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Abstract

Extending a prior result of Contucci et al. [Comm. Math. Phys. 2013], we deter-
mine the free energy of the Potts antiferromagnet on the Erdős-Rényi random graph
at all temperatures for average degrees d 6 (2k − 1) ln k − 2− k−1/2. In particular,
we show that for this regime of d there does not occur a phase transition.
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1 Introduction

1.1 Background and motivation

The Gibbs measure of the k-spin Potts antiferromagnet at inverse temperature β > 0 on
a graph G = (V,E) is the probability measure on the set of all maps σ : V → [k] =
{1, . . . , k} defined by

µG,β(σ) =
exp(−βHG(σ))

Zβ(G)
, where HG(σ) = |{e ∈ E : |σ(e)| = 1}| (1)

and Zβ(G) =
∑

τ :V→[k]

exp(−βHG(τ)).

Thus, if we think of [k] as a set of colors, then the function HG, the Hamiltonian of
G, maps a color assignment σ to the number of monochromatic edges. Moreover, β ∈
[0,∞) 7→ Zβ(G) is known as the partition function. The Potts antiferromagnet is one of
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the best-known models of statistical physics. Accordingly, it has been studied extensively
on a wide class of graphs, particularly lattices [10, 27, 24]. The aim of the present paper
is to study the model on the Erdős-Rényi random graph G = G(n,m). Throughout the
paper, we let m = ddn/2e for a number d > 0 that remains fixed as n → ∞. We also
assume that the number k > 3 of colors remains fixed as n→∞.

The Potts model on the random graph G is of interest partly due to the connection to
the k-colorability problem. Indeed, the larger β, the more severe the “penalty factor” of
exp(−β) that each monochromatic edge induces in (1). Thus, if the underlying graph is
k-colorable, then for large β the Gibbs measure will put most of its weight on color assign-
ments that leave few edges monochromatic. Ultimately, one could think of the uniform
distribution on k-colorings as the “β =∞”-case of the Gibbs measure (1). Now, consider
the problem of finding a k-coloring of the random graph by a local search algorithm such
as Simulated Annealing. Then most likely the algorithm will start from a color assignment
that has quite a few monochromatic edges. As the algorithm proceeds, it will attempt to
gradually reduce the number of monochromatic edges by running the Metropolis process
for the Gibbs measure (1) with a value of β that increases over time. Specifically, β has
to be large enough to make progress but small enough so that the algorithm does not
get trapped in a local minimum of the Hamiltonian. Hence, to figure out whether such a
local search algorithm will find a proper k-coloring in polynomial time, it is instrumental
to study the “shape” of the Hamiltonian.

To this end, it is key to get a handle on the free energy, defined as E[lnZβ(G)]. We
take the logarithm because Zβ(G) scales exponentially in the number n of vertices. As a
standard application of Azuma’s inequality shows that lnZβ(G) is concentrated about its
expectation (see Fact 2 below), 1

n
| lnZβ(G) − E[lnZβ(G)]| converges to 0 in probability.

Furthermore, if E[lnZβ(G)] ∼ lnE[Zβ(G)] for certain d, β, then the Hamiltonian can be
studied via an easily accessible probability distribution called the planted model. This
trick has been applied to the “proper” graph coloring problem as well as to other random
constraint satisfaction problems successfully [2, 28].

1.2 The main result

Because our motivation largely comes from the random graph coloring problem, we are
going to confine ourselves to values of d where the random graph G is k-colorable w.h.p.
Although the precise k-colorability threshold dk−col is not currently known, we have [12, 14]

(2k − 1) ln k − 2 ln 2 + ok(1) 6 dk−col 6 (2k − 1) ln k − 1 + ok(1), (2)

where ok(1) hides a term that tends to 0 in the limit of large k. The following theorem
determines 1

n
E[lnZβ(G)] almost up to the lower bound from (2).

Theorem 1. There is k0 > 0 such that for all k > k0, d 6 d? = (2k− 1) ln k− 2− k−1/2,
β > 0 we have

lim
n→∞

1

n
E[lnZβ(G)] = lim

n→∞

1

n
lnE[Zβ(G)] = ln k +

d

2
ln(1− (1− exp(−β))/k). (3)
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Clearly, the function on the r.h.s. of (3) is analytic in β ∈ (0,∞). Thus, in the language
of mathematical physics Theorem 1 implies that the Potts antiferromagnet on the random
graph does not exhibit a phase transition for any average degree d < d?.

1.3 Related work

The problem of determining the k-colorability threshold of the random graph was raised
in the seminal paper by Erdős and Rényi and is thus the longest-standing open problem
in the theory of random graphs [20]. Achlioptas and Friedgut [1] proved the existence of a
non-uniform sharp threshold. Moreover, a simple greedy algorithm finds a k-coloring for
degrees up to about k ln k, approximately half the k-colorability threshold [3]. Further,
Achlioptas and Naor [4] used the second moment method to establish a lower bound
of dk−col > 2(k − 1) ln k + ok(1), which matches the first-moment upper bound dk−col 6
(2k−1) ln k+ok(1) up to about an additive ln k. Coja-Oghlan and Vilenchik [14] improved
the lower bound to dk−col > (2k − 1) ln k − 2 ln 2 + ok(1) via a second moment argument
that incorporates insights from non-rigorous physics work [25]. On the other hand, Coja-
Oghlan [12] proved dk−col 6 (2k − 1) ln k − 1 + ok(1). The results from [4, 14] were
subsequently generalized to various other models, including random regular graphs and
random hypergraphs [5, 13, 17, 22].

The Potts antiferromagnet on the random graph was studied before by Contucci, Dom-
mers, Giardina and Starr [15], who generalized the second moment argument from [4] to
the Potts model. In particular, [15] shows that (3) holds for all β > 0 if d 6 (2k−2) ln k−2.
An analogous result was recently obtained (among other things) by Banks and Moore [6]
for a variant of the stochastic block model that resembles the Potts antiferromagnet.
Their proof is based on [4] as well. In the present paper we improve the corresponding
results of [6, 15] by extending the physics-enhanced second moment argument from [14]
to the Potts antiferromagnet.

Physics considerations suggest that for average degrees d > (2k−1) ln k−2 ln 2+ok(1) a
phase transition does occur, i.e., the function β ∈ (0,∞) 7→ limn→∞

1
n
E[lnZβ(G)] is non-

analytic [23, 26, 25]. The existence and location of the condensation phase transition
has been established asymptotically in the hypergraph 2-coloring and the hardcore model
and precisely in the regular k-SAT model and the k-colorability problem [7, 8, 9, 11].
However, the Potts antiferromagnet is conceptually more challenging than hardcore, k-
SAT or hypergraph 2-coloring because the “variables” (viz. vertices) can take more than
two values (colors). Potts is also more difficult than k-coloring because of the presence
of the inverse temperature parameter β. In fact, the present work is partly motivated by
studying condensation in the Potts antiferromagnet, and we hope that Theorem 1 and
its proof may pave the way to pinpointing the phase transition precisely, see Section 2.5
below. Additionally, as mentioned above, Theorem 1 implies that for d 6 (2k − 1) ln k −
2 − k−1/2 the Hamiltonian can be studied by way of the planted model. Finally, the
ferromagnetic Potts model (where the Gibbs measure favors monochromatic edges) is far
better understood than the antiferromagnetic version [16].
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1.4 Preliminaries

Throughout the paper we assume that k > k0 for a large enough constant k0 > 0.
Moreover, let

cβ = 1− exp(−β).

Unless specified otherwise, the standard O-notation refers to the limit n→∞. We always
assume tacitly that n is sufficiently large. Additionally, we use asymptotic notation in
the limit of large k with a subscript k.

Fact 2. For any δ > 0 there is ε = ε(δ, β, d) > 0 such that lim supn→∞
1
n

lnP[| lnZβ(G)−
E[lnZβ(G)]| > δn] < −ε.

Proof. If G,G′ are multi-graphs such that G′ can be obtained from G by adding or deleting
a single edge, then | lnZβ(G)−lnZβ(G′)| 6 2β. Hence, the assertion follows from Azuma’s
inequality.

If s is an integer, we write [s] for the set {1, . . . , s}. Further, if v is a vertex of a graph
G, then ∂v = ∂G(v) is the set of neighbors of v in G. If ρ is a matrix, then by ρi we
denote the ith row of ρ and by ρij the jth entry of ρi. Further, the Frobenius norm of a
k × k-matrix ρ is

‖ρ‖2 =

∑
i,j∈[k]

ρ2
ij

1/2

.

For a probability distribution p : Ω→ [0, 1] on a finite set Ω we denote by

H(p) = −
∑
x∈Ω

p(x) ln p(x)

the entropy of p (with the convention that 0 ln 0 = 0). Additionally, if ρ is a k× k-matrix
with non-negative entries, then we let

H(ρ) = −
∑
i,j∈[k]

ρij ln ρij.

Further, h : [0, 1]→ R denotes the function

h(z) = −z ln z − (1− z) ln(1− z).

We will use the following standard fact about the entropy.

Fact 3. Let p ∈ [0, 1]k be such that
∑k

i=1 pi = 1. Let I ⊂ [k] and suppose that q =∑
i∈I pi ∈ (0, 1). Then

H(p) 6 h(q) + q ln |I|+ (1− q) ln(k − |I|).

Lemma 4 (Chernoff bound, e.g. [21]). Let X be a binomial random variable with mean
µ > 0. Then for any t > 1, we have P[X > tµ] 6 exp[−tµ ln(t/e)].
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2 Outline

We prove Theorem 1 by generalizing the second moment argument for k-colorings from [14]
to the partition function of the Potts antiferromagnet. In this section we describe the proof
strategy. Most of the technical details are left to the subsequent sections.

2.1 The first moment

As a first step we calculate the first moment E[Zβ(G)]. This is pretty straightforward; in
fact, it has been done before [15]. Nonetheless, we go over the calculations to introduce a
few concepts that will prove important in the second moment argument as well.

Proposition 5 ([15]). For all β, d > 0 we have E[Zβ(G)] = Θ (kn (1− cβ/k)m) .

To lower-bound Zβ(G) we follow Achlioptas and Naor [4] and work with “balanced”
color assignments whose color classes are all about the same size. Specifically, call σ :
[n] → [k] balanced if

∣∣|σ−1(i)| − n
k

∣∣ 6 √n for all i = 1, . . . , k. Of course, by Stirling’s
formula the set B = B(n, k) of all balanced σ : [n]→ [k] has size |B| = Θ(kn). Let

Zβ,bal(G) =
∑
σ∈B

exp (−βHG(σ))

be the partition function restricted to balanced maps. Moreover, let

HKn(σ) =
k∑
i=1

(
|σ−1(i)|

2

)
.

be the number of monochromatic edges of the complete graph. Then uniformly for all
balanced σ,

HKn(σ) = k

(
n
k

+O(
√
n)

2

)
=

(
n

2

)
1

k
+O(n). (4)

Hence, by Stirling’s formula

E [exp (−βHG(σ))] =
m∑

m1=0

exp(−βm1)

(
HKn(σ)

m1

)((n
2

)
−HKn(σ)

m−m1

)((n
2

)
m

)−1

= Θ(1)
m∑

m1=0

(
m

m1

)(
HKn(σ)

exp(β)
(
n
2

))m1
(

1− HKn(σ)(
n
2

) )m−m1

. (5)

Combining (4) and (5), we find

E[Zβ,bal(G)] =
∑
σ∈B

E [exp (−βHG(σ))] = Θ
(
kn (1− cβ/k)

nd
2

)
. (6)
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On the other hand, for all σ we have HKn(σ) > 1
k

(
n
2

)
− n by convexity. Therefore, (5)

yields

E[Zβ(G)] =
∑
σ

E [exp (−βHG(σ))] 6 O
(
kn (1− cβ/k)

nd
2

)
. (7)

Combining (6) and (7), we obtain Proposition 5. Moreover, comparing (6) and (7), we
see that E[Zβ,bal(G)] and E[Zβ(G)] are of the same order of magnitude. Since it is
technically more convenient to work with Zβ,bal(G), we are going to perform the second
moment argument for that random variable.

2.2 The second moment

Following [4], we define the overlap matrix ρ(σ, τ) = (ρij(σ, τ))i,j∈[k] of σ, τ : [n]→ [k] by
letting

ρij(σ, τ) =
k

n
|σ−1(i) ∩ τ−1(j)|. (8)

Thus, k−1ρij(σ, τ) is the fraction of vertices with color i under σ and color j under τ . Let
R = R(n, k) = {ρ(σ, τ) : σ, τ ∈ B} be the set of all possible overlap matrices and set

Zρ,bal(G) =
∑

(σ,τ)∈B2
ρ(σ,τ)=ρ

exp (−β (HG(σ) +HG(τ))) .

Then

E[Zβ,bal(G)2] =
∑

(σ,τ)∈B2
E [exp (−β (HG(σ) +HG(τ)))] =

∑
ρ∈R

E[Zρ,bal(G)]. (9)

Further, define

fd,β(ρ) = H(k−1ρ) +
d

2
ln

[
1− 2

k
cβ +

‖ρ‖2
2

k2
c2
β

]
. (10)

Then an elementary argument similar to the proof of Proposition 5 yields

Proposition 6 ([15]). Uniformly for all ρ ∈ R we have E[Zρ,bal(G)] = exp(nfd,β(ρ) +
o(n)).

The function fd,β is a sum of an entropy term H(k−1ρ) and an “energy term”

E(ρ) = Ed,β(ρ) =
d

2
ln

[
1− 2

k
cβ +

‖ρ‖2
2

k2
c2
β

]
.

For future reference we note that

∂

∂ρij
H(k−1ρ) =

1

k
(−1− ln(ρij)) , (11)
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∂

∂ρij
E(ρ) =

d

k2

c2
βρij

1− 2
k
cβ + ‖ρ‖2

2cβ/k
2
. (12)

The number |R| of summands on the right hand side of (9) is easily bounded by nk
2
.

Therefore,

1

n
lnE[Zβ,bal(G)2] =

1

n
ln
∑
ρ∈R

E[Zρ,bal(G)] ∼ max
ρ∈R

1

n
lnE[Zρ,bal(G)] ∼ max

ρ∈R
fd,β(ρ). (13)

Denote by S the set of all singly-stochastic matrices and by D the set of all doubly-
stochastic k × k matrices, respectively. Then

⋃
n>1R(n, k) ∩ D is a dense subset of D.

Together with (13) the continuity of f therefore implies

1

n
lnE[Zβ,bal(G)2] ∼ max

ρ∈D
fd,β(ρ). (14)

Setting ρ̄ = k−11 to be the barycenter of D, we obtain from Proposition 6 that

fd,β(ρ̄) ∼ 2

n
lnE [Zβ,bal(G)] . (15)

Hence, just as in the case of proper k-colorings [4, 15], a necessary condition for the success
of the second moment method is that the function fd,β attains its maximum on D at the
point ρ̄.

2.3 Small average degree or high temperature

Contucci, Dommers, Giardina and Starr [15] proved that the maximum in (14) is indeed
attained at ρ̄ if the average degree is a fair bit below the k-colorability threshold.

Theorem 7 ([15]). Assume that d < 2(k − 1) ln(k − 1). Then (3) holds for all β > 0.

Comparing this result with (2), we see that Theorem 7 applies to degrees about an
additive ln k below the k-colorability threshold. The proof of Theorem 7 builds upon
ideas of Achlioptas and Naor [4]. More precisely, solving the maximization problem from
(14) directly emerges to be surprisingly difficult. Hence, Achlioptas and Naor suggested to
enlarge the domain to the set of singly stochastic matrices. Clearly, the maximum over the
larger space is an upper bound on the maximum over the set of doubly-stochastic matrices.
Further, because the set of singly-stochastic matrices is a product of simplices, the relaxed
optimization problem can be tackled with a fair bit of technical work. Crucially, for
d < 2(k − 1) ln(k − 1) the maximum of the relaxed problem is attained at ρ̄. However,
for only slightly larger values of d the maximum is attained at a different point, and thus
the relaxed second moment argument fails.

Apart from the case of small d, the second case that is relatively straightforward is that
of small β (the “high temperature” case in physics jargon). More precisely, in Section 3
we will prove the following.
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Proposition 8. If d ∈ [2(k − 1) ln(k − 1), (2k − 1) ln k − 2] and β 6 ln k, then (3) holds.

For d ∈ [2(k − 1) ln(k − 1), (2k − 1) ln k − 2] Proposition 8 improves upon the result
from [15], which yields (3) merely for β 6 β0 for an absolute constant β0 (independent of
k). The proof of Proposition 8 is by way of relaxing (13) to singly-stochastic matrices as
well and builds upon arguments developed in [14] for k-colorability.

2.4 Large degree and low temperature

The most challenging constellation is that of d beyond 2(k − 1) ln(k − 1) and β large. In
this regime we do not know how to solve the maximization problem (13). In particular,
the trick of relaxing the problem to the set of all singly-stochastic matrices does not work.
Instead, following [14] we are going add further constraints to the problem. That is, we
are going to apply the second moment method to a modified random variable that is
constructed so as to ensure that certain parts of the domain D cannot contribute to (13)
significantly.

The construction is guided by the physics prediction [23] that for large d and β the
Gibbs measure µG “decomposes” into an exponential number of well-separated clusters.
Of course, it would be non-trivial to turn this notion into a precise mathematical statement
because the support of µG is the entire cube [k]n. However, the probability mass is
expected to be distributed very unevenly, with large swathes of the cube carrying very
little mass.

Fortunately, we do not need to define clusters etc. precisely. Instead, adapting the
construction from [14], we just define a new random variable Zβ,sep(G) that comes with
a “hard-wired” notion of well-separated clusters. To be precise, for a graph G denote by
ΣG,β the set of all τ ∈ B that enjoy the following property.

SEP1 For every i ∈ [k] the set τ−1(i) spans at most 2n exp(−β)k−1 ln k edges.

Further, let κ = ln20 k/k. We call σ ∈ B separable if σ ∈ ΣG,β and if

SEP2 for every τ ∈ ΣG,β and all i, j ∈ [k] such that ρij(σ, τ) > 0.51 we have ρij(σ, τ) >
1− κ.

Let Bsep = Bsep(G, β) ⊂ B denote the set of all separable maps and define

Zβ,sep(G) =
∑

σ∈Bsep(G,β)

exp(−βHG(σ)).

To elaborate, condition SEP1 provides that the subgraphs induced on the individual
color classes are quite sparse. Indeed, recalling that each monochromatic edge incurs a
“penalty factor” of exp(−β), we expect that in a typical sample from the Gibbs measure
the total number of monochromatic edges is about nd exp(−β)/(2k). Moreover, suppose
that σ ∈ ΣG,β satisfies SEP2 and τ ∈ ΣG,β is another color assignment. Let i, j ∈ [k].
Then SEP2 provides that there are only two possible scenarios.
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(i) If ρij(σ, τ) < 0.51, then the color classes σ−1(i), τ−1(j) are “quite distinct” and we
may think of σ, τ as belonging to different “clusters”.

(ii) If ρij(σ, τ) > 0.51, then in fact ρij(σ, τ) > 1 − κ. Thus, the color classes σ−1(i),
τ−1(j) are nearly identical. Hence, if there is a permutation π : [k]→ [k] such that
ρiπ(i)(σ, τ) > 0.51 for all i ∈ [k], then we may think of σ, τ as belonging to the same
“cluster”.

The upshot is that separability rules out the existence of any “middle ground”, i.e., we
do not have to consider overlaps ρ with entries ρij ∈ (0, 51, 1− κ).

The following proposition, which we prove in Section 4, shows that imposing separa-
bility has no discernible effect on the first moment.

Proposition 9. Assume that d ∈ [2(k−1) ln(k−1), (2k−1) ln k−2] and β > ln k. Then

E[Zβ,sep(G)] ∼ E[Zβ,bal(G)].

The point of working with separable color assignments is that the maximization prob-
lem that arises in the second moment computation of Zβ,sep(G) comes with further con-
straints that are not present in (13). Specifically, we only need to optimize over ρ ∈ D
such that ρij 6∈ (0.51, 1− κ) for all i, j ∈ [k]. In Section 5 we will use these constraints to
derive the following.

Proposition 10. Let d ∈ [2(k− 1) ln(k− 1), d?] and β > ln k. Then 1
n

lnE[Zβ,sep(G)2] ∼
2
n

lnE[Zβ,bal(G)].

Corollary 11. If d ∈ [2(k − 1) ln(k − 1), d?] and β > ln k, then (3) holds.

Proof. On the one hand, Jensen’s inequality gives

E[lnZβ(G)] 6 lnE[Zβ(G)]. (16)

On the other hand, by Propositions 9 and 10 and the Paley-Zigmund inequality,

P[Zβ(G) > E[Zβ,sep(G)]/2] >P[Zβ,sep(G) > E[Zβ,sep(G)]/2]

>
E[Zβ,sep(G)]2

4E[Zβ,sep(G)2]
= exp(o(n)). (17)

Combining (17) with Proposition 5, (6) and Proposition 9, we obtain

P[lnZβ(G) > lnE[Zβ(G)]− ln lnn] > exp(o(n)). (18)

Further, (18) and Fact 2 yield n−1E[lnZβ(G)] > n−1 lnE[Zβ(G)] + o(1). Finally, combin-
ing this lower bound with the upper bound (16) completes the proof.

Finally, Theorem 1 follows from Theorem 7, Proposition 8 and Corollary 11.
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2.5 Outlook: the condensation phase transition

According to non-rigorous physics methods [23, 26] for d only slightly above the bound
from Theorem 1 the formula (3) does not hold for all β > 0 anymore. While the exact
formula is quite complicated (e.g., it involves the solution to a distributional fixed point
problem), the critical degree satisfies dk,cond = (2k− 1) ln k− 2 ln 2 + ok(1). Thus, for d >
dk,cond there occurs a phase transition at a certain critical inverse temperature βk,cond(d).
The existence of a critical βk,cond(d) follows from prior results on the random graph coloring
problem [8]. However, the value of βk,cond(d) is not (rigorously) known.

The physics intuition of how this phase transition comes about is as follows. For
β < βk,cond(d) the Gibbs measure decomposes into an exponential number of clusters
that each have probability mass exp(−Ω(n)). Hence, if we sample σ, τ independently
from the Gibbs measure, then most likely they belong to different clusters, in which
case their overlap should be very close to ρ̄. By contrast, for β > βk,cond(d) a bounded
number of clusters dominate the Gibbs measure, i.e., there are individual clusters whose
probability mass is Ω(1). In effect, for β > βk,cond(d) the overlap of two randomly chosen
color assignments is not concentrated on the single value ρ̄ anymore, because there is
a non-vanishing probability that both belong to the same cluster. In effect, the second
moment method fails. In fact, we expect that E[lnZβ(G)] < lnE[Zβ(G)] − Ω(n) for all
β > βk,cond(d).

But even the second moment argument for separable color assignments does not quite
reach the expected critical degree dk,cond. Indeed, for d > (2k − 1) ln k − 2 + ok(1) the
maximum over the set of separable overlaps is attained at ρij = α1{i = j}+ 1−α

k−1
1{i 6= j}

with α = 1− 1/k + ok(1/k). In terms of the physics intuition, this overlap matrix corre-
sponds to pairs of color assignments that belong to the same cluster. In other words, the
second moment method fails because the expected cluster size blows up. A similar prob-
lem occurs in the k-colorability problem [14]. There the issue was resolved by explicitly
controlling the median cluster size, which is by an exponential factor smaller than the
expected cluster size [8]. We expect that a similar remedy applies to the Potts model,
although the fact that monochromatic edges are allowed entails that the proof method
from [8] does not apply. In any case, Theorem 1 reduces the task of determining the phase
transition to the problem of controlling the median cluster size.

Furthermore, also in the case of degrees above dk−col at least the existence of a phase
transition has been established rigorously [15]. It would be most interesting to see if the
present methods can be extended to d > dk−col in order to obtain a more precise estimate
of βk,cond(d).

3 Singly stochastic analysis

We prove Proposition 8 by way of the following proposition regarding the maximum of
fd,β over the set of singly-stochastic matrices.

Proposition 12. If d ∈ [2(k− 1) ln(k− 1), (2k− 1) ln k− 2] and β 6 ln k, then fd,β(ρ̄) >
fd,β(ρ) for all ρ ∈ S \ {ρ̄}.
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To prove Proposition 12 we will closely follow the proof strategy developed for the
graph coloring problem in [14, Section 4]. Basically, that argument dealt with optimizing
the function fd,∞ (i.e., cβ is replaced by 1) over S and we extend that argument to
finite values of β. In fact, the following monotonicity statement shows that it suffices to
prove Proposition 12 for β = ln k; related monotonicity statements were used in [9] for
hypergraph 2-coloring and in [7] for regular k-SAT.

Lemma 13. For all d > 0, β > 0, ρ ∈ S we have

∂

∂β
fd,β(ρ̄) 6

∂

∂β
fd,β(ρ) < 0.

Hence, if fd,β′(ρ̄) > fd,β′(ρ) for β′ ∈ [0,∞], then fd,β(ρ̄) > fd,β(ρ) for all β < β′.

Proof. Differentiating by β reveals that β 7→ fd,β(ρ) is monotonous.

∂

∂β
fd,β(ρ) = −d

2

2
k
− ‖ρ‖2

2
2cβ
k2
e−β

1− 2
k
cβ +

‖ρ‖22
k2
c2
β

< 0. (19)

Setting y = ‖ρ‖2
2 and construing ∂

∂β
fd,β(ρ) as a map of y,

φ : [1, k]→ R, φ(y) 7→ −d
2

2
k
− y 2cβ

k2
e−β

1− 2
k
cβ + y

k2
c2
β

,

differentiating ∂
∂β
fd,β(ρ) by y, we obtain

∂

∂y
φ(y) =

1
k2

2cβe
−β (1− 2

k
cβ + y

k2
c2
β

)
−
(
− 2
k
e−β + y

k2
2cβe

−β) c2β
k2(

1− 2
k
cβ + y

k2
c2
β

)2

=

2cβe
−β

k2

(
1− cβ

k

)
+ y

2c3βe
−β

k3

(
1− 1

k

)(
1− 2

k
cβ + y

k2
c2
β

)2 > 0 for y ∈ [1, k]. (20)

Hence, y 7→ ∂
∂β
fd,β(ρ) has a global minimum at y = 1. Because y = ‖ρ‖2

2 = 1 is only the

case for ρ = ρ̄ the combination of (19) and (20) yields the assertion.

The following basic observation concerning the partial derivatives of fd,β is reminiscent
of [14, Lemma 4.11].

Claim 14. Let ρ ∈ S. With i, j, l ∈ [k] such that ρil, ρij > 0 set δ = ρil − ρij.

i) Then

sign

(
∂

∂ρij
fd,β(ρ)− ∂

∂ρil
fd,β(ρ)

)
= sign

(
1 +

δ

ρij
− exp

(
dcβδ

k − 2cβ + c2
β‖ρ‖2

2/k

))
.
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ii) If ∂E(ρ)/∂ρij < 1/k then there is δ∗ > 0 such that for all 0 < δ < δ∗

1 +
δ

ρij
− exp

(
dcβδ

k − 2cβ + c2
β‖ρ‖2

2/k

)
> 0. (21)

If ∂E(ρ)/∂ρij > 1/k, the left hand side of (21) is negative for all δ > 0.

Proof. By (11), (12) and the choice of δ,

∂

∂ρij
fd,β(ρ)− ∂

∂ρil
fd,β(ρ) =

1

k

[
ln

(
1 +

δ

ρij

)
−

dc2
βδ

k − 2cβ + cβ‖ρ‖2
2/k

]
. (22)

The first part of the claim follows because the signs of the terms in (22) are invariant under
exponentiation of the minuend φ(δ) = ln(1 + δ/ρij) and subtrahend ψ(δ) = dc2

βδ/(k −
2cβ + cβ‖ρ‖2

2/k). The second part follows from the observation that the linear function
exp(φ) : R+ → R intersects at most once with the strictly convex function exp(ψ) :
R+ → R. This is only the case if the derivative of exp(φ) in δ = 0 is strictly greater than
that of exp(ψ).

The following lemma provides a general “maximum entropy” principle that we will use
repeatedly (cf. [14, Proposition 4.7]).

Lemma 15. Let d 6 (2k − 1) ln k and β > 0. For ρ ∈ S, a fixed row i and a set of
columns J ⊂ [k], set ρ̂ab =

∑
j∈J ρij/|J | for all (a, b) ∈ {i} × J and ρ̂ab = ρab for all

(a, b) /∈ {i} × J . Let λ > 3 ln ln k/ ln k. If |J | > kλ and maxj∈J ρij < λ/2 − ln ln k/ ln k,
then fd,β(ρ̂) > fd,β(ρ) if ρ 6= ρ̂.

Proof. We may assume that 0 6 minj∈J ρij < maxj∈J ρij. Otherwise, we would have
ρ̂ = ρ and there is nothing to prove. Now let

Sρ =

{
ρ̃ : ρ̃ab = ρab for all (a, b) /∈ {i} × J and max

j∈J
ρ̃ij 6 max

j∈J
ρij

}
denote the set of all possible overlaps that vary in entries from {i} × J . Sρ is a closed
subset of S and therefore contains a maximal overlap ρ̌ ∈ arg maxρ̃∈S fd,β(ρ̃). Evidently
the derivative of H tends to infinity as ρij tends to zero, while the derivative of E remains
bounded. Therefore in a maximal overlap each entry ρ̌ij, j ∈ J is positive. As a whole,
we know that 0 < minj∈J ρ̌ij 6 maxj∈J ρ̌ij 6 1. By means of Claim 14 it remains to show
that δ̌ = maxj∈J ρ̌ij −minj∈J ρ̌ij = 0.

Let a ∈ J denote the index of ρ̌ia = minj∈J ρ̌ij. Because |J |ρ̌ia 6
∑

j∈J ρ̌ij and
d 6 2k ln k − ln k, we have

1

ρ̌ia
> |J | > kλ > 3 ln k > 2 ln k

(
kc2

β

k − 2cβ + c2
β/k

)
>

k

ρ̌ia

∂

∂ρ̌ia
E(ρ̌),
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where the final inequality is an immediate consequence of (12). As δ̂ = λ/2− ln ln k/ ln k,
‖ρ̌‖2

2 > 1 and d 6 2k ln k − ln k,

exp

(
dc2

β δ̂

k − 2cβ + c2
β‖ρ̌‖2

2/k

)
6 exp

(
dδ̂

k(1− cβ/k)2
c2
β

)
6 exp(2δ̂ ln k)

6kλ ln−2 k 6 |J | ln−2 k 6
1

ρ̌ia

1

ln2 k
<

1

ρ̌ia

ln ln k

2 ln k
6

1

ρ̌ia

(
λ

2
− ln ln k

ln k

)
6

δ̂

ρ̌ia

confirms that

sign

(
1 +

δ

ρ̌ia
− exp

(
dcβδ

k − 2cβ + c2
β‖ρ̌‖2

2/k

))
= 1

holds for any δ < δ̂. Suppose that δ̌ > 0. Then 0 < δ 6 maxj∈J ρ̌ij 6 δ̂ and Claim 14
imply that a matrix ρ̌′ obtained from ρ̌′ by decreasing maxj∈J ρ̌ij by a sufficiently small
ξ > 0 and increasing ρ̌ia by the same value ξ results in fd,β(ρ̌′) > fd,β(ρ̌), which contradicts
the maximality of ρ̌. Hence, a maximal overlap ρ satisfies δ̌ = maxj∈J ρ̌ij−minj∈J ρ̌ij = 0
for any i, J chosen according to our assumption.

In order to achieve a global bound on maxρ∈S fd,β(ρ) we need to pin down the structure
of a maximizing matrix ρ. To this end, the following elementary fact is going to be useful.

Fact 16 ([14, Lemma 4.15]). Let ξ : ε ∈ (0, k/2) 7→ k2ε/k(ε−1 − k−1). Let µ = k
2
(1 −√

1− 2/ ln k). Then ξ is decreasing on the interval (0, µ) and increasing on (µ, k/2).
Furthermore, we have −1/2 6 ξ′(ε) 6 −3/2 for ε ∈ (0.99, 1.01).

The following lemma rules out the possibility that the maximizer of fd,β has an entry
close to 1/2 (cf. [14, Lemma 4.13]).

Lemma 17. Let β > 0 and d = 2k ln k − c, where c = Ok(ln k). If ρ ∈ S has an entry
ρij ∈ [0.49, 0.51], then there is ρ′ ∈ S such that fd,β(ρ′) > fd,β(ρ) + ln k

5k
.

Proof. By means of Lemma 15 we will specify ρ′ and provide above bound for fd,β(ρ) −
fd,β(ρ′) in a distinction of two cases. Without loss of generality we may assume that the
entry in the interval [0.49, 0.51] is ρ11. Suppose ρ maximizes fd,β subject to the condition
that ρ11 ∈ [0.49, 0.51].

For the first case, suppose that ρ1j < 0.49 for all j > 2. By setting J = {2, . . . , k} and
λ = ln(k − 1)/ ln k in Lemma 15, we have ρ1j = (1 − ρ11)/(k − 1) for all j > 2. Let ρ′

denote the matrix obtained from ρ by setting ρ′1 = (1/k, . . . , 1/k) and ρ′i = ρi for i > 2.
In the following assume that k is sufficiently large. By Fact 3 we have

H(ρ1) 6 h(ρ11) + (1− ρ11) ln(k − 1) 6 ln 2 + 0.51 ln k.

Consequently

H(k−1ρ′1)−H(k−1ρ1) >
0.48 ln k

k
. (23)
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In comparison, the Frobenius norm of ρ1 is bounded by

‖ρ1‖2
2 6 0.512 + (k − 1)

(
0.51

k − 1

)2

6 0.261,

while

∂

∂‖ρ‖2
2

E(ρ) =
d

2k2

c2
β

1− 2/kcβ + ‖ρ‖2
2/k

2c2
β

=
2k ln k +Ok(ln k)

2k
Ok

(
1

k

)
6

ln k

k

(
1 +Ok

(
1

k

))
. (24)

Therefore

E(ρ)− E(ρ′) 6
0.262 ln k

k
. (25)

The combination of (23) and (25) verifies

fd,β(ρ′) > fd,β(ρ) + 0.218
ln k

k
> fd,β(ρ) +

ln k

5k

for β > ln k. By Lemma 13

fd,β(ρ′) > fd,β(ρ) +
ln k

5k
(26)

holds for any 0 6 β 6 ln k. Finally we show (26) for the case that a row consists of
two entries greater than 0.49. Without loss of generality we may assume that ρ11 >
ρ12 > 0.49 and ρ1j < 0.02 for j > 3. Lemma 15 with parameters J = {2, . . . , k} and
λ = ln(k− 1)/ ln k gives ρ1j = (1− ρ11− ρ12)/(k− 2) for all j > 3. Hence, for sufficiently
large k

H(ρ1) 6 h(ρ11) + h(ρ12) + (0.02) ln(k − 2) 6 2 ln 2 + 0.02 ln k 6 0.03 ln k.

Moreover the norm is bounded by

‖ρ1‖2
2 = ρ2

11 + ρ2
12 + (k − 2)

(
1− ρ11 − ρ12

k − 2

)2

6 0.501.

Consequently

E(ρ)− E(ρ′) 6
0.51 ln k

k
, (27)

H(k−1ρ′1)−H(k−1ρ1) > 0.97
ln k

k
. (28)

The combination of (27) and (28) yields (26) for β > ln k. By Lemma 13 the assertion
follows for 0 6 β 6 ln k.
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Generalizing [14, Lemma 4.16], as a next step we characterize the structure of the local
maxima of fd,β on S.

Lemma 18. Let β > 0 and d = 2k ln k − c, where c = Ok(ln k). Let ρ ∈ S.

(1) Suppose that row i ∈ [k] has no entries in [0.49, 0.51] and ρij 6 0.49 for all j ∈ [k].
Let ρ′ be the stochastic matrix with entries

ρ′hj = ρhj and ρ′ij =
1

k
for all j ∈ [k], h ∈ [k] \ {i}. (29)

Then fd,β(ρ) 6 fd,β(ρ′).

(2) Suppose that row i ∈ [k] has no entries in [0.49, 0.51] and ρij > 0.51 for some j ∈ [k].
Then there is a number α = 1

k
+ Õk(1/k

2) such that for the stochastic matrix ρ′′ with
entries

ρ′′hj = ρhj and ρ′′ii = 1− α, ρ′′ih =
α

k − 1
for all j ∈ [k], h ∈ [k] \ {i} (30)

we have fd,β(ρ) 6 fd,β(ρ′′).

(3) Let β 6 ln k. Suppose that row i ∈ [k] has an entry ρij ∈ [0.49, 0.51]. Then the matrix
ρ′ with (29) satisfies fd,β(ρ) 6 fd,β(ρ′).

Proof. Claim (1) is an immediate consequence of Lemma 15 when setting J = [k], λ = 1
and applying the ρ 7→ ρ̂ operation on the i-th row.

For Claim (2) we may again assume that i = j = 1 and therefore ρ11 > 0.51. Let
ρ̂ ∈ S maximize fd,β subject to the conditions that ρ̂ coincides with ρ everywhere but in
the first row and ρ̂11 > 0.51. A necessary condition for ρ̂ to be maximal is that the mass
in the remaining open entries is equally distributed. ρ̂11 > 0.51 implies that for all j > 2
the entries ρ̂1j are bounded by 0.49. Setting λ = ln(k− 1)/ ln k, Lemma 15 applies to row
i = 1 and J = {2, . . . , k} confirming that for all j > 2 we have ρ̂1j = (1− ρ̂11)/(k − 1).

Let 0 6 ε 6 0.49k be such that ρ̂11 = 1− ε/k. To prove the assertion we need to show
that ε = 1 + Õk(1/k). Set δ = ρ̂11− ρ̂12. Then because ρ̂ maximizes fd,β Claim 14 implies
that

either ε ∈ {0, 0.49k}, or 1 +
δ

ρ̂12

= exp

(
dc2

βδ

k − 2cβ + c2
β
‖ρ̂‖22
k

)
. (31)

Equations (22) and (11) show that ∂/∂ρ11H(ρ1) tends to −∞ as ρ11 tends to 1, while
∂/∂ρ11E(ρ1) remains bounded. Hence, a maximal ρ̂ is bound to satisfy ε > 0.

By ‖ρ̂‖2
2 > 1 we have k − 2cβ + cβ

‖ρ̂‖22
k

> k(1 − cβ/k)2. Moreover we have δ = ρ̂11 −
Ok(1/k) due to all entries in the first row being (1−ρ̂11)/(k−1). With d = 2k ln k+Ok(ln k)
and β > ln k we obtain

exp

(
dc2

βδ

k − 2cβ + c2
β
‖ρ̂‖22
k

)
= k2ρ̂11

(
1 + Õk(1/k)

)
= k2(1−ε/k) (1 +Ok(1/k))
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and

1 +
δ

ρ̂12

=
ρ̂11

ρ̂12

=
(k − 1)ρ̂11

1− ρ̂11

= k2(1/ε− 1/k)(1 +Ok(1/k)).

Thus, setting ξ : ε 7→ k2ε/k(1/ε− 1/k) there is η = Ok(ln k/k) such that

(1− η)ξ(ε) 6

(
1 +

δ

ρ̂12

)
exp

(
dc2

βδ

k − 2cβ + cβ
‖ρ̂‖22
k

)
6 (1 + η)ξ(ε). (32)

Fact 16 reveals that ξ has a unique local minimum in µ = k
2
(1−

√
1− 2/ ln k) while ξ is

decreasing on (0, µ) and increasing on (µ, k/2). Furthermore we have ξ(ε) ∈ [−3/2,−1/2]
for ε ∈ (0.99, 1.01). Therefore, setting γ = ln2 k/k, we have

ξ(ε) 6

{
ξ(0.49k) 6 k0.98

(
1

0.49k
− 1

k

)
< 1

1+η
for ε ∈ [µ, 0.49k]

ξ(1 + γ) < 1
1+η

for ε ∈ [1 + γ, µ]

and

ξ(ε) > ξ(1− γ) >
1

1− η
, for ε ∈ (0, 1− γ).

These bounds applied to (32) yield

1 +
δ

ρ̂12

− exp

(
dc2

βδ

k − 2cβ + cβ
‖ρ̂‖22
k

){
> 0 for ε ∈ (0, 1− γ),

< 0 for ε ∈ [1 + γ, 0.49k].
(33)

Altogether (31) and (33) with ε > 0 imply ε = 1 + Õk(1/k) and therefore ρ̂11 = 1− 1/k+
Õk(1/k

2) by Claim 14. Hence ρ̂ satisfies (30) and fd,β(ρ̂) > fd,β(ρ) for any β > ln k. By
Lemma 13 fd,β(ρ̂) > fd,β(ρ) holds for any 0 6 β 6 ln k as well.

By definition of ρ′ Claim (3) is a Corollary of Lemma 17.

The following Lemma, which extends [14, Lemma 4.14] to finite β, estimates the function
values attained at points near the “candidate maxima” from Lemma 18.

Lemma 19. Let ρs denote the matrix whose the top s rows coincide with the identity
matrix and whose last k − s rows coincide with ρ̄. If β = ln k and d 6 (2k − 1) ln k then
fd,β(ρ̄) > fd,β(ρs) for all s = 1, . . . , k.

Proof. We have

H(k−1ρ̄) = ln k +
1

k

k∑
i=1

H(ρi) = 2 ln k, E(ρ̄) =
d

2
ln

[
1− 2

k
cβ +

1

k2
c2
β

]
= d ln

[
1− cβ

k

]
.

Further,

H(k−1ρs) = ln k +
1

k

k∑
i=1

H(ρi) = ln k +
k − s
k

ln k, (34)
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E(ρs) =
d

2
ln

[
1− 2

k
cβ +

(
k − s
k

+ s

)
c2
β

k2

]
. (35)

Hence,

fd,β(ρ̄) = 2 ln k + d ln[1− cβ/k],

fd,β(ρs) =
2k − s
k

ln k +
d

2
ln

[
1− 2

k
cβ +

(
k − s
k

+ s

)
c2
β

k2

]
.

The assertion fd,β(ρ̄) > fd,β(ρs) holds iff H(k−1ρ̄) − H(k−1ρs) = s
k

ln k > E(ρs) − E(ρ̄),
i.e.

E(ρs)− E(ρ̄) =
d

2
ln

1− 2
k
cβ +

(
k−s
k

+ s
) c2β
k2

(1− cβ
k

)2

 =
d

2
ln

1 +

(
s− s

k

) c2β
k2(

1− cβ
k

)2

 < s

k
ln k. (36)

Setting x = (s− s/k) c2
β/k

2 (1− cβ/k)−2 a mercator series expansion

d

2
ln(1 + x) =

d

2

[
x− x2

2
+Ok(x

3)

]
6

2k ln k − ln k

2

[
x− x2

2

]
= ln k

[
kx− kx

2

2
− x

2
+
x2

4

]
.

along with the representation(
s− s

k

) c2β
k2(

1− cβ
k

)2 =
c2
β

k

s

k

(
1− 1

k

)
1

(1− cβ/k)2
=
c2
β

k

s

k

(
1− 1

k

)(
1 + 2cβ/k +Ok(1/k

2)
)

=
1

k

s

k

(
1− 2

k
+Ok(k

−2)

)(
1 +

1

k
+Ok(k

−2)

)
[as β = ln k]

reduces the proof to validating the inequality

1 >
(k − 1/2)

k

(
1− 2

k
+Ok(k

−2)

)(
1 +

1

k
+Ok(k

−2)

)
+

(1/4− k/2)

k2

[(
1− 2

k
+Ok(k

−2)

)(
1 +

1

k
+Ok(k

−2)

)]2
s

k
. (37)

This is indeed true, since the first summand is bounded by 1 − k−2 and the second
summand is negative.

Corollary 20. With ρs defined as in Lemma 19 the inequality fd,β(ρ̄) > fd,β(ρs) holds for
all 0 < s < k and 0 < β 6 ln k.

Proof of Proposition 12. In the case β = 0 we have fd,β(ρ) = H(k−1ρ). On [0, 1]k×k ⊃ S
the entropy function is maximized by the uniform distribution on [k]2, i.e. the matrix
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ρ̄. Consider the case 0 < β 6 ln k. Because ρ is stochastic each row of ρ has at most
one entry greater than 0.51. We call ρ s-stable if there are precisely s rows with entries
greater than 0.51. For any s ∈ {1, . . . , k} and any s-stable matrix ρ, using Lemma 18 we
obtain a matrix ρ′ such that fd,β(ρ′) > fd,β(ρ) where ρ′ is achieved by moving from ρ in
direction ρs. Together with Corollary 20 this yields the assertion.

Proof of Proposition 8. For any choice of n, β or d Jensen’s inequality shows

1

n
lnE[Zβ(G)] >

1

n
E[lnZβ(G)]. (38)

We claim that d ∈ [2(k − 1) ln(k − 1), (2k − 1) ln k − 2] and β 6 ln k allows for

1

n
lnE[Zβ(G)] 6

1

n
E[lnZβ(G)] + o(1). (39)

By (6), there is Cb > such that

E[Zβ(G)] 6 CbE[Zβ,bal(G)]. (40)

Hence, combining Propositions 6 and 12 we have

E[Zβ,bal(G)2] =
∑
ρ∈R

exp(nfd,β(ρ) + o(n))

6 exp(o(n)) exp(nfd,β(ρ̄)/2) 6 exp(o(n))E[Zβ,bal(G)]2.

Analogously to the proof of Corollary 11 we apply the Paley-Zigmund inequality and
obtain

lim inf
n→∞

P[n−1 ln(Zβ(G)) > n−1 lnE[Zβ(G)]− o(1)] > exp(o(n)).

The concentration result in Fact 2 therefore yields 1
n
E[lnZβ(G)] > 1

n
lnE[Zβ(G)]− o(1).

4 High degree, low temperature: the first moment

Throughout this section we assume that d ∈ [2(k − 1) ln(k − 1), (2k − 1) ln k − 2] and
β > ln k. In this section we prove Proposition 9. The principal tool is going to be
the following experiment called the planted model ; similar constructions for hypergraph
2-coloring or k-SAT played an important role in [7, 9].

PM1 Choose a map σ̂ : [n]→ [k] uniformly at random.

PM2 Letting

p1 =
dk exp(−β)

n(k − cβ)
, p2 =

dk

n(k − cβ)
,

obtain a random graph Ĝ on [n] by independently including every edge {v, w} of the
complete graph such that σ̂(v) 6= σ̂(w) with probability p2 and every edge {v, w}
such that σ̂(v) = σ̂(w) with probability p1.
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The following lemma sets out the connection between the planted model and the first
moment.

Lemma 21. If A is a set of graph/color assignment pairs (G, σ) such that

P
[
(Ĝ, σ̂) ∈ A|σ̂ ∈ B

]
= o(n−1/2),

then
E
∑
σ∈B

exp(−βHG(σ))1{(G,σ)∈A} = o(E[Zβ,bal(G)]).

Proof. Because k−1p1 + (1 − 1/k)p2 = d/n, the expected number of edges of Ĝ is m +

O(
√
n). Hence, the assumption P

[
(Ĝ, σ̂) ∈ A|σ̂ ∈ B

]
= o(n−1/2) implies that

P
[
(Ĝ, σ̂) ∈ A|σ̂ ∈ B, |E(Ĝ)| = m

]
= o(1). (41)

Writing out the l.h.s. of (41), we obtain

P
[
(Ĝ, σ̂) ∈ A|σ̂ ∈ B, |E(Ĝ)| = m

]
=Θ(k−n)

∑
(G,σ)∈A

σ∈B,|E(G)|=m

p
HG(σ)
1 p

m−HG(σ)
2 (1− p1)HKn (σ)−HG(σ)(1− p2)(

n
2)−HKn (σ)−m+HG(σ)

P
[
|E(Ĝ) = m|

]
=

Θ(k−n)

(1− cβ/k)m

(
d

n

)m
·

∑
(G,σ)∈A

σ∈B,|E(G)|=m

exp(−βHG(σ))(1− p1)k
−1(n2)−HG(σ)(1− p2)(1−k−1)(n2)−m+HG(σ)

P
[
Bin(

(
n
2

)
, d/n) = m

] ;

in the last step we used (4) and the observation that k−1p1 + (1− 1/k)p2 = d/n. Further,
combining the above with (6), we get

P
[
(Ĝ, σ̂) ∈ A|σ̂ ∈ B, |E(Ĝ)| = m

]
E[Zβ,bal(G)]

=Θ(1)

((n
2

)
m

)−1

·

∑
(G,σ)∈A,σ∈B,|E(G)|=m

exp(−βHG(σ))

(
1− p1

1− p

)k−1(n2)−HG(σ)(
1− p2

1− p

)(1−k−1)(n2)−m+HG(σ)

=Θ(1)

((n
2

)
m

)−1

·∑
(G,σ)∈A,σ∈B,|E(G)|=m

exp(−βHG(σ)) = Θ(1)
∑
σ∈B

E
[
exp(−βHG(σ))1{(G,σ)∈A}

]
.

Thus, the assertion follows from (41).
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We are going to combine Lemma 21 with the following proposition, which shows that
separability is a likely event in the planted model.

Proposition 22. We have P[σ̂ is separable in Ĝ|σ̂ ∈ B] = 1− o(n−1/2).

To prove Proposition 22 we generalize the argument for proper k-colorings from [14,
Section 3] to the Potts antiferromagnet. In the following we let Vi = σ̂−1(i) for i ∈ [k].

Lemma 23. Let i ∈ [k]. For S ⊂ Vi let XS,i = | {v ∈ V \ Vi : ∂Ĝv ∩ S = ∅} |. Given
σ̂ ∈ B the following statement holds with probability 1− exp(−Ω(n)).

Let i ∈ [k]. Then for all S ⊂ Vi of size k
n
|S| ∈ [0, 501, 1 − k−0.499] we have

XS,i 6 n
k
(1− α− κ)− n2/3.

(42)

Proof. It suffices to prove the statement for i = 1 and we set XS = XS,1. Moreover, let
α ∈ [0.501, 1−k−0.499]. For a fixed S ⊂ V1 and v ∈ V \V1 the number |∂Ĝv∩S| is a binomial
random variable with parameters |S| = αn

k
and p2. Hence, P[∂v ∩ S = ∅] = (1 − p2)|S|.

Consequently, XS itself is a binomial variable with mean |V \ V1|(1− p2)|S|. Because σ is
balanced, we have |V \ V1| ∼ n(1− 1/k). Further, our assumptions on d, β entail

(1− p2)|S| 6 exp(−p2|S|) 6 exp

(
−α2k ln k

k − cβ
+ α

3 ln k

k − cβ

)
6 (1 + ok(1))k−2α.

Therefore, E[XS] 6 n(1 + ok(1))(1− 1/k)k−2α. Thus, Lemma 4 yields

P[XS > (1− α− κ)
n

k
− n2/3] 6 exp

[
−(1− α− κ+ o(1))

n

k
ln

(
1− α− κ
ek1−2α

)]
.

The total number of sets S of size αn/k is
(|V1|
αn
k

)
6 exp

[
n
k
h(α)

]
. Hence, by the union

bound

P
[
∃S : XS > (1− α− κ)

n

k
− n2/3

]
6 exp

[n
k

(2h(α) + (1− α) + (1− 2α)(1− α− κ) ln k + o(1))
]

6 exp
[n
k

(
(1− α)(3− 2 ln(1− α)) + (2(1− α)2 − (1− 2κ)(1− α) + κ) ln k + o(1)

)]
.

(43)

Substituting y = 1− α and differentiating, we obtain

∂

∂y
y(3− 2 ln y) + (2y2 − (1− 2κ)y + κ) ln k = 1− 2 ln y + 4y ln k − (1− 2κ) ln k,

∂2

∂y2
y(3− 2 ln y) + (2y2 − (1− 2κ)y + κ) ln k = −2

y
+ 4 ln k,

∂3

∂y3
y(3− 2 ln y) + (2y2 − (1− 2κ)y + κ) ln k = 2.
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Hence, the first derivative is negative at the left boundary point y = k−0.499, positive at
the right boundary point y = 0.499 and convex on the entire interval. Furthermore, we
check that y(3−2 ln y) + (2y2− (1−2κ)y+κ) ln k < 0 for y ∈ {0.499, k−0.499}. Therefore,
the assertion follows from (43).

Lemma 24. Given σ̂ ∈ B the random graph Ĝ has the following property with probability
1− exp(−Ω(n)).

Let i ∈ [k] and let Y = Y (Ĝ, σ̂) be the number of vertices v 6∈ Vi with fewer
than 15 neighbors in Vi. Then Y 6 κn

3k ln k
.

(44)

Proof. Suppose i = 1. Given σ̂ ∈ B for v /∈ V1 the number |∂Ĝv ∩ V1| of neighbors
in V1 is a binomial variable with mean λ = |V1|p2 ∼ d/ (k − cβ) > 2 ln k + Ok(ln k/k).
Hence, the probability of a vertex having at most 14 neighbors in V1 is upper bounded by
2λ14 exp(−λ) 6 3k−2 ln14 k. Therefore, Y is dominated by a binomial variable with mean
µ 6 3nk−2 ln14 k. Finally, the assertion follows from Lemma 4 and the choice of κ.

Claim 25. Given σ̂ ∈ B the random graph Ĝ has the following property with probability
1−O(n−1).

If W ⊂ V has size W 6 k−4/3n, then W spans no more than 5|W | edges. (45)

Proof. Given σ̂ for any edge of the complete graph the probability of being present in
Ĝ is bounded by p2. Therefore, by the union bound and with room to spare, for any
0 < γ 6 k−4/3 we find

P [∃W ⊂ V, |W | = γn : W spans 5|W | edges| σ̂ ∈ B]

6

(
n

γn

)((γn
2

)
5γn

)
p5γn

2 6

[
e

γ

(
eγd

5

)5
]γn

6
(
γ4d5

)γn
.

Summing over 1/n 6 γ 6 k−4/3 completes the proof.

Proof of Proposition 22. Suppose that σ̂ is balanced. By our assumptions on d, β for each
i the number of edges spanned by σ̂−1(i) in Ĝ is a binomial random variable with mean

(1 + o(1))

(
n/k

2

)
p1 6 (1 + o(1))

dn

2k(k − cβ)
exp(−β) 6 (1 + ok(1))nk−1 exp(−β) ln k.

Hence, Lemma 4 shows that (Ĝ, σ̂) satisfies SEP1 with probability 1− exp(−Ω(n)).
With respect to SEP2, we continue to condition on σ̂ ∈ B. By Lemma 23, Lemma 24

and Claim 25 we may assume that Ĝ has the properties (42), (44) and (45). In order
to show separability we may without loss of generality restrict ourselves to the case of
i = j = 1. Thus, suppose that τ ∈ ΣG,β satisfies ρ11(σ̂, τ) > 0.51n

k
and assume for

contradiction that α = k
n
|S| = ρ11(σ̂, τ) < 1− κ. Let

S = σ̂−1(1) ∩ τ−1(1), R = σ̂−1(1) \ τ−1(1), T = τ−1(1) \ σ̂−1(1).
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Because σ and τ are balanced, we have

|T ∪ S| ∼ n

k
∼ |R ∪ S|. (46)

Let T0 = {v ∈ T : ∂Ĝv ∩ S = ∅} and let T1 = T \ T0. Then SEP1 and our assumptions
on d and β ensure that |T1| 6 4n ln k

k exp(β)
. Consequently, the assumption β > ln k yields

|T0| >
n

k
(1− α−Ok(ln k/k)).

Since the vertices in T0 do not have neighbors in S, (42) implies that

α > 1− k−0.49. (47)

Further, let U = {v ∈ T : |∂v ∩ σ̂−1(1)| > 15}. Then (44) implies that |T | 6 |U | +
κn/(k ln k). Therefore, (46) and our assumption α < 1− κ yield

|U | > (1− ok(1))
κn

k
and |R| − ok(κ)

n

k
6 |U | 6 |R|+ o(n). (48)

Hence, SEP1 implies that S ∪ U spans no more than 2nk−1 exp(−β) ln k 6 |U | edges.
Consequently, U ∪ R spans at least 14|U | edges. Thus, combining (45) and (48), we
conclude that |U ∪R| > nk−4/3. But then (46) and (48) show that 1−α+ o(1) > k

n
|R| >

k
3n
|U ∪R| > 1

3
k−1/3, in contradiction to (47).

Proof of Proposition 9. By linearity of expectation, applying Lemma 21 to Proposition
22 yields E[Zβ,bal(G)] ∼ E[Zβ,sep(G)].

5 High degree, low temperature: the second moment

To prove Proposition 10 we call a doubly-stochastic k × k-matrix ρ separable if ρij 6∈
(0.51, 1 − κ) for all i, j ∈ [k]. Moreover, ρ is s-stable if s = |{(i, j) ∈ [k]2 : ρij > 0.51}|.
Let Dsep ⊂ D be the set of all separable matrices and let Ds,sep ⊂ Dsep be the set of all

s-stable matrices so that Dsep =
⋃k
s=0Ds,sep. The key step is to optimize the function fd,β

over Dsep.

Proposition 26. If 2(k − 1) ln(k − 1) 6 d 6 d? and β > ln k, then fd,β(ρ) < fd,β(ρ̄) for
all ρ ∈ Dsep \ {ρ̄}.

A similar statement for the function

fd,∞(ρ) = H(k−1ρ) +
d

2
ln

[
1− 2

k
+
‖ρ‖2

2

k2

]
, (49)

the limit of fd,β(ρ) as β →∞, played a key role in [14]. Specifically, we have

Proposition 27 ([14, Propositions 4.4–4.6, 4.8]). Assume that d = (2k − 1) ln k − 2 ln 2.
Then fd,∞(ρ) < fd,∞(ρ̄) for all 0 6 s < k, ρ ∈ Ds,sep \ {ρ̄}.
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We prove Proposition 26 by combining Proposition 27 with monotonicity in both d
and β. In fact, Lemma 13 readily provided monotonicity in β. Further, with respect to d
we have the following.

Lemma 28. For every d > 0, ρ ∈ S we have

∂

∂d
fd,∞(ρ̄) 6

∂

∂d
fd,∞(ρ) < 0.

Hence, if fd′,β(ρ̄) > fd′,β(ρ), then fd,β(ρ̄) > fd,β(ρ) for all 0 6 d < d′.

Proof. Recalling that 1 6 ‖ρ‖2
2 6 k, we find

∂

∂d
fd,∞(ρ) =

1

2
ln

(
1− 2

k
+
‖ρ‖2

2

k2

)
< 0.

The assertion follows because ρ̄ minimizes the Frobenius norm on S.

Corollary 29. Let β > 0 and d 6 d?. For all 1 6 s 6 k− 1 and ρ ∈
⋃
s<kDs,sep \ {ρ̄} we

have fd,β(ρ) < fd,β(ρ̄).

Proof. Suppose that ρ ∈
⋃
s<kDs,sep \ {ρ̄}. Combining Proposition 27 with Lemma 28,

we see that

lim
γ→∞

fd,γ(ρ) = fd,∞(ρ) < fd,∞(ρ̄) = lim
γ→∞

fd,γ(ρ̄).

Hence, fd,γ(ρ) < fd,γ(ρ̄) for γ > β sufficiently large. Therefore, Lemma 13 entails that
fd,β(ρ) < fd,β(ρ̄).

Observe that Proposition 27 (and hence Corollary 29) does not cover the k-stable case.

Lemma 30. Let β > 0 and d 6 d?. For all ρ ∈ Dk,sep we have fd,β(ρ) < fd,β(ρ̄).

Proof. Because ρ ∈ Dk,sep for each i ∈ [k] there is precisely one entry greater than
0.51. Without loss of generality we may assume that ρii > 0.51. By Lemma 18 there is
α = k−1 + Õk(k

−2) such that the matrix ρ′ obtained from ρ by substituting any row ρi
for a row ρ′i with ρ′ii = 1 − α and ρ′ij = α/(k − 1) for j 6= i satisfies fd,β(ρ′) > fd,β(ρ).
Hence, a maximizer of ρ ∈ Dk,sep is of the form ρstable = (1− 1/k)id + 1/k21. Because the
matrix ρstable does not further improve from applying the transformation in Lemma 18,
it remains to show that

fd,β(ρ̄) > fd,β(ρstable). (50)

In the zero temperature case with d = (2k − 1) ln k − c, we have

fd,∞(ρ̄) = ln k +
1

k

∑
i6k

H(ρ̄i) +
d

2
ln

[
1− 2

k
1 + ‖ρ̄‖2

2

1

k2

]
= 2 ln k + d ln

[
1− 1

k

]
[as ‖ρ̄‖2

2 = 1]
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= 2 ln k − d
(

1

k
+

1

2k2
+Ok

(
k−3
))

(51)

= 2 ln k − (2k ln k − ln k − c)
(

1

k
+

1

2k2
+Ok

(
k−3
))

=
c

k
+Ok

(
ln k

k2

)
. (52)

On the other hand the matrix ρstable satisfies

H(k−1ρstable) = ln k +
1

k

∑
i6k

H
(
(1− 1/k + 1/k2, 1/k2, . . . , 1/k2)

)
= ln k −

(
1− 1

k
+

1

k2

)
ln

(
1− 1

k
+

1

k2

)
+

(k − 1)

k2
ln k2. (53)

Because ‖ρstable‖2
2 = k(k−1)

k4
+ k(1− 1

k
+ 1

k2
)2 and β > ln k, setting d = (2k − 1) ln k − c we

obtain

E(ρstable) =
d

2
ln

[
1− 2

k
+

1

k2

(
k(k − 1)

k4
+ k

(
1− 1

k
+

1

k2

)2
)]

=
d

2
ln

[
1−

(
1

k
+

2

k2
+Ok

(
k−3
))]

(54)

= −d
2

(
1

k
+

1

k2
+

1

2

(
1

k
+

2

k2

)2

+Ok

(
k−3
))

= −
(
k ln k − ln k

2
− c

2

)(
1

k
+

5

2k2
+Ok

(
k−3
))

= − ln k − 2 ln k

k
+

c

2k
+Ok

(
ln k

k2

)
. (55)

Consequently

fd,∞(ρstable) =
1

k
+

c

2k
+Ok

(
ln k

k2

)
. (56)

From (52) and (56) we see that fd,β(ρ̄) > fd,β(ρstable) holds for any d 6 (2k− 1) ln k− 2−
ωk(ln k/k) and β =∞. Lemma 13 concludes the proof by extending (50) to β > ln k.

Proof of Proposition 26. Because Dsep decomposes into disjoint subsets Ds,sep and s =
0, 1, . . . , k Proposition 26 is immediate from Corollary 29 and Lemma 30.

Proof of Proposition 10. By definition of Bsep and Proposition 22 we have

E[Zβ,sep(G)2] ∼
∑

ρ∈R∩Bsep

E[Zρ,bal(G)]. (57)
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By Propositions 6 and 26,∑
ρ∈R∩Bsep

E[Zρ,bal(G)] =
∑

ρ∈R∩Bsep

exp(nfd,β(ρ) + o(n)) (58)

= exp (2n ln k + nd ln (1− cβ/k) + o(n)) . (59)

Combining (57)–(59) with (6) and taking logarithms yields the assertion.
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states and the set of solutions of random constraint satisfaction problems. Proc. Na-
tional Academy of Sciences 104 (2007): 10318–10323.
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