
Equitable orientations of

sparse uniform hypergraphs

Nathann Cohen
CNRS and Université Paris-Sud

nathann.cohen@gmail.com

William Lochet∗

Université Côte d’Azur, CNRS, Inria, I3S, France
LIP, ENS de Lyon, CNRS, Université de Lyon, France

william.lochet@gmail.com

Submitted: May 20, 2016; Accepted: Nov 10, 2016; Published: Nov 25, 2016

Mathematics Subject Classifications: 05C65, 05D40

Abstract

Caro, West, and Yuster (2011) studied how r-uniform hypergraphs can be ori-
ented in such a way that (generalizations of) indegree and outdegree are as close to
each other as can be hoped. They conjectured an existence result of such orienta-
tions for sparse hypergraphs, of which we present a proof.

1 Introduction

In [1], Caro, West, and Yuster presented a generalization to hypergraphs of the notion of
orientation defined for graphs. Their acknowledged purpose is to study how hypergraphs
can be oriented in such a way that minimum and maximum degree are close to each other,
knowing that reaching an additive difference of 6 1 is always achievable in the case of
graphs. Identifying an orientation of an edge with a total ordering of its elements, they
define a notion of degree on oriented r-uniform hypergraphs.

Definition 1. Let H be a r-uniform hypergraph, and let every S ∈ H define a total
order on its elements as a bijection σS : S 7→ [r]. The degree dP (U) of a set of vertices
U ⊆ V (H) with respect to a set of positions P ⊆ [r] (where |U | = |P |) is equal to:

dP (U) = |{S ∈ H : U ⊆ S and σS(U) = P}|.

From there they define equitable orientations:

Definition 2. The orientation of a r-uniform hypergraph H is said to be p-equitable if
|dP (U) − dP ′(U)| 6 1 for any choice of U ⊆ V (H) and P, P ′ ⊆ [r] of cardinality p. It is
said to be nearly p-equitable if the looser requirement |dP (U)− dP ′(U)| 6 2 holds.

∗Supported by ANR under contract STINT ANR-13-BS02-0007

the electronic journal of combinatorics 23(4) (2016), #P4.31 1

They gave proof that all hypergraphs admit a 1-equitable as well as a (r−1)-equitable
orientation, and also proved that some hypergraphs do not admit a p-equitable orientation
for all values of p. Additionally, they parameterized the notion of maximum degree in
order to focus on hypergraphs which are sparse with respect to the problem at hand:

∆p(H) = max
U⊆V (H)
|U|=p

|{S ∈ H : U ⊆ S}|.

Thus, they proved that for any fixed value of p and k, and for every sufficiently large
integer r, every r-uniform hypergraph H with ∆p(H) 6 k admits a nearly p-equitable
orientation. They conjectured that this setting actually ensured the existence of a p-
equitable orientation, which we prove here.

Theorem 3. Let p, k be fixed integers. There exists r0 such that for every r > r0, every
r-uniform hypergraph with ∆p(H) 6 k admits a p-equitable orientation.

Note that, as r is big compared to ∆p(H), a p-equitable orientation means that dP (U)
is equal to 0 or 1 for every choice of set of positions P and set of vertices U .

In order to prove the existence of nearly p-equitable orientation, Caro, West, and
Yuster [1] used the Lovász Local Lemma. In [3], Moser and Tardos presented an elegant
algorithmic proof of it which developed the technique of entropy compression. Our proof
uses that technique and the following Lemma (proved in Section 3) that counts what can
be seen as a generalization of derangements.

Lemma 4. Let p, k ∈ N and α < 1 be fixed. Let X be a set of cardinality r and let LS
be, for every S ∈

(
X
p

)
, a collection of p-subsets of X with |LS| 6 k. Then, if no p-subset

occurs in more than rα of the LS, a random permutation σ of X satisfies σ(S) 6∈ LS for

every S with probability > (1− 2k/
(
r
p

)
)(

r
p) = e−2k + o(1) when r grows large.

2 Algorithm

In what follows, we assume that every finite set S has an implicit enumeration on its
elements, and in particular that the edges of a hypergraph H are implicitly ordered. We
will say that i represents an element s ∈ S when s is the i-th element of S in this implicit
ordering.

We will orient the edges of H one by one as a (partial) equitable orientation of H,
i.e. in such a way that any p-subset of V (H) never appears more than once at the same
position among the oriented edges. To do so, we require the partial orientation to enforce
an additional property.

Definition 5. Let H be a partially oriented r-uniform hypergraph. We say that an edge
S ∈ H is pressured by a family {S1, . . . , Sl} of edges (oriented by σS1 , . . . , σSl

) if there

exists P ∈
(
[r]
p

)
such that σ−1Si

(P) ⊆ S for every i.

the electronic journal of combinatorics 23(4) (2016), #P4.31 2

Note that Lemma 11 ensures that a partial orientation of H can be extended to an
unoriented edge S, provided that no family of more than rα oriented edges pressures S.
It asserts, for c < e−2k and r sufficiently large, that at least cr! orientations of S are
admissible for this extension: we name them good permutations of S. Algorithm 1 selects
an ordering randomly among them, while ensuring that no other edge is pressured by a
family of edges larger than r1 = brαc.

Data: A r-uniform hypergraph H with ∆p(H) 6 k
Result: A p-equitable orientation of H
while not all edges are oriented do

S1 ← unoriented edge of smallest index
Pick for S1 the orientation indexed vi (among > cr! available)
if some edge S of H is pressured by a family {S1, . . . , Sr1} then

Cancel the orientation of all edges Si.
end
Return the oriented H

Algorithm 1: A non-deterministic algorithm

Algorithm 1 starts with every edge being unoriented. At each step it orients the
unoriented edge of smallest index by choosing a random permutation amongst the cr!
first good permutations. We call bad event the event that an edge S ∈ H is pressured by
a family {S1, . . . , Sr1} of cardinality r1. If a bad event occurs after orienting S1, then the
algorithm erases the orientation of the S1, . . . , Sr1 .

It is trivial to see that Algorithm 1 only returns p-equitable orientations of H. More-
over, every time the algorithm chooses a random permutation, it does so among at least
cr! good ones by Lemma 11. Note that we need to consider large families pressuring
already oriented edges: indeed, we might have to cancel the orientation of such an edge
to redefine it again later.

Theorem 6. Let p, k ∈ N, α, c ∈ R>0 with α < 1 and c < e−2k. For every sufficiently
large r, there is a set of random choices for which Algorithm 1 terminates.

In order to prove this result we will analyse the possible executions of the M first steps
of Algorithm 1. To this end we make it deterministic by defining a log (following the idea
of [3]) and obtain Algorithm 2, in the following way:

• Take as input a vector v ∈ [cr!]M which simulates the random choices.

• Output a log when it is not able to orient all edges.

We define a log of order M to be a triple (R,X, F) where:

• R is a binary word whose length lies between M and 2M .

• X is a sequence of h 7-tuples of integers (x1, x2, x3, x4, x5, x6, x7) where:

the electronic journal of combinatorics 23(4) (2016), #P4.31 3

x1 6
(
r
p

)
x2 6 k x3 6

((r
p)

r1−1

)
x4 6 kr1−1

x5 6 p!r1−1 x6 6 (r − p)!r1−1 x7 6 r!

• F is an integer smaller than (r! + 1)|H| representing a partial orientation of H.

The log of order M (or just log) is actually a trace of the deterministic algorithm’s
execution after M steps. Its objective is to encode which orientations get canceled during
the algorithm’s execution. We will show later that Algorithm 2 cannot produce the same
log from two different input vectors v, v′ ∈ [cr!]M . and that, for M big enough, that the
set of possible log is smaller than (cr!)M . We now describe the log and how Algorithm 2
produces it.

• R is initialized to the empty word. We append 1 to R whenever Algorithm 2 adds
a new orientation; we append 0 whenever it cancels one.

• Consider the following bad event: after orienting S1, an edge S ∈ H is pressured by
a family {S1, . . . , Sr1} of cardinality r1. We note si the set of vertices that Si maps
to P . We associate the following 7-tuple which identifies the sets Si as well as their
orientation:

– x1 <
(
r
p

)
represents the set s1 among the

(
r
p

)
possible subsets of size p of S1.

– x2 < k identifies S as one of the (at most k) edges containing s1.

– x3 <
((r

p)
r1−1

)
is an integer representing the set of subsets s2, . . . sr1 amongst the(

r
p

)
subsets of size p of S.

– x4 < kr1−1 is an integer representing the sequence (y2, . . . , yr1) ∈ [k]r1−1 such
that the yl-th edge containing sl is Sl.

– x5 < p!r1−1 is an integer representing the sequence (p1, . . . , pr1), where pi ∈ [p!]
represents the subpermutation of Si onto si (we know it’s a permutation of P).

– x6 < (r − p)!r1−1 is the integer representing the sequence [p2, . . . , pr1], where
pi ∈ [(r − p)!] represent the subpermutation of Si onto [r] \ si.

– x7 < r! is the integer representing the permutation chosen for S1.

X is the list of the 7-tuples describing the bad events, in the order in which they
happen.

• F is the integer representing the partial orientation of H (i.e. a choice among r! + 1
per edge of H) after M steps.

the electronic journal of combinatorics 23(4) (2016), #P4.31 4

This gives the following Algorithm 2:

Data:

1. A r-uniform hypergraph H with ∆p(H) 6 k,

2. A vector v ∈ [cr!]M

Result: A p-equitable orientation of H, or a log of order M

R← ∅, X ← ∅
for 1 6 i 6M do

S1 ← unoriented edge of smallest index
Pick for S the orientation indexed vi among > cr! available
if some edge of H is pressured by {S1, . . . , Sr1} then

Append 1 to the end of R
Append to X a 7-tuple describing the conflict
Cancel the orientation of all r1 + 1 edges involved in the conflict

else if all edges are oriented then
Return the oriented H

else
Append 0 to the end of R

end

end
F ← the integer representing the partial orientation of H.
Return (R,X, F)

Algorithm 2: A deterministic algorithm

We will show the following claim.

Claim 7. Let e be a vector in [cr!]M from which Algorithm 2 cannot produce a p-equitable
orientation of H and outputs a log (R,X, F). We can reconstruct e from (R,X, F).

Proof of the claim. First we show that we can find, for every z 6M , the set C(z) of edges
which are oriented after z steps. We proceed by induction on z, starting from C(0) = ∅.
At step z + 1, Algorithm 2 chooses a orientation for the smallest index i not in C(z). If,
in R, the (z + 1)-th 1 is not followed by a 0, then there is no bad event triggered by this
step. In this case the set C(z + 1) is the set C(z) ∪ i. Suppose now that the (z + 1)-th
1 is followed by a sequence of 0: this means that the algorithm encountered a bad event.
By looking at the number of sequences of 0 in R before the z + 1-th 1 we can deduce
the number of bad events before this one. This mean we can find, in X, the 7-tuple
(x1, x2, x3, x4, x5, x6, x7) associated to this bad event. We take the following notations for
the bad event : After orienting S1, an edge S of H is pressured by a family {S1, . . . Sr1}
of cardinality r1 We note si the subset of Si that are sent to P . S1 is the last edge we
oriented (known by induction), x1 indicates s1 amongst the subset of S, x2 indicates S
amongst the set of edges containing s1, x3 indicates the sd for d ∈ [2..r1], and x4 indicates
the Sd for d ∈ [2..r1]. In this case the set C(z + 1) is the set C(z) for which we removed
all the ESd for d ∈ [2..r1].

the electronic journal of combinatorics 23(4) (2016), #P4.31 5

We can now deduce the set S(z) of all chosen orientations after z steps. We also proceed
by induction, this time starting from step M . By construction, F is exactly the integer
representing the partial orientation ofH at step M . If the last letter of R is a 1, this means
the last step of the algorithm consisted only of choice of a orientation. We just showed
that we know which orientation was chosen after M − 1 steps, so we can deduce the state
of all orientation after M−1 steps. If the last letter is a 0, Algorithm 2 encountered a bad
event. Keeping the notation of the bad event, let (x1, x2, x3, x4, x5, x6, x7) be the 7-tuple
associated to this bad event. Like before x1, x2, x3, x4 and the knowledge of C(M − 1)
allow us to know which permutations Algorithm 2 erased at this step. Moreover x7 tells
us the random choice made by Algorithm 2 and from x7 and x1 we can deduce P . For
each si we know the orientation chosen for Si at the step M − 1 sends P onto si, from x5
we deduce exactly in which order and from x6 we get the rest of the orientation. Therefore
we can deduce the set of chosen orientations before the bad event occurred. With the sets
S(z) and C(z) known for all z 6M we can easily deduce e. ♦

The previous claim has the following corollary:

Corollary 8. If H admits no p-equitable orientation, then Algorithm 2 defines an injec-
tion from the set of vectors [cr!]M into LM .

Let LM be the set of all possible logs after M steps of Algorithm 2. To show Theorem
6 it suffices to show that, for M big enough, |LM | is strictly smaller than (cr!)M .

Lemma 9. For M big enough, |LM | < (cr!)M .

Proof. We will compute a bound for |LM |. R is a binary word of size 6 2M , and there
are at most 4M such words. X is a list of 7-tuples. As Algorithm 2 made M choices
and each bad event removes r1 of those, there exist at most M

r1
bad events. Moreover, for

each 7-tuple, (x1, x2, x3, x4, x5, x6, x7) we have x1 6
(
r
p

)
, x2 6 k, x3 6

((r
p)

r1−1

)
, x4 6 kr1−1,

x5 6 p!r1−1, x6 6 (r − p)!r1−1, x7 6 r!. Using the bounds
(
n
k

)
6 (n·e

k
)k or

(
n
k

)
6 nk we get

the following bound.

|X| 6

(
rp · k ·

(
rp · e
r1 − 1

)r1−1
· (k · p! · (r − p)!)r1−1 · r!

)M/r1

6
(r! · (rp)r1 · (r − p)!r1−1)M/r1 · (k · e · p!)M

(r1 − 1)M(r1−1)/r1

6

[
rp · r!r1 ·

(
rp

r(r − 1) . . . (r − p+ 1)

)r1−1]M/r1

·
(

k · e · p!
(r1 − 1)(r1−1)/r1

)M
.

We can assume r > 2p, and so r
r−p+1

< 2:

|X| 6 r!M ·
(
rp/r1 · 2p · k · e · p!

(r1 − 1)(r1−1)/r1

)M
.

the electronic journal of combinatorics 23(4) (2016), #P4.31 6

As |F | 6 (r! + 1)|H| and |LM | 6 |F ||X||R| we get the following bound on |LM |:

|LM | 6 r!M ·
(

4 · rp/r1 · 2p · k · e · p!
(r1 − 1)(r1−1)/r1

)M
· (r! + 1)|H|.

3 Derangements

The results of this section are based on a lemma from Erdős and Spencer [2]:

Lemma 10 (Lopsided Lovász Local Lemma). Let A1, . . . , Am be events in a probability
space, each with probability at most p. Let G be a graph defined on those events such
that for every Ai, and for every set S avoiding both Ai and its neighbours, the following
relation holds:

P [Ai|
∧
Aj∈S

Āj] 6 P [Ai].

Then if 4dp 6 1, all the events can be avoided simultaneously:

P [Ā1 ∧ · · · ∧ Ām] > (1− 2p)m > 0.

Thanks to this result we can prove the following, which can be seen as a generalization
of the fact that a random permutation of n points is a derangement with asymptotic
probability 1/e.

Lemma 11. Let p, k ∈ N and α < 1 be fixed. Let X be a set of cardinality r and let LS
be, for every S ∈

(
X
p

)
, a collection of p-subsets of X with |LS| 6 k. Then, if no p-subset

occurs in more than rα of the LS, a random permutation σ of X satisfies σ(S) 6∈ LS for

every S with probability > (1− 2k/
(
r
p

)
)(

r
p) = e−2k + o(1) when r grows large.

Proof. For every S ∈
(
X
p

)
, we define the bad event BS with:

BS =
∨

S′∈LS

[σ(S) = S ′].

Each BS has a probability P [BS] 6 k/
(
r
p

)
. On these bad events we define a lopsidepen-

dency graph (see [2]) GB with the following adjacencies:{
(BS1 , BS2) : S1, S2 ∈

(
X

p

)
s.t.

[
S1

⋃
LS1

]⋂[
S2

⋃
LS2

]
6= ∅

}
.

As a p-subset of X intersects at most O(rp−1) others, and noting that every p-subset
can occur at most rα times, we have that:

∆(GB) 6 (k + 1)rα ×O(rp−1) = o(rp).

the electronic journal of combinatorics 23(4) (2016), #P4.31 7

In order to apply the Lopsided Lovász Local Lemma to the events BS and graph GB,
we must ensure for every S ∈

(
X
p

)
and SB ⊆ V (GB)\NGB

[BS] that:

P (BS|
∧

BS′∈SB

B̄S′) 6 P (BS). (1)

Indeed, if we denote by T (for trace) the number of elements of
⋃
BS′∈SB

S ′ sent by the

random permutation σ into
⋃
LS:

P (BS) =
∑
t

P (BS | T = t)P (T = t)

P (BS|
∧

BS′∈SB

B̄S′) =
∑
t

P (BS | T = t,
∧

BS′∈SB

B̄S′)P (T = t |
∧

BS′∈SB

B̄S′).

As
⋃
LS is disjoint from the

⋃
LS′ , ∀BS′ ∈ SB, we have:

P (BS | T = t,
∧

BS′∈SB

B̄S′) = P (BS | T = t).

And thus:

P (BS|
∧

BS′∈SB

B̄S′) =
∑
t

P (BS | T = t)P (T = t |
∧

BS′∈SB

B̄S′).

In order to prove (1), we will first need the following observation:

Claim 12. P (BS | T = t) is a decreasing function of t.

Proof of the claim. We compute the value of P (BS | T = t) exactly, denoting by r′ 6 r
the cardinality of

⋃
BS′∈SB

S ′. It is equal to 0 when t > r′ − p, and is otherwise equal to:

P (BS | T = t) =
∑
S′∈LS

P (σ(S) = S ′ | T = t)

=
|LS|(
r−t
p

) (r′−pt)(
r′

t

)
=

(
|LS|

(r′ − p)!p!
r′!

)(
(r − p− t)!(r′ − t)!
(r′ − p− t)!(r − t)!

)
= P (BS | T = t− 1)

(
(r′ − p− t+ 1)

(r − p− t+ 1)

(r − t+ 1)

(r′ − t+ 1)

)
6 P (BS | T = t− 1)

♦

Additionally, we will prove a relationship on the members of
∑

t P (T = t) and on
those of

∑
t P (T = t |

∧
BS′∈SB

B̄S′), which both sum to 1.

the electronic journal of combinatorics 23(4) (2016), #P4.31 8

Claim 13. If P (T = t |
∧
BS′∈SB

B̄S′) is nonzero, then

P (T = t+ 1)

P (T = t)
6
P (T = t+ 1|

∧
BS′∈SB

B̄S′)

P (T = t |
∧
BS′∈SB

B̄S′)
.

Proof of the claim. According to Bayes’ Theorem applied to the right side of the equation,

P (T = t+ 1|
∧
BS′∈SB

B̄S′)

P (T = t |
∧
BS′∈SB

B̄S′)
=
P (
∧
BS′∈SB

B̄S′ | T = t+ 1)P (T = t+ 1)

P (
∧
BS′∈SB

B̄S′ | T = t)P (T = t)
.

We thus only need to ensure the following, which is a consequence of Lemma 14:

P (
∧

BS′∈SB

B̄S′ | T = t+ 1) > P (
∧

BS′∈SB

B̄S′ | T = t).

♦

We are now ready to prove (1), and we define dt for every t where P (T = t) is nonzero:

dt = P (T = t)− P (T = t |
∧

BS′∈SB

B̄S′).

Because dt is a difference of probability distributions the sum
∑

t dt is null, and we can
rewrite (1) using dt:

0 6 P (BS)− P (BS|
∧

BS′∈SB

B̄S′)

6
∑
t

P (BS | T = t)P (T = t)−
∑
t

P (BS | T = t)P (T = t |
∧

BS′∈SB

B̄S′)

6
∑
t

dtP (BS | T = t).

We will thus prove that the sum
∑

t dtP (BS | T = t) is nonnegative. It is a consequence
of Claim 13 that all nonnegative values of dt appear before all nonpositive ones, and so
that there is a t0 such that dt > 0 iff t 6 t0. As a result, |

∑
t6t0

dt| = |
∑

t>t0
dt| = 1

2
and

we can write:∑
t

dtP (BS | T = t) =
∑
t6t0

dtP (BS | T = t) +
∑
t>t0

dtP (BS | T = t)

>
1

2
P (BS | T = t0)−

1

2
P (BS | T = t0 + 1) > 0 (by Claim 12)

The second hypothesis of Lemma 10 is that 4pd 6 1, which translates in our case to
4 k

(r
p)
o(rp) = o(1) and is thus satisfied when r grows large. Hence, we have that:

P [
∧
S

B̄S] >
[
1− 2k/

(
r

p

)](r
p)

= e−2k + o(1).

the electronic journal of combinatorics 23(4) (2016), #P4.31 9

Lemma 14. Let A,B be two sets of size r, and let σ : A 7→ B be a random bijection. For
every A1, . . . , Ak ⊂ A′ ⊂ A and B1, . . . , Bk ⊂ B′ ⊂ B, the following function increases
with t.

P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ |σ(A′)\B′| = t

]
. (2)

Proof. We implicitly assume in this proof that the conditionning event has a nonzero
probability for t and t + 1. Let S1, S2 be two sets of cardinality |A′| with symmetric
difference S1∆S2 = {x, y} where x ∈ S2 is an element of B\B′. Let σxy be the permutation
transposing x and y. Then,

P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S1

]
6 P

[∧
i

[σxyσ(Ai) 6= Bi]
∣∣∣ σ(A′) = S1

]

= P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S2

]
.

We are now ready to derive the result:

(2) =
1(|B\B′|

t

)(|B′|
|A′|−t

) ∑
S⊆B
|S|=|A′|
|S\B′|=t

P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S

]
.

Using our previous remark, we find an upper bound on the last term of the equation by
averaging it over sets S ′ obtained from S by the exchange of two elements:

(2) 6
1(|B\B′|

t

)(|B′|
|A′|−t

) ∑
S⊆B
|S|=|A′|
|S\B′|=t

1

(|B\B′| − t)(|A′| − t)
∑
S′⊆B
|S′|=|A′|
|S′\B′|=t+1

|S∆S′|=2

P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S ′

]

=
1(|B\B′|

t

)(|B′|
|A′|−t

) (t+ 1)(|B′| − |A′|+ t+ 1)

(|B\B′| − t)(|A′| − t)
∑
S′⊆B
|S′|=|A′|
|S′\B′|=t+1

P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ σ(A′) = S ′

]

=

(|B\B′|
t+1

)(|B′|
|A′|−t−1

)(|B\B′|
t

)(|B′|
|A′|−t

) (t+ 1)(|B′| − |A′|+ t+ 1)

(|B\B′| − t)(|A′| − t)
P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ |σ(A′)\B′| = t+ 1

]

= P

[∧
i

[σ(Ai) 6= Bi]
∣∣∣ |σ(A′)\B′| = t+ 1

]
.

References

[1] Yair Caro, Douglas West, and Raphael Yuster. Equitable hypergraph orientations.
Electron. J. Combin., 18(1), #P121, 2011. http://www.combinatorics.org/ojs/

index.php/eljc/article/view/v18i1p121.

the electronic journal of combinatorics 23(4) (2016), #P4.31 10

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p121
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p121

[2] Paul Erdős and Joel Spencer. Lopsided Lovász local lemma and Latin transversals.
Discrete Appl. Math., 30(2-3):151–154, 1991. doi:10.1016/0166-218X(91)90040-4.

[3] Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász Local
Lemma. J. ACM, 57(2):1–11, 2010. doi:10.1145/1667053.1667060.

the electronic journal of combinatorics 23(4) (2016), #P4.31 11

http://dx.doi.org/10.1016/0166-218X(91)90040-4
http://dx.doi.org/10.1145/1667053.1667060

	Introduction
	Algorithm
	Derangements

