic number of ∆-
regular r-graphs on n vertices, see e.g. Dudek, Frieze, Ruciński and Šileikis [10], that any
F (r)(n,∆)-universal hypergraph must possess Ω(nr−r/∆) edges [14]. Moreover, in [14] ex-
plicit constructions of F (r)(n,∆)-universal hypergraphs on O(n) vertices with O(nr−2/∆)
edges were derived from Theorem 1, and the existence of even sparser universal hy-
pergraphs was obtained from the results on universality of random graphs [8, 9]. For
example, it was shown that there exist F (r)(n,∆)-universal hypergraphs with n vertices
and Θ

(
nr−

r
2∆ (lnn)

r
2∆

)
edges, which shows that the best known lower and upper bounds

are at most the multiplicative factor n
r

2∆ · polylog(n) apart. See the summary of these
results in the table below. Here and in the following the constants in the O-terms depend
on r and ∆.

Another family of graphs that received attention is the family E (r)(m) of r-graphs
with at most m edges and without isolated vertices. Babai, Chung, Erdős, Graham and
Spencer [7] proved that any E (2)(m)-universal graph must contain Ω(m2/ ln2m) many
edges and there exists one on O(m2 ln lnm/ lnm) edges. Alon and Asodi [2] closed this
gap by proving the existence of an E (2)(m)-universal graph on O(m2/ ln2m) edges.

1.1 New results

We will prove the following statements that allow us to construct r-uniform univer-
sal hypergraphs from universal hypergraphs of smaller uniformity. We use universal
graphs from [3, 4] with carefully chosen parameters to provide the best known F (r)(n,∆)-
universal hypergraphs.
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Table 1: Known universal hypergraph results for r > 3 [14].

Explicit constructions of F (r)(n,∆)-universal hypergraphs

O(n) vertices O(nr−2/∆) edges

n vertices O(nr−2/∆ ln4/∆ n) edges

Existence results of F (r)(n,∆)-universal hypergraphs

n vertices Θ
(
nr−

r
2∆ (lnn)

r
2∆

)
edges

(1 + ε)n vertices ω

(
nr−

(r2)
(r−1)∆−1 (lnn)5(r2)

)
edges

Theorem 2. Let r, r′ > 2 and ∆ > 2 be integers. If r′ | r and H ′ is an F (r′)(n,∆)-
universal hypergraph, then there exists an F (r)(n,∆)-universal hypergraph H on the same
vertex set as H ′ and e(H) 6 e(H ′)r/r

′
.

This implies that, whenever r′ | r and ‘almost optimal’ F (r′)(n,∆)-universal hyper-
graphs are known as is for example the case when r is even due to Theorem 1, this leads
to constructions of almost optimal F (r)(n,∆)-universal hypergraphs.

Corollary 3. Let r, r′ > 2 and ∆ > 2 be integers. If r′ | r and there exists an F (r′)(n,∆)-
universal hypergraph H ′ with O(nr

′−r′/∆) edges, then there exists an F (r)(n,∆)-universal
hypergraph on the same vertex set V (H ′) with O(nr−r/∆) edges. In particular, if r is even
then there exist explicitly constructible F (r)(n,∆)-universal hypergraphs on O(n) vertices
with O(nr−r/∆) edges and on n vertices with O(nr−r/∆ ln2r/∆(n)) edges.

In the case of odd r we can not apply Theorem 2 and we prove the following.

Theorem 4. Let r > 3 and ∆ > 2 be integers. Then there exist explicitly constructible
F (r)(n,∆)-universal hypergraphs on O(n) vertices with O(nr−(r+1)/∆′) edges and on n
vertices with O(nr−(r+1)/∆′ ln2(r+1)/∆′(n)) edges, where ∆′ = d(r + 1)∆/re. In particular,
if r | ∆ this leads to almost optimal O(nr−r/∆polylog(n)) edges.

By estimating ∆′ we see that in any case the lower and upper bounds on the edge
densities of optimal universal hypergraphs differ by at most a factor of nr/∆

2
. By applying

a graph decomposition result of Alon and Capalbo from [3] we obtain yet another case
when constructed universal hypergraphs match the lower bound.

Theorem 5. Let r be an integer. Then there exists an explicitly constructible F (r)(n, 2)-
universal hypergraph on O(n) vertices and O(nr/2) edges.

Finally we briefly study E (r)(m)-universal hypergraphs. It can be shown for fixed
r > 3 that any E (r)(m)-universal hypergraph must contain at least Ω(mr/ lnrm) many
edges. This can be seen by a simple counting argument as in [7] or by counting (r lnm)-
regular r-graphs on m/ lnm vertices as was done in the graph case in [2]. We prove that
the optimal existence result of Alon and Asodi gives rise to optimal E (r)(m)-universal
hypergraphs.

Theorem 6. There exist E (r)(m)-universal hypergraphs with O(mr/ lnrm) edges.
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1.2 Organization of the paper

In the next section we introduce a very useful concept of hitting graphs, which we use in
Section 3 to prove Theorem 2, Corollary 3 and Theorem 4 and in Section 4 along with a
graph decomposition result from [3] to prove Theorem 5. In the last section we discuss
E (r)(m)-universal hypergraphs and prove Theorem 6. We make no effort in optimizing
the constants depending on r and ∆ hidden in the O-notation.

2 Hitting graphs

Here we define a concept of hitting graphs first introduced in [14]. This will allow us
later to obtain r-uniform universal hypergraphs out of universal hypergraphs of smaller
uniformity.

Let r > 3 and 2 6 s < r be integers. Given two s-graphs G and F and an r-graph H
on the same vertex set as G, we say that G hits H on F if for all edges f ∈ E(H) there
is a copy of F in G induced on f , i.e. in G[f ]. A family of s-graphs G hits a family of
r-graphs F on F if for every H ∈ F there is a G ∈ G such that G hits H on F .

This concept allows us to reduce the uniformity from r to s keeping at the same time
much of the information about H. This motivates a definition that allows us to recover
all the edges of the hypergraph H which is being hit by G on F . For given s-graphs G and
F let H(F,r)(G) be the r-graph on the vertex set V (G) whose edges f ∈

(
V (G)
r

)
are such

that a copy of F is contained in G[f ]. Then G hits H on F if and only if H ⊆ H(F,r)(G).
The following lemma establishes the connection between hitting hypergraphs and

H(F,r)(G). It is an extension of Lemma 5.2 from [14]. For completeness we include its
easy proof.

Lemma 7. Let r > s > 2, ∆ > 1 be integers and F be an s-graph on at most r vertices.
Further let F be a family of r-graphs and G a family of s-graphs hitting F on F . If G′ is
a G-universal s-graph, then H(F,r)(G

′) is F-universal.

Proof. Let H ∈ F be an r-graph together with the s-graph G ∈ G that hits H on F .
Since G′ is G-universal, there exists an embedding ϕ : V (G)→ V (G′) of G into G′.

It is now easy to see that ϕ is an embedding of H into HF,r(G
′), and thus, HF,r(G

′)
is F -universal. This can be seen as follows. For any edge f ∈ E(H) there is a copy of F
in G[f ]. Since ϕ is an embedding of G into G′, there is a copy of F in G′[ϕ(f)]. By the
definition of HF,r(G

′), ϕ(f) is a hyperedge in HF,r(G
′). Thus, ϕ is an embedding of H

into HF,r(G
′).

The lemma above suggests a way of obtaining r-uniform universal hypergraphs out of
hypergraphs of smaller uniformity. This will be exploited for particular choices of F in
the following sections.

3 Proofs for general ∆

In this section we provide proofs of Theorem 2, Corollary 3 and Theorem 4, which are
valid for all ∆ > 2.
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3.1 Proof of Theorem 2

Let r > r′ > 2 and ∆ > 1 be integers such that r′ | r. We take F to be the r′-uniform
perfect matching on r vertices (and thus with r/r′ edges). Let H ∈ F (r)(n,∆). Since
every vertex lies in at most ∆ edges there is an r′-graph H ′ ∈ F (r′)(n,∆) hitting H on
F . Such an H ′ can be obtained from H by replacing every edge f of H with an arbitrary
perfect r′-uniform matching on f . Therefore, F (r′)(n,∆) hits F (r)(n,∆) on F .

Now if G′ is F (r′)(n,∆)-universal then, by Lemma 7, H(F,r)(G
′) is F (r)(n,∆)-universal.

Moreover, since any collection of r/r′ independent edges from G′ forms an r-edge in
H(F,r)(G

′), we have e(H(F,r)(G
′)) 6 e(G)r/r

′
.

3.2 Proof of Corollary 3

If r′ | r and there exists an F (r′)(n,∆)-universal hypergraph H ′ with O(nr
′−r′/∆) edges,

then we immediately obtain an F (r)(n,∆)-universal hypergraph with the vertex set V (H ′)
and with

O
(

(nr
′−r′/∆)r/r

′
)

= O(nr−r/∆)

edges.
By Theorem 1 there exist optimal explicitly constructible F (2)(n,∆)-universal graphs

on O(n) vertices with O(n2−2/∆) edges. This yields for even r an explicitly constructible
optimal F (r)(n,∆)-universal hypergraph with O(nr−r/∆) edges. A similar argument ap-
plies also for the case of explicitly constructible F (2)(n,∆)-universal graphs on n vertices
with O(n2−2/∆ ln4/∆ n) edges, giving F (r)(n,∆)-universal hypergraphs on n vertices with
O(nr−r/∆ ln2r/∆(n)) edges.

Remark 8. We remark, that obtaining F (r′)(n,∆)-universal hypergraphs on O(n) vertices
with O(nr

′−r′/∆) edges for r′ being prime would provide then the conjectured optimal
upper bound O(nr−r/∆) for all r and ∆.

3.3 Proof of Theorem 4

In the case when r is odd, our hitting r′-graphs will be simply graphs, i.e. r′ = 2.
Moreover, the graph F can no longer be perfect matching, and thus we take F as the
disjoint union of a matching on r− 3 vertices and a path P3 of length 2, i.e. a path with
2 edges. We remark, that the cases when F = K2 (a single edge) and F = Kr were
considered in [14]. We use the following lemma which asserts that one can find a family
of graphs with not too large maximum degree which hits F (r)(n,∆) on F .

Lemma 9. Let r > 3 be odd and ∆ > 1. Let F be the disjoint union of a matching on
r − 3 vertices and a path P3. Then F (2)(n, d(r + 1)∆/re) hits F (r)(n,∆) on F .

Proof. Let H ∈ F (r)(n,∆). One defines an auxiliary bipartite incidence graph B as
follows. The first class V1 consists of d∆/re copies of V (H) and the second class V2 is
equal to E(H), while an edge of B corresponds to a pair (v, f), where v is some copy of
a vertex from V (H) and f ∈ E(H) is such that v ∈ f . The vertices in V1 have degree
at most ∆ and every hyperedge is connected to all d∆/re copies of its r vertices, i.e. the
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vertices from V2 have degree rd∆/re > ∆. By Hall’s condition, there is then a matching
M covering V2 and thus of size e(H).

We build the hitting graph H ′ on the vertex set V (H) by replacing edges f ∈ E(H)
through copies of F as follows. For every edge f in E(H) we use the edge (v, f) of the
matching M and place a copy of F on f such that the vertex v is the degree 2 vertex
of the path P3 from F while the other vertices are placed on f \ {v} arbitrary. We see
that each ‘placed’ copy of F that contains v contributes 1 (in case (v, f) 6∈ M) or 2 (in
case (v, f) ∈ M) to degH′(v). Since there are d∆/re copies of every vertex v and every
vertex v lies in at most ∆ edges of H, the maximum degree in H ′ is at most ∆ +

⌈
∆
r

⌉
and therefore ∆(H ′) 6 d(r + 1)∆/re. This implies H ′ ∈ F (2)(n, d(r + 1)∆/re).

For any F (2)(n, d(r+1)∆/re)-universal graph G we use Lemma 7 to get an F (r)(n,∆)-
universal hypergraph H = H(F,r)(G) on the same number of vertices with at most
2|E(G)|(r−1)/2∆(G) many edges, where the bound comes from first choosing a match-
ing on r − 1 vertices and then one of the two possible endpoints enlarging one edge
to a P3. The maximum degree of universal graphs G in the constructions of Alon and
Capalbo from Theorem 1 is O(|E(G)|/|V (G)|), and thus we obtain Theorem 4 with
F (2)(n, d(r + 1)∆/re)-universal graph G on O(n) vertices with O(n2−2/d(r+1)∆/re) edges
since

O
(
(n2−2/d(r+1)∆/re)(r−1)/2 · n1−2/d(r+1)∆/re) = O

(
nr−(r+1)/d(r+1)∆/re) .

A similar calculation yields F (r)(n,∆)-universal hypergraphs on n vertices with

O(nr−(r+1)/d(r+1)∆/re ln2(r+1)/d(r+1)∆/re n)

edges, which we obtain from F (2)(n, d(r+ 1)∆/re)-universal graphs G on n vertices with
O(n2−2/d(r+1)∆/re log4/d(r+1)∆/re n) edges.

Remark 10. In contrary to the F chosen as a matching plus P3 we could work with any
forest F . To find hitting graphs of small maximum degree we can use similar matching
techniques and counting arguments, but in general it is not clear how low we can get.
For example, if F is the path Pr on r vertices one can show that F (2)(n, d2(r − 1)∆/re)
hits F (r)(n,∆) on F . This leads to an F (r)(n,∆)-universal hypergraph on O(n) vertices
with O(nr−2(r−1)/d2(r−1)∆/re) edges. It depends on the values of r and ∆, which bound
is better, but one does not get anything significantly better than O

(
nr−(r+1)/d(r+1)∆/re)

edges and therefore we do not further pursue this here.

3.4 Reducing the number of vertices

Note that it is possible to reduce the number of vertices from O(n) to (1+ε)n in Theorems
1, 4, 5 and Corollary 3, for any fixed ε > 0, by using a concentrator as was done in [6].
Consider the F (r)(n,∆)-universal hypergraph H on O(n) vertices and with m edges. A
concentrator is a bipartite graph C on the vertex sets V (H) and Q, where |Q| = (1 + ε)n
such that for every S ⊆ V (H) with |S| 6 n we have |N(S)| > |S| and every vertex
from V (H) has Oε(1) neighbours in C. We define a new hypergraph H ′ on Q by taking
all sets f ′ ∈

(
Q
r

)
as edges for which there exists a perfect matching in C from an edge

f ∈ E(H) to f ′. Since every vertex from V (H) has Oε(1) degree in C, the hypergraph
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H ′ has Oε(m) edges. It is also not difficult to see that H ′ is F (r)(n,∆)-universal. Indeed,
let F ∈ F (r)(n,∆) and let ϕ : V (F )→ V (H) be its embedding into H. By the property
of the concentrator C, there is a matching of ϕ(V (F )) in C which we can describe by an
injection ψ : ϕ(V (F ))→ V (H ′). But now, by construction of H ′, ψ ◦ ϕ is an embedding
of F into H ′.

4 Proof of Theorem 5

At this point in all cases where r is not even and r does not divide ∆ we do not have
constructions of F (r)(n,∆)-universal hypergraphs that match the lower bound Ω(nr−r/∆)
on the number of edges. In this section we will deal with the ’smallest’ open case ∆ = 2
by constructing optimal F (r)(n, 2)-universal hypergraphs on O(n) vertices with O(nr/2)
edges. So, for example, if r = 3 then Theorem 4 yields F (3)(n, 2)-universal hypergraphs
on O(n) vertices with O(n3−4/d8/3e) = O(n5/3) edges, while the lower bound is Ω(n3/2).

We will first deal with the case r = 3 and ∆ = 2 and then reduce the case of general
r and ∆ = 2 to this one. Let us say a few words how an improvement from O(n5/3)
to O(n3/2) can be accomplished. We will use the concept of a graph G that hits some
hypergraph H on P3 (the path on 3 vertices). If we would follow the arguments in the
previous section, then we see that taking a hypergraph H ∈ F (3)(n, 2) and replacing every
hyperedge by P3 we can obtain a hitting graph G of maximum degree 3 and of average
degree 8/3. Thus, if we would like to use Theorem 1 we need to consider F (2)(n, 3)-
universal graphs, which results in the loss of some n1/6-factor in the edge density. Instead,
we will seek to decompose the hitting graph G into appropriate subgraphs G1, G2, G3

and G4 such that every edge of G lies in exactly three of the graphs Gi. A decomposition
result of Alon and Capalbo from [3] will assist us in this. Finally, following closely the
arguments again due to Alon and Capalbo but now from [4] will allow us to construct
a universal graph G on O(n) vertices and with maximum degree O(n1/4) for a carefully
chosen family F ′ of graphs allowing a decomposition as above, which hits F (3)(n, 2) on
P3. Lemma 7 implies then that HP3,3(G) is F (3)(n, 2)-universal and has O(n3/2) edges.

4.1 A graph decomposition result

The following notation is from [3]. Let G be a graph and S ⊆ V (G) be a subset of its
vertices. A graph G′ which is obtained from G by adding additionally |S| new vertices to
G and placing an (arbitrary) matching between these new vertices and the vertices from
S is called an augmentation of G. We call a graph thin if every of its components is an
augmentation of a path or a cycle, or if they contain at most two vertices of degree 3.
We also call any subgraph of a thin graph thin.

The following decomposition theorem may be seen as a generalization of Petersen’s
Theorem to graphs of odd degree. It was proved in [3, Theorem 3.1].

Theorem 11. Let ∆ be an integer and G a graph with maximum degree ∆. Then there
are ∆ spanning subgraphs G1, . . . , G∆ such that each Gi is thin and every edge of G
appears in precisely two graphs Gi.

Its proof is built on the Gallai-Edmonds decomposition theorem, and is implied by
the following lemma.
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Lemma 12 (Lemma 3.3 from [3]). Let ∆ > 3 be an odd integer and G a ∆-regular graph.
Then G contains a spanning subgraph in which every vertex has degree 2 or 3 and every
connected component has at most 2 vertices of degree 3.

We will use the two results above to prove the existence of a hitting graph G with
nice properties so that we can later take advantage of them when constructing a universal
graph for the family of such ‘nice’ hitting graphs.

Lemma 13. Let H ∈ F (3)(n, 2). Then there exists a graph G that hits H on P3 with the
following properties:

(i) there are spanning subgraphs G1, G2, G3 and G4 of G such that every Gi is an
augmentation of a thin graph, and

(ii) every edge lies in exactly three of the Gi.

Proof. Let H ∈ F (3)(n, 2). We assume first that H is linear, i.e. edges are always inter-
secting in at most one vertex. Further we assume that H is 2-regular (otherwise we add
‘dummy’ vertices and edges and obtain a 2-regular hypergraph, and, once the desired
graph G is constructed, we delete these dummy vertices from G).

The rough outline of the proof is to find a graph G that hits H on P3 and such that
G contains a matching M so that G \M is an augmentation of a thin graph and if we
contract the matching edges from M in G we obtain a graph of maximum degree at most
3. Decomposing such contracted graph via Theorem 11 into thin graphs G′1, G′2 and G′3
and then ‘recontracting’ edges yields the desired family G1,. . . , G4 (where G4 = G \M).

Let H∗ be the line graph of H, that is V (H∗) = E(H) and e 6= f ∈ E(H) form an edge
ef in H∗ if e∩ f 6= ∅. Thus, H∗ is a 3-regular graph on 2n/3 vertices. Lemma 12 asserts
then the existence of a matching M∗ in H∗ such that in H∗ \M∗ every component has
at most 2 vertices of degree 3 and all other vertices have degree 2. Such a decomposition
implies thus that every component of H∗\M∗ is either a cycle, or has exactly two vertices,
say a and b, of degree 3, so that either there are 3 internally vertex-disjoint paths between
a and b or there is one path between a and b and, additionally, a and b lie on vertex-
disjoint cycles (which also do not contain inner vertices from the path between a and b).
We assume that a and b are not adjacent, because otherwise we could add the edge ab to
M∗, splitting this component into two cycles.

From the matching M∗ we define a subset D := {v : e ∩ f = {v} where ef ∈ E(M∗)}.
Since M∗ is a matching in the line graph of H it follows that no two vertices from D lie
in an edge from H.

We denote by HD the hypergraph which we obtain from H if we delete from the
edges of H the vertices in D but we keep the edges, obtaining thus a hypergraph on the
vertex set V (H) \D, whose edges have cardinality 2 or 3. Thus, if ef is an edge in H∗

and e ∩ f = {v} then the deletion of v from e and f implies that the edges e \ {v} and
f \ {v} are no longer adjacent in the line graph (HD)∗, which corresponds to the deletion
of the edge ef in H∗. This implies that every component of H∗ \M∗ corresponds to a
component of HD, and therefore in every component of HD there are at most two edges
of cardinality 3 and all other edges have cardinality exactly 2. Again, the structure of
every component of HD is thus either a (graph) cycle, or there are exactly two edges,
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say g and h, of cardinality 3, with g ∩ h = ∅ and there are three vertex-disjoint (graph)
paths that connect the vertices from g ∪ h.

Finally we come to the definition of the hitting graph G. For every component C of
HD, let DC be the vertices that have been deleted from the hyperedges in H that lie now
in HD. Thus, there is a (natural) map ψC between the edges from C of cardinality 2
and DC : ψC(f) = v if {v} ∪ f ∈ E(H). Note that this map is not necessarily injective.
Since every vertex from D lies in exactly two edges of H, it will suffice to explain how we
replace the 3-uniform edges of HD and the edges of H incident with D by paths P3. If C
is the (graph) cycle, then we replace every edge of the form {v} ∪ f , where ψC(f) = v,
by P3 so that the graph GC obtained contains all the edges from E(C) and is such that
∆(GC) 6 3 and the vertices from DC have degree at most 2 in GC . If C contains exactly
two 3-uniform edges (say g and h), then it is possible to replace the edges g, h and every
edge of the form {v} ∪ f , where ψC(f) = v, by P3 such that the graph GC satisfies the
following: It contains all 2-uniform edges of C, is such that ∆(GC) 6 3, the vertices from
DC have degree at most 2 in GC and GC \DC is connected and has exactly two vertices
of degree 3 (this is easily done by considering the structure of the components C from
HD described in the previous paragraph). The graph G is then the union of all GC and
observe that GC and GC′ intersect in DC ∩ DC′ for C 6= C ′ and in particular have no
common edges. Furthermore, every vertex from D has degree 2 in G, since it is an image
of ψC precisely twice.

Let M be a matching in G that saturates D. Such a matching exists since D is
independent in G (no two vertices from D lie in an edge from H), every vertex of D
is connected to a vertex of degree 2 in G \ D and deg(G) 6 3. By the definition of
G above, every component in G \M is an augmentation of a graph with at most two
vertices of degree 3, and thus an augmentation of a thin graph. We set G4 := G \M .
Next we contract the edges of M in G obtaining the graph G/M . Since M saturates D,
which are vertices of degree 2 in G, it follows that G/M has maximum degree at most 3.
Theorem 11 yields a decomposition of G/M into thin graphs G′1, G′2, G′3 such that every
edge of G/M appears in precisely two of the graphs. Now we reverse the recontraction
procedure. This leads to three graphs G1, G2 and G3 where every edge of G \M appears
in exactly two of the graphs, every edge from M appears in all three of them, and each
of the G1, G2 and G3 is an augmentation of a thin graph. Together with the graph
G4 = G \M we thus constructed the desired decomposition of a hitting graph G.

If H is not linear, then things get in some sense even easier, so we shall be brief.
We proceed essentially in the same way. That is, we define the line graph H∗ of H,
which is now not necessarily 3-regular, but whose maximum degree is at most 3. Again,
Lemma 12 asserts then the existence of a matching M∗ in H∗ such that in H∗ \M∗ every
component has at most 2 vertices of degree 3 and all other vertices have degree at most
2. We then define the set D as before but in the case that the edge ef ∈ M∗ with, say,
e = {a, b, c} and f = {b, c, d} we simply replace the edge e by {a, b} and f by {c, d}
without putting anything into D. Once the components of HD are identified and the
graphs GC are defined we add the edge bc (which we call nonlinear) to those graphs GC ,
which contain either b or c (or both). Then we choose edges into the matching M as
before and add all nonlinear edges such as bc to M . The rest of the argument remains
the same.

the electronic journal of combinatorics 23(4) (2016), #P4.28 9



An `-th power of a graph G, denoted by G`, is the graph on V (G), whose vertices at
distance at most ` in G are connected. It is not difficult to see that a thin graph on n
vertices can be embedded into P 4

n , and thus, an augmentation of a thin graph into P 8
n .

This motivates the following general definition.

Definition 14 ((k, r, `)-decomposable graphs). Let k, r and ` be integers. A graph G
on n vertices is called (k, r, `)-decomposable if there exist k graphs Gi with the following
properties. Every edge of G appears in exactly r of the Gi and there are maps gi : Gi →
[n], which are injective homomorphisms from Gi into P `

n. Then we denote by Fk,r,`(n)
the family of (k, r, `)-decomposable graphs on n vertices.

We can restate our Lemma 13 in the following slightly weaker form.

Lemma 15. The family F4,3,8(n) hits F (3)(n, 2) on a path P3.

This lemma implies that it is the family F4,3,8(n) for which a universal graph is needed.
This graph will be constructed in the section below and briefly explained why a desired
embedding works, which will follow from the results of Alon and Capalbo from [4].

4.2 Constructions of universal graphs

First we briefly describe the construction from [4] of F (2)(n, k)-universal graphs on O(n)
vertices with O(n2−2/k) edges. One chooses m = 20n1/k, a fixed d > 720 and a graph
R to be a d-regular graph on m vertices with the absolute value of all but the largest
eigenvalues at most λ (such graphs are called (n, d, λ)-graphs). One can assume that
λ 6 2

√
d− 1 (then R is called Ramanujan) and girth(R) > 2

3
logm/ log(d− 1). Explicit

constructions of such Ramanujan graphs have been found first for d − 1 being a prime
congruent to 1 mod 4 in [12, 13]. Finally, the graph Gk,n is defined on the vertex set
V (R)k where two vertices (x1, . . . , xk) and (y1, . . . , yk) are adjacent if and only if there are
at least two indices i such that xi and yi are within distance 4 in R. It is easily seen that
such a graph Gk,n has O(n) vertices, O(n2−2/k) edges and maximum degree O(n1−2/k).

The first step in the proof of F (2)(n, k)-universality of Gk,n is Theorem 11 implying
that any graph F with ∆(F ) 6 k is (k, 2, 4)-decomposable. In what follows we summarize
a straightforward generalization of the central claim from [4] (which is inequality (3.1)
there), from which an existence of embedding of any graph G ∈ F (2)(n, k) into Gk,n

follows. Its proof can be taken almost verbatim from [4].

Lemma 16. Let k > 3, r and ` be natural numbers. For any choice of k permutations
gi : [n] → [n] there are k homomorphisms fi : [n] → V (R) from the path Pn to the Ra-
manujan graph R introduced above such that the map f : [n] → V (Gk,r,`(n)) defined by
f(v) = (f1(g1(v)), . . . , fk(gk(v))) is injective.

More precisely, the fi’s are inductively constructed as non-returning walks preserving
the property that for any i vertices v1, . . . , vi ∈ V (G), i 6 k, one has

|{v ∈ [n] : f1(g1(v)) = v1, . . . , fi(gi(v)) = vi}| 6 n(k−i)/k.

For the last step i = k this is equivalent to injectivity.
Finally, we explain, how we obtain Fk,r,`(n)-universal graphs. The choice of the Ra-

manujan graph R along with the parameters m and d remains the same. The graph
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Gk,r,`(n) is defined on the vertex set V (R)k and two vertices (x1, . . . , xk) and (y1, . . . , yk)
are adjacent if and only if there are at least r indices i such that xi and yi are within
distance ` in R. It is then an easy calculation to show that Gk,r,`(n) has O(n) ver-
tices, at most n

(
k
r

)
dr`mk−r = O(n2−r/k) edges and maximum degree O(n1−r/k), where the

constants in O-notation depend on k, r, ` and d. Lemma 16 implies then the following.

Theorem 17. Let k > 3, r and ` be natural numbers. The graph Gk,r,`(n) is Fk,r,`(n)-
universal.

Proof. Let G be a (k, r, `)-decomposable graph on n vertices together with the de-
composition G1, . . . , Gk and injective homomorphisms gi : V (Gi) → [n] from Gi into
P `
n. Lemma 16 asserts the existence of the homomorphisms fi : [n] → V (R) from Pn

to R for every i ∈ [k], so that the map f : V (G) → V (Gk,r,`(n)) given by f(v) =
(f1(g1(v)), . . . , fk(gk(v))) is injective.

It is clear that the composition of fi with gi is a homomorphism from Gi to R`.
Furthermore, every edge {u, v} from G lies in r graphs Gi. Thus, there are r indices
i such that gi(u) and gi(v) are distinct and within distance ` in Pn. This implies that
fi(gi(u)) and fi(gi(v)) are also distinct and within distance ` in G. By the definition of
Gk,r,`(n) this implies that f(u) and f(v) are adjacent in Gk,r,`(n) and f is the desired
embedding of G into Gk,r,`(n).

From this, Theorem 5 follows immediately for r = 3.

Proof of Theorem 5, case r = 3. Note, that the graph G4,3,8(n) has m4 = O(n) ver-
tices and O(nm) = O(n5/4) edges. By Theorem 17 G4,3,8(n) is F4,3,8(n)-universal, and
since F4,3,8(n) hits F (3)(n, 2) on P3, Lemma 7 implies that HP3,3(G4,3,8(n)) is F (3)(n, 2)-
universal, has O(n) vertices and O(n3/2) edges. This proves the case r = 3.

Remark 18. We believe that the constructions from [3] can also be adapted to work with
(k, r, `)-decomposable graphs. For the cases discussed here this would lead to universal
graphs on n vertices, where the number of edges is some polylog factor larger.

4.3 F (r)(n, 2)-universal hypergraphs of uniformity r > 5

Proof of Theorem 5 for odd r > 5. First we define the hypergraph H which will turn out
to be F (r)(n, 2)-universal. Let t = (r − 3)/2. Let G1,. . . , Gt+1 be vertex-disjoint graphs,
where G1, . . . , Gt are copies of C4

n (the fourth power of the cycle Cn) and Gt+1 is a copy
of the graph G4,3,8(n), introduced in the previous section. Furthermore we add on top of
Gt+1 another graph G∗t+1 containing as edges all pairs of vertices which have a common

neighbour in Gt+1. We define H to be the r-graph on the vertex set ∪̇t+1
i=1V (Gi), and the

edges are r-element subsets f such that, with fi := f ∩ V (Gi), we have |fi| 6 3 and
each Gi[fi] contains a copy of P|fi|, a path on |fi| vertices (thus, P0 is the empty graph,
P1 = K1 and P2 = K2). Additionally, in the case |ft+1| = 2, we allow ft+1 to be an edge
(i.e. P2) in G∗t+1 instead of Gt+1.

Certainly, H has O(n) vertices. How many edges does the hypergraph H contain? For
this we need to choose paths P`i from every Gi (resp. G∗t+1) such that `i ∈ {0, 1, 2, 3} and∑t+1

i=1 `i = r. Because G1, . . . , Gt have maximum degree 8, Gt+1 has maximum degree
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O(n1/4), and G∗t+1 has maximum degree n1/2, we compute the number of edges of H to
be O(nt+1n2/4) = O(nr/2), as desired.

Given a hypergraph H and a subset of vertices X ⊆ V , we denote through H(X) the
(not necessarily uniform) hypergraph on the vertex set X, whose edges are restrictions
to X, i.e. E(H(Xi)) = {f ∩Xi : f ∈ E(H)}.

The rest of the proof hinges on the following auxiliary lemma (whose proof can be
found below) and the case r = 3 of Theorem 5 shown in the previous section.

Lemma 19. Let H ∈ F (r)(n, 2) and t = (r − 3)/2. Then there exists a partition of the
vertex set of H into disjoint subsets X1, . . . , Xt+1, such that H(X1), . . . , H(Xt+1) have
maximum vertex degree 2 and contain hyperedges of cardinality at most 3. Moreover in
H(X1), . . . , H(Xt) every component contains at most 2 hyperedges of size 3.

Let us see how then H can be embedded into the hypergraph H. Owing to the
structure of H(X1), . . . , H(Xt), one can easily find injective maps gi : Xi → V (Gi), such
that every hyperedge f ∈ E(H(Xi)) is such that Gi [gi(f)] contains a path P|f |. This can
be seen by replacing f in H(Xi) through an arbitrary path P|f | obtaining thus the graph
G′i on the vertex set Xi. Then, since in every component of H(Xi) there are at most two
edges of size 3, it is easy to find an injective graph homomorphism from G′i into Gi.

For H(Xt+1) we can assume first that it is 3-uniform and lies in F (3)(n, 2) by adding
some ‘dummy’ vertices appropriately (but still using the notationH(Xt+1)). The F4,3,8(n)-
universality of Gt+1 = G4,3,8(n) and the fact that F4,3,8(n) hits H(Xt+1) on P3 yields
an injective map gt+1 : Xt+1 → V (Gt+1) such that Gt+1 [gt+1(f)] contains P3 for every
f ∈ E(H(Xt+1)). Deleting the dummy vertices (but keeping the edges) we see that gt+1

remains injective and Gt+1 [gt+1(f)] contains P|f | for every f ∈ E(H(Xt+1)) except possi-
bly for the case, when the center vertex of some P3 was deleted (being a dummy vertex).
But in this case we observe that G∗t+1[gt+1(f)] induces P2 instead, because both vertices
of gt+1(f) were incident to the deleted vertex in Gt+1.

It should be clear that g : V (H) → V (H) with g|Xi = gi, for all i ∈ [t + 1], is
injective. It remains to show that g is a homomorphism into H. Given an edge e of
H, by the definition of H(Xi) and the choices of gi’s, we see that e ∩ Xi ∈ E(H(Xi))
and Gi [gi(e ∩Xi)] contains a path P|e∩Xi| for all i, except possibly for the case when
|gt+1(e∩Xt+1)| = 2. But in this case one must necessarily have gt+1(e∩Xt+1) ∈ E(G∗t+1).
These conditions fulfill exactly the requirement for g(e) to be the edge in H. Thus, g
embeds H into H.

Finally we provide the proof for the auxiliary lemma above, Lemma 19.

Proof of Lemma 19. Let H ∈ F (r)(n, 2). Again we assume first that H is linear and
2-regular. We consider, as in the case r = 3, the line graph H∗, which is r-regular now.
Hence Lemma 12 yields a spanning subgraph H∗1 , in which every vertex has degree 2 or
3 and every component has at most 2 vertices of degree 3.

If C is a component of H∗1 , then we define VC as all vertices v such that {v} = e∩f for
some ef ∈ E(C) (recall that H is assumed to be a linear hypergraph). We set X1 = ∪VC
where the union is over all components C of H∗1 and then for every edge f ∈ E(H) the
set {v : {v} = e ∩ f for some ef ∈ E(C)} is an edge of H(X1). Observe, that these edges
have cardinality either 2 or 3. Indeed, a vertex of degree j in some component C is the
edge of H that intersects j other edges of H in different vertices, which give rise to a
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j-uniform edge in H(X1). By construction, H(X1) is linear and 2-regular. Crucially,
the components of H(X1) have simple structure, since these are ‘inherited’ from the
components C. More precisely, each component of H(X1) has at most two 3-uniform
edges and all other edges have cardinality 2.

We denote by H̃1 = H(V (H) \X1) the hypergraph obtained from H by deleting from
its edges all vertices from X1 (we call this procedure as ‘reducing uniformity’). It should
be clear that, in this way every edge of H can be written uniquely as the union of one edge
of H(X1) and the other from H̃1. Since H(X1) is not necessarily uniform, the hypergraph
H̃1 is now a not necessarily uniform hypergraph as well, but its edges have cardinalities
either r − 3 or r − 2.

The next step calls for an inductive procedure with a blemish, that H̃1 is not neces-
sarily uniform. But this can be remedied by adding ‘dummy’ vertices and edges to H̃1

and obtaining an (r−2)-uniform linear hypergraph still denoted by H̃1 which is 2-regular
(once we are finished with decomposition, we will reduce the uniformity by deleting these
dummy vertices from edges, but keeping the altered edges). We keep doing this reduction
until we arrive at the hypergraph H̃t where t = (r− 3)/2, thereby generating X2, . . . , Xt

and H̃2(X2) . . . , H̃t−1(Xt). Finally we get Xt+1 := V (H) \ ∪ti=1Xi and a 3-uniform linear
hypergraph H̃t on Xt+1, which is 2-regular.

Before we proceed, let us summarize what we achieved so far. We have found hy-
pergraphs H(X1), H̃2(X2) . . . , H̃t−1(Xt), so that each of them is linear, 2-regular and its
edge uniformities are either 2 or 3 and each of its components has simple structure (recall:
each component has at most two 3-uniform edges and all other edges have cardinality 2).
Furthermore H̃t is a 3-uniform linear hypergraph, which is 2-regular, and the vertex sets
X1, . . . , Xt+1 are a partition of V (H).

We finally obtain the promised family H(X1), . . . , H(Xt+1). This can be seen as
reducing uniformities of the hypergraphsH(X1), H̃2(X2), . . . , H̃t−1(Xt) and H̃t by deleting
dummy edges and dummy vertices from the edges. In this way it may happen, that the
uniformity of some edges of the hypergraph family will be reduced to 0 (in which case
they disappear from that particular hypergraph), while some others will be reduced to 1,
in which case we get edges of the type {v}, which we will use.

The case when H is not a linear hypergraph can be treated similarly. We slightly
extend the definition of the line graph H∗ such that it contains multiple edges, i.e. for
e, f ∈ E(H) there are |e ∩ f | many edges between e and f in H∗ and we label each of
them with a distinct vertex from e ∩ f . Then H∗ is again r-regular and we can again
apply Lemma 12, because the proof from [3] extends verbatim to multigraphs. In this
way we obtain a multigraph H∗1 and for every component C we define the vertex set VC
as follows: for a given edge g ∈ E(C), the set VC contains e∩f where the edge g connects
e and f and it holds |e ∩ f | = 1, and otherwise (i.e. there are parallel edges to g) the
vertex set VC contains precisely the vertex of the label that the edge g carries. The set
X1 is then the union of the VC over all components C from H∗1 . The construction of X2,
. . . , Xt is similar to above. The rest of the proof proceeds along the lines of the linear
case and we omit further details.
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4.4 A general problem

To prove the embedding for other parameters of r and ∆ we would need the analogue of
Lemma 15, that is, a solution to the following problem.

Problem 20. Let r > 3 and ∆ > 3 be integers. Find ` such that F(r−1)∆,r,`(n) hits
F (r)(n,∆) on Pr.

It is immediate that, with k = (r − 1)∆, Theorem 17 yields F(r−1)∆,r,`(n)-universal
graphs G = G(r−1)∆,r,` on O(n) vertices with O(n2−r/((r−1)∆)) edges and maximum degree
O(n1−r/((r−1)∆)). From this the solution to Problem 20 would yield optimal universal hy-
pergraphs on O(n) vertices with |V (G)|(|E(G)|/|V (G)|)r−1 = O(nr−r/∆) edges. Clearly,
the interesting cases are ∆ > 3, r - ∆ and r odd.

Remark 21. An alternative to our approach is to extend the constructions for universal
graphs from [3, 4, 6] to hypergraphs. To follow a similar embedding scheme one would ask
for appropriate decomposition results for hypergraphs. For example, for H ∈ F (3)(n, 2)
the task is to find subhypergraphs H1, . . . , H4 which are ‘thin’ and such that every hy-
peredge appears in exactly three of them.

5 Proof of Theorem 6

Proof of Theorem 6. To prove the existence of optimal E (r)(m)-universal hypergraphs we
exploit the proof of Alon and Asodi [2].

Take any H ∈ E (r)(m) and replace all edges of H by cliques of size r. This gives a
graph with at most

(
r
2

)
m edges and thus there exists a graph G with O(m2/ ln2m) edges

which is E (2)(
(
r
2

)
m)-universal. We define the r-graph Kr(G) on the vertex set V (G) with

edges being the vertex sets of the copies of Kr in G. It is straightforward to see that
Kr(G) is E (r)(m)-universal and thus it remains to estimate the number of edges in Kr(G).

The E (2)(m)-universal graph G of Alon and Asodi [2] is defined on the vertex set
V = V0∪V1∪· · ·∪Vk where k = dlog2 log2me, |V0| = 4m/ log2

2m and |Vi| = 4m2i/ log2m
for i ∈ [k]. A vertex in V0 is connected to any other vertex and the graph induced on
V1 is a clique. For any u ∈ Vi, i > 2, and v ∈ V1 ∪ V2 ∪ · · · ∪ Vi with u 6= v the edge
uv is present independently with probability min (1, 83−i). It is shown in [2] that with
probability at least 1/4 the graph G has O(m2/ ln2m) edges and is E (2)(m)-universal.
We count the expected number of copies of Kr in G, i.e. E(|E(Kr(G))|).

There are several possible types of cliques Kr in G. Indeed, we need to choose r
vertices from V0,. . . ,Vk, and a particular type of a possible r-clique K in G is specified
by α, which is the number of its vertices in V0 and by numbers t1 6 . . . 6 tγ (all from
[k]), which specify to which sets Vi the remaining γ = r − α vertices belong to. There
are at most |V0|α

∏γ
j=1 |Vtj | cliques of a particular type, and each such clique occurs with

probability
∏γ

j=1 [min (1, 83−tj)]
j−1

. It is clear that there are at most |V0|r−1|V (G)| 6
(4m)r−1·(32m)

(log2 m)2(r−1) = o
(

mr

logr2 m

)
cliques Kr in G that intersect V0 in at least r − 1 vertices.

Next we upper bound the expected number of edges in Kr(G) as follows:

E(|E(Kr(G))|) 6 |V0|r−1|V (G)|+
∑
α+γ=r
γ>2

∑
16t16...6tγ6k

|V0|α
γ∏
j=1

|Vtj | ·
γ∏
j=1

[
min

(
1, 83−tj

)]j−1
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6 o

(
mr

logr2m

)
+

r∑
γ>2

(
4m

log2m

)r
1

logr−γ2 m

∑
16t16...6tγ6k

2
∑γ
j=1 tj · 2

∑γ
j=1 min{0,(9−3tj)(j−1)},

(1)

and in order to simplify it further we first estimate the inner sum of the second summand
by splitting it according to t1 as follows:∑

16t16...6tγ6k

2
∑γ
j=1 tj · 2

∑γ
j=1 min{0,(9−3tj)(j−1)}

6
∑
t1619

∑
tj>1

j=2,...,γ

2
∑γ
j=1 tj+

∑γ
j=1 min{0,(9−3tj)(j−1)} +

∑
t1>20

∑
tj>t1
j=2,...,γ

2
∑γ
j=1 tj+

∑γ
j=1 min{0,(9−3tj)(j−1)}

6 220
∑
tj>1

j=2,...,γ

2
∑γ
j=2(tj+min{0,(9−3tj)(j−1)}) +

∑
t1>20

2t1
∑
tj>t1
j=2,...,γ

2
∑γ
j=2(tj+(9−3tj)(j−1))

6 220

(∑
t>1

2t+min{0,(9−3t)}

)γ−1

+
∑
t1>20

2t1

(∑
t>t1

2t+(9−3t)

)γ−1

6 220

(
6 +

∑
t>3

29−2t

)γ−1

+
∑
t1>20

2t1

(∑
t>t1

2−3t/2

)γ−1

6 220+5γ +
∑
t1>20

2t1−
3t1(γ−1)

2
+2(γ−1)

6 220+5γ + 22(γ−1)
∑
t1>20

2−t1/2 6 221+5γ 6 221+5r.

This allows us to further upper bound (1) by

E(|E(Kr(G))|) 6 r221+5r

(
4m

log2m

)r
.

By Markov’s inequality, the probability that |E(Kr(G))| is at least 5r221+5r
(

4m
log2 m

)r
is

at most 1/5. Thus, taking m̂ =
(
r
2

)
m, there exists an E (2)(m̂)-universal graph with

O
(

m̂r

logr2 m̂

)
copies of Kr. This implies that there exists an E (r)(m)-universal hypergraph

H with O(mr/ lnrm) edges.

It is possible to prove that there exist such hypergraphs H with rm vertices which is
optimal. However, no explicit construction is known.
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random graphs, Random Structures Algorithms, doi:10.1002/rsa.20661 (2016).

[9] D. Dellamonica, Jr., Y. Kohayakawa, V. Rödl, and A. Ruciński, An improved upper
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