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Abstract

The study of core partitions has been very active in recent years, with the study
of ps, tq-cores – partitions which are both s- and t-cores – playing a prominent role.
A conjecture of Armstrong, proved recently by Johnson, says that the average size of
an ps, tq-core, when s and t are coprime positive integers, is 1

24ps´1qpt´1qps` t´1q.
Armstrong also conjectured that the same formula gives the average size of a self-
conjugate ps, tq-core; this was proved by Chen, Huang and Wang.

In the present paper, we develop the ideas from the author’s paper [F1], studying
actions of affine symmetric groups on the set of s-cores in order to give variants of
Armstrong’s conjectures in which each ps, tq-core is weighted by the reciprocal of
the order of its stabiliser under a certain group action. Informally, this weighted
average gives the expected size of the t-core of a random s-core.

1 Introduction

The study of integer partitions is a very active subject, with connections to represen-
tation theory, number theory and symmetric function theory. A particularly prominent
theme is the study of s-core partitions, when s is a natural number: we say that a parti-
tion λ is an s-core if it does not have a rim hook of length s; if λ is any partition, then the
s-core of λ is the partition obtained by repeatedly removing rim s-hooks. The set of all
s-cores displays a geometric structure, with connections to Lie theory. In the case where
s is a prime, s-cores play an important role in the s-modular representation theory of the
symmetric group.

In the last few years, there has been considerable interest in the study of ps, tq-cores,
i.e. partitions which are both s- and t-cores, for given natural numbers s and t. When
s and t are coprime, there are only finitely many ps, tq-cores; the exact number was
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computed by Anderson [An], and in the particular case where t “ s` 1 coincides with
the sth Catalan number. The properties of ps, tq-cores have been studied from a variety
of aspects: Fishel and Vazirani [FV] explored the connection with alcove geometry and
the Shi arrangement, and several authors [K, OS, V, F1] have studied the properties of
the unique largest ps, tq-core. The present author [F1] defined a level t action of the affine
symmetric group S̃s on the set of s-cores (generalising an action due to Lascoux [L] in
the case t “ 1) and showed that two s-cores have the same t-core if and only if they lie
in the same orbit for this action.

Recently, Armstrong has examined the sizes of ps, tq-cores, conjecturing in [AHJ] that
the average size of an ps, tq-core is given by 1

24
ps´ 1qpt´ 1qps` t´ 1q; he made the same

conjecture for ps, tq-cores which are self-conjugate, i.e. symmetric down the diagonal. The
conjecture for self-conjugate ps, tq-cores was proved soon afterwards by Chen, Huang and
Wang [CHW], but the original conjecture proved more difficult. The ‘Catalan case’ t “
s` 1 was proved by Stanley and Zanello [SZ], and this was generalised to the case t ”
1 pmod sq by Aggarwal [Ag]. Very recently, the full conjecture was proved by Johnson [J]
using Ehrhart theory.

In this paper, we connect Armstrong’s conjectures to the level t action of the affine
symmetric group on the set of s-cores, and present variants of these conjectures, in which
the size of an ps, tq-core λ is weighted by the reciprocal of the order of the stabiliser of λ
under this action. Surprisingly, these weighted averages are (apparently) given by simple
formulæ which are very similar to those in Armstrong’s conjectures. We motivate our
conjectures in terms of choosing an s-core at random and asking for the expected size of
its t-core.

We now indicate the layout of this paper. In the next section we give some basic
definitions and recall Armstrong’s conjectures. In Section 3 we consider actions of the
affine symmetric group on the set of s-cores and give our variant of Armstrong’s conjecture.
We show how to compute the stabiliser of an ps, tq-core, and connect this to Johnson’s
geometric approach. We then consider actions on certain finite sets of s-cores; this allows a
rigorous interpretation of our conjecture in terms of the t-core of a randomly chosen s-core.
Finally, we give (with proof) a formula for the denominator in our weighted average, i.e.
the sum of the reciprocals of the orders of the stabilisers of the ps, tq-cores. In Section 4 we
consider self-conjugate cores, introducing an action of the affine hyperoctahedral group
on the set of self-conjugate ps, tq-cores and giving a weighted variant of Armstrong’s
conjecture in this case. As in the non-self-conjugate case, we show how to compute the
stabiliser of a self-conjugate ps, tq-core and explore the connections to Johnson’s work,
before studying actions on finite sets of self-conjugate s-cores.

This paper is mostly self-contained, although several results from the author’s previous
paper [F1] are used. We also use some standard results on Coxeter groups without proof.

We remark that since this paper first appeared in preprint form, our main conjectures
have been proved by Wang [W].
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2 Armstrong’s conjectures

We assume throughout this paper that s and t are coprime natural numbers with s > 2,
and we define s˝t “ 1

2
ps´ 1qpt´ 1q and u “ ts{2u.

In this paper, a partition means a weakly decreasing infinite sequence λ “ pλ1, λ2, . . . q
of non-negative integers such that λi “ 0 for large i. If λ is a partition, we write |λ| “
λ1` λ2` ¨ ¨ ¨ , and refer to this as the size of λ. We write λ1 for the conjugate partition,
defined by λ1i “ |tj > 1 | λj > iu|, and we say that λ is self-conjugate if λ “ λ1.

The Young diagram of a partition λ is the set

rλs “
 

pr, cq P N2
ˇ

ˇ j 6 λi
(

.

If pr, cq P rλs, then the pr, cq-rim hook of λ is the set of all ps, dq P rλs such that s > r,
d > c and ps` 1, d` 1q R rλs. The pr, cq-hook length of λ is the size of this rim hook,
which equals 1`pλr´ rq` pλ

1
c´ cq.

We say that λ is an s-core if none of the hook lengths of λ equals s (or equivalently
if none of them is divisible by s), and we let Cs denote the set of all s-cores. We say that
λ is an ps, tq-core if it is both an s-core and a t-core, i.e. it lies in Cs X Ct. If λ is any
partition, then the t-core of λ is the t-core obtained by repeatedly removing rim hooks of
length t.

It is an easy exercise to show that (given the assumption that s and t are coprime)
there are are only finitely many ps, tq-cores. More specifically, we have the following
enumerative results.

Theorem 2.1.
1. [An, Theorems 1 & 3] The number of ps, tq-cores is

1

s` 1

´

s` t

s

¯

.

2. [FMS, Theorem 1] The number of self-conjugate ps, tq-cores is
´

ts{2u` tt{2u

ts{2u

¯

.

ps, tq-cores have been intensively studied in the last few years. A very recent result is
the following, which was conjectured by Armstrong [AHJ, Conjecture 1.6].

Theorem 2.2 [J, Theorem 1.7]. The average size of an ps, tq-core is

ps` t` 1qps´ 1qpt´ 1q

24
.

Armstrong also conjectured the same statement for self-conjugate ps, tq-cores. This
was proved (rather earlier than Theorem 2.2) by Chen, Huang and Wang.

Theorem 2.3 [CHW]. The average size of a self-conjugate ps, tq-core is

ps` t` 1qps´ 1qpt´ 1q

24
.

The purpose of this paper is to present conjectured variants of these two statements,
in which the sizes of the ps, tq-cores are weighted in a meaningful way. In Section 3 we
give a weighted version of Theorem 2.2, and in Section 4 we do the same for Theorem 2.3.
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3 A weighted version of Armstrong’s conjecture for ps, tq-cores

3.1 Action of the affine symmetric group on s-cores

The weightings in our variant of Armstrong’s conjecture are defined using an action
of the affine symmetric group which first appeared in [F1]. Let S̃s denote the affine
symmetric group of degree s; this can be defined as the set of all permutations w of Z
satisfying the following conditions:

1. wpm` sq “ wpmq` s for all m P Z;

2. wp0q`wp1q` ¨ ¨ ¨ `wps´ 1q “
´

s

2

¯

.

We will say that a function w : ZÑ Z is s-periodic if it satisfies condition (1) above. We
remark that if w : Z Ñ Z is s-periodic and X Ă Z is any transversal of the congruence
classes modulo s in Z, then w satisfies condition (2) (and hence lies in S̃s) if and only if
ř

xPX wpxq “
ř

xPX x.

S̃s has a well-known presentation by generators and relations. Before we give this,
we establish some conventions of notation: if a P Z, then we write sa for the set a` sZ “
ta` sm | m P Zu. Then Z{sZ is the set tsa | a P Zu, which is an abelian group under
addition in the usual way. We let Z act additively and multiplicatively on Z{sZ in the
natural way, i.e. via sa` b “ Ęa` b and sab “ sab, for a, b P Z.

Now for each i P Z{sZ, let wi be the element of S̃s defined by

wipmq “

$

’

&

’

%

m` 1 if m P i´ 1

m´ 1 if m P i

m otherwise.

Then S̃s is generated by twi | i P Z{sZu, subject to defining relations

w2
i “ 1 for each i,

wiwj “ wjwi if j ‰ i˘ 1,

wiwjwi “ wjwiwj if j “ i` 1 and s ą 2.

Thus S̃s is the affine Coxeter group of type Ãs´1.
We define the level t action of S̃s on Z, denoted w ÞÑ ẘ, by

ẘim “

$

’

&

’

%

m` t if m P pi´ 1qt´ s˝t

m´ t if m P it´ s˝t

m otherwise

for i P Z{sZ, m P Z. Note that if t “ 1 then s˝t “ 0, so this is just the natural action of
S̃s on Z. We remark that the term ´s˝t is not really necessary in this section (and does
not appear in the definition of the level t action given in [F1]); it can be removed with an
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easy modification of the results below. But using the term ´s˝t means that the action
works well with self-conjugate partitions, which will be useful in Section 4.

We can use the level t action of S̃s on Z to describe an action on the set of s-cores,
by using beta-sets. If λ is a partition, then the beta-set of λ is the set

Bλ “ tλi´ i | i P Nu .

It is easy to check that if λ is a partition and w P S̃s then ẘBλ is also the beta-set of a
(unique) partition, so we can define a level t action w ÞÑ w̌ of S̃s on the set of partitions
by

Bpw̌λq “ ẘBλ

for every partition λ and every w P S̃s.

This action was introduced by the author in [F2], where it was shown that the action
preserves the set of s-cores. So we can restrict the level t action to give an action (which
we also denote w ÞÑ w̌) on Cs. In the case t “ 1, this action was introduced by Lascoux
[L].

Example. Take s “ 3 and t “ 2, and let λ “ p5, 3, 12q, which is a 3-core. We have

Bλ “ t4, 1,´2,´3,´5,´6,´7, . . . u,

so that

ẘ
s0Bλ “ t4, 1,´1,´2,´4,´5,´7,´8,´9, . . . u,

ẘ
s1Bλ “ t2,´1,´3,´4,´5, . . . u,

ẘ
s2Bλ “ t6, 3, 0,´3,´5,´6,´7, . . . u,

and hence

w̌
s0λ “ p5, 3, 2

2, 12
q, w̌

s1λ “ p3, 1q, w̌
s2λ “ p7, 5, 3, 1q.

Note that these partitions are all 3-cores.

Now we can state our conjecture. Given an s-core λ, write Stabs,tpλq for the stabiliser
of λ under the level t action of S̃s on Cs. Then our conjecture gives the average size of an
ps, tq-core, but with each ps, tq-core λ weighted by the reciprocal of |Stabs,tpλq|, as follows.

Conjecture 3.1.
ÿ

λPCsXCt

|λ|
|Stabs,tpλq|

ÿ

λPCsXCt

1

|Stabs,tpλq|

“
ps´ 1qpt2´ 1q

24
.
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3.2 Motivation: the t-core of an s-core

Here we recall some results which will give some meaning to the weighted average in
Conjecture 3.1. We begin with a result of Olsson.

Theorem 3.2 [O, Theorem 1]. If λ is an s-core, then the t-core of λ is also an s-core.

Taking the t-core of an s-core therefore gives a map from the set of s-cores to the set
of ps, tq-cores. The next result says that the fibres of this map are determined by the level
t action of S̃s.

Proposition 3.3 [F1, Proposition 4.2 & Corollary 4.5]. Suppose λ and µ are s-
cores. Then λ and µ have the same t-core if and only if they lie in the same orbit under
the level t action of S̃s on Cs.

We can informally interpret the weighted average in Conjecture 3.1 as weighting each
ps, tq-core λ ‘by the size of the orbit containing λ’. In fact, all the orbits are infinite, so
this does not strictly make sense, though we will make it rigorous below by working with
finite sets of s-cores. Thus, where Armstrong’s conjecture addresses the question ‘given a
random ps, tq-core, what is its expected size?’, our weighted version addresses the question
‘given a random s-core, what is the expected size of its t-core?’ It is surprising that the
apparent answer is so simple and so similar to Armstrong’s conjecture.

Before looking at finite sets of s-cores, we define s-sets, and examine a connection to
Johnson’s geometric proof of Armstrong’s conjecture.

3.3 s-sets

It will be useful to encode an s-core as a set of s integers. To do this, we use the fact
(first observed by Robinson [R, 2.8]) that a partition λ is an s-core if and only if for every
b P Bλ we have b´ s P Bλ. With this in mind, we define the s-set of an s-core λ to be the
set Spλq “ tai | i P Z{sZu, where ai is the smallest integer in i but not in Bλ, for each
i. Another way of saying this (as pointed by Wang [W]) is Spλq “ pBλ` sqzBλ. Spλq is
then a set of s integers which are pairwise incongruent modulo s, and which sum to

`

s
2

˘

.
In general, we refer to any set of s integers with these two properties as an s-set; it is
shown in [F1] that any s-set is the s-set of a unique s-core.

Example. Suppose s “ 3 and λ “ p6, 4, 2, 12q. Then

Bλ “ t5, 2,´1,´3,´4,´6,´7,´8, . . . u,

so that Spλq “ t8, 0,´5u.
Now consider the 3-set t6, 1,´4u. We construct the corresponding 3-core by construct-

ing the beta-set

t3, 0,´3, . . . uY t´2,´5,´8, . . . uY t´7,´10,´13, . . . u “ t3, 0,´2,´3,´5,´6,´7, . . . u.

This is the beta-set of the partition p4, 2, 12q, which is a 3-core.
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This bijection between s-cores and s-sets is used in [F1] to describe a geometric struc-
ture on the set of s-cores. Later we will see a different version of this structure which was
used by Johnson in the proof of Armstrong’s conjecture.

Note that we can describe the level t action of S̃s on Cs using s-sets: we have

Spw̌λq “ ẘSpλq

for any λ P Cs and w P S̃s. This will allow us to give a formula for |Stabs,tpλq| in terms
of Spλq below. First we need to examine the level t action of S̃s in more detail.

3.4 Basic results on the level t action

In this section we make some simple observations about the level t action of S̃s on Z.
The definition given in Section 3.1 specifies ẘi for each i P Z{sZ, but it is useful to have
an explicit expression for ẘ when w is any element of S̃s. This is given by the following
easy lemma.

Lemma 3.4. Suppose w P S̃s and m P Z, and choose i P Z such that it ” m`
s˝t pmod sq. Then ẘpmq “ m` tpwpiq´ iq.

Hence we can explicitly determine the image of the level t action.

Proposition 3.5. The level t action of S̃s on Z is faithful, and its image is the set
!

x P S̃s

ˇ

ˇ

ˇ
xpmq ” m pmod tq for all m P Z

)

.

Proof. To show that the level t action is faithful, observe that for w P S̃s we have ẘpit´
s˝tq “ twpiq ´ s˝t for all i P Z, by Lemma 3.4. Hence if ẘ is the identity permutation,
then so is w.

Now we consider the image of the level t action. Take w P S̃s; then it is clear
from Lemma 3.4 that ẘpmq ” m pmod tq for all m and that ẘ is s-periodic. For each
m P t0, . . . , s´1u let im be the element of t0, . . . , s´1u such that imt ” m` s˝t pmod sq.
Since s and t are coprime, the map m ÞÑ im is bijective. So by Lemma 3.4

s´1
ÿ

m“0

pẘpmq´mq “ t
s´1
ÿ

i“0

pwpiq´ iq “ 0,

which implies that ẘ P S̃s.
Conversely, suppose x P S̃s with xpmq ” m pmod tq for all m; then we must show

that there is w P S̃s with x “ ẘ. For each i P Z, let m “ it´ s˝t, and set wpiq “
i` pxpmq ´mq{t. The assumption that t divides xpmq ´m for every m means that the
values of w lie in Z. Clearly w is s-periodic since x is, so to show that w is a permutation
of Z it suffices to show that if i, j P Z with i ı j pmod sq then wpiq ı wpjq pmod sq:
setting m “ it´ s˝t and n “ jt´ s˝t, we have m ı n pmod sq (since s and t are coprime)
and hence

tpwpiq´wpjqq “ pit`xpmq´mq´ pjt`xpnq´nq “ xpmq´xpnq ı 0 pmod sq.
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Hence wpiq ı wpjq pmod sq.
So w is an s-periodic permutation of Z; one can show (by essentially a reverse of the

argument in the first part of the proof) that wp0q` ¨ ¨ ¨ `wps´ 1q “
´

s

2

¯

, so w P S̃s. By

construction x “ ẘ, and we are done.

Corollary 3.6. Suppose X and Y are s-sets and φ : X Ñ Y is a bijection such that
φpxq ” x pmod tq for all x P X. Then there is a unique w P S̃s such that φpxq “ ẘpxq
for all x P X.

Proof. Since X contains exactly one integer in each congruence class modulo s, there
is a unique s-periodic function v : Z Ñ Z such that v|X “ φ; this function satisfies
vpmq ” m pmod tq for every m since φ does, so by Proposition 3.5 it suffices to show
that v P S̃s. To see that v is a bijection, it suffices to show that vpmq ı vpnq pmod sq
when m ı n pmod sq; since v is s-periodic we may as well take m,n P X, in which case
the result follows because the elements of Y are pairwise incongruent modulo s and φ is
injective.

So v is an s-periodic permutation of Z. Since in addition
ÿ

xPX

vpxq “
ÿ

yPY

y “
´

s

2

¯

“
ÿ

xPX

x

with X a transversal of the congruence classes modulo s, we have v P S̃s.

3.5 s-sets and stabilisers

Now recall that Stabs,tpλq denotes the stabiliser of an s-core λ under the level t action
of S̃s. The next result shows how to compute Stabs,tpλq from Spλq.

Proposition 3.7. Suppose λ P Cs. For each i P Z{tZ, let ci “ |SpλqX i|. Then

|Stabs,tpλq| “
ź

iPZ{tZ

ci!.

Proof. The description of the level t action on Cs in terms of s-sets given in Section 3.3
means that |Stabs,tpλq| equals the number of elements of S̃s fixing Spλq setwise under the
level t action on Z. The case t “ 1 of Corollary 3.6 implies that for every permutation
v of Spλq there is a unique element of S̃s extending v. By Proposition 3.5, this element
lies in the image of the level t action if and only if it fixes every integer modulo t, which
happens if and only if v fixes every element of Spλq modulo t. Since the level t action of
S̃s is faithful, different permutations of Spλq correspond to different elements of S̃s, so
the size of the stabiliser is just the number of permutations of Spλq that fix every element
modulo t.

Now we show how to interpret this formula geometrically. We work in Euclidean
space Rs, with coordinates labelled using the set Z{sZ. Following [F1] we define the
affine subspace

P s
“

!

x P Rs
ˇ

ˇ

ˇ

ř

iPZ{sZ xi “
´

s

2

¯)

.
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Given an s-core λ, define a point xλ P P
s by defining pxλqi to be the unique element of

Spλq X i for each i P Z{sZ. The one-to-one correspondence between s-cores and s-sets
then gives

txλ | λ P Csu “ tx P P s
| xi P i for all i P Z{sZu .

Note that this set is a lattice (or rather, an affine lattice), which we denote Λs. This
lattice was introduced (with different conventions) by Johnson [J], who calls Λs the lattice
of s-cores. Johnson’s construction is central to his proof of Armstrong’s conjecture via
Ehrhart theory; indeed, Johnson makes the legitimate claim that his paper ‘establishes
lattice point geometry as a foundation for the study of simultaneous core partitions’.

Note that this construction is different from that in [FV, F1], where an s-core λ is
represented a point pλ in the dominant region of P s; this construction yields a bijection
between Cs and the set of dominant alcoves in P s, but does not yield a lattice.

The advantage of Johnson’s construction is the easy identification of the set of ps, tq-
cores as the set of points of Λs lying inside a certain simplex. Define a hyperplane Hi in
P s for each i P Z{sZ by

Hi “ tx P P
s
| xi´xi´t “ tu .

Let SCsptq denote the simplex bounded by the hyperplanes Hi; that is,

SCsptq “ tx P P
s
| xi´xi´t 6 t for all i P Z{sZu .

Then we have the following.

Lemma 3.8 [J, Lemma 3.1]. Suppose λ is an s-core. Then λ is also a t-core if and
only if xλ P SCsptq.

Example. Suppose s “ 3 and t “ 4. We illustrate part of the lattice of 3-cores in
Figure 1, where we label each point x of Λs by its coordinates x

s0, xs1, xs2 and also by the
corresponding 3-core. The three lines drawn are the hyperplanes H

s0, Hs1, Hs2, and the
triangle bounded by these three lines is SC3p4q. The 3-cores corresponding to points of
Λ3 inside this triangle are precisely the p3, 4q-cores.

The lattice of s-cores is also relevant to our study of the level t action of S̃s on s-cores.
For j P Z{sZ let rj : P s Ñ P s denote the reflection (with respect to the usual inner product
on Rs) in the hyperplane Hj. Then, as is well known in the theory of reflection groups,
the group Ws :“ xrj | j P Z{sZy is isomorphic to S̃s, and an isomorphism θ : S̃s Ñ Ws

may be given by mapping

wi ÞÝÑ rit´s˝t

for each i P Z{sZ. Moreover, this isomorphism connects the level t action of S̃s on Cs to
the action of Ws on the lattice Λs, via the following lemma.

Lemma 3.9. If λ P Cs and w P S̃s then

xw̌λ “ θpwqxλ.

the electronic journal of combinatorics 23(4) (2016), #P4.32 9



∅
0, 1, 2

p1q

3, 1,´1

p2q

0, 4,´1

p12q

3,´2, 2

p3, 1q

0,´2, 5

p2, 12q

´3, 4, 2

p4, 2q

6,´2,´1

p3, 12q

´3, 1, 5

p22, 12q

3, 4,´4

p4, 2, 12q

6, 1,´4

p5, 3, 1q

´3, 7,´1

p3, 22, 12q

3,´5, 5

p5, 3, 12q

0, 7,´4

p6, 4, 2q

´3,´2, 8

p4, 22, 12q

6,´5, 2

p32, 22, 12q

´6, 4, 5

p6, 4, 2, 12q

0,´5, 8

p5, 3, 22, 12q

´6, 7, 2

p6, 4, 22, 12q

´6, 1, 8

H
s1 H

s2

H
s0

Figure 1: 4-cores inside the lattice of 3-cores

Proof. In the case where w “ wi for i P Z{sZ, this follows directly from the formula for
a reflection in Rs and the definition of the level t action on Cs. The case for arbitrary w
then follows from the fact that θ is a homomorphism.

With this geometric interpretation of the level t action, we can realise the stabiliser
Stabs,tpλq geometrically. First we show that Stabs,tpλq is a parabolic subgroup of S̃s.

Lemma 3.10. Suppose λ P CsXCt, and let I be the set of i P Z{sZ such that xλ P Hit´s˝t.
Then

Stabs,tpλq “ xwi | i P I y .

Proof. Recall from the proof of Proposition 3.7 the correspondence between Stabs,tpλq
and the group of permutations of Spλq that fix every element modulo t. It follows from
the proof of [F1, Proposition 4.1] that since λ is an ps, tq-core the elements of Spλq lying in
a given congruence class modulo t form an arithmetic progression with common difference
t, say a, a` t, . . . , a` rt. The group of permutations of these integers is generated by the
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transpositions pa`pk´ 1qt, a` ktq for 1 6 k 6 r. But the transposition pa`pk´ 1qt, a`
ktq is simply the restriction to Spλq of ẘi, where i P Z{sZ is such that a` kt P it´ s˝t.

So Stabs,tpλq is generated by those wi for which Spλq contains integers m,m´ t with
m P it´ s˝t. This is exactly the condition that xλ P Hit´s˝t.

From Lemmas 3.9 and 3.10 we deduce the following, which enables us to calculate
|Stabs,tpλq| purely geometrically.

Corollary 3.11. If λ is an ps, tq-core, then Stabs,tpλq is isomorphic to the group generated
by trj | xλ P Hju.

Example. Continuing from the last example, we see that x∅ does not lie on any of the
hyperplanes H

s0, Hs1, Hs2, so Stab3,4p∅q is trivial. The 3-cores p1q, p2q and p12q each lie on
only one of the three hyperplanes, so the stabiliser of each of these 3-cores has order 2.
p3, 12q lies on H

s1 and H
s2, so its stabiliser is isomorphic to the group generated by r

s0 and
r
s1, which has order 6.

So the weighted average in Conjecture 3.1 is

0
1
` 1

2
` 2

2
` 2

2
` 5

6
1
1
` 1

2
` 1

2
` 1

2
` 1

6

“
5

4
“
p3´ 1qp42´ 1q

24
,

and Conjecture 3.1 is verified in the case ps, tq “ p3, 4q.

3.6 Actions on finite sets of cores

In this section we define a family of finite sets of s-cores on which S̃s acts. This will
enable us to give rigorous meaning to our interpretation of Conjecture 3.1 in terms of
random cores.

Choose N P N, and let CpNqs denote the set of all s-cores λ such that k´ l ă Ns for
all k, l P Spλq. Equivalently, these are the s-cores λ such that λ1`λ

1
1 6 pN ´ 1qs.

We begin by enumerating these cores.

Lemma 3.12. |CpNqs | “ N s´1.

Proof. Choosing an element of CpNqs amounts to choosing an s-set whose elements differ
by less than Ns. Define a shifted s-set to be a set of s integers with exactly one in each
congruence class modulo s, and with smallest element 0. Given an s-set X, there is a
unique shifted s-set arising as a translation of X, and this shifted s-set will be contained in
the interval r0, Ns´1s if and only if the elements of X differ by less than Ns. Conversely,
given a shifted s-set Y , we have

ř

xPY x ”
`

s
2

˘

pmod sq, so there is a unique s-set arising
as a translation of Y , i.e. the translation by 1

s

``

s
2

˘

´
ř

xPY x
˘

.
So it suffices to count the shifted s-sets contained in r0, Ns´ 1s, and clearly there are

N s´1 of these: for each 1 6 i 6 s´ 1, we choose exactly one of the integers i, i` s, i`
2s, . . . , i`pN ´ 1qs to be in the set.
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To define an action of S̃s on CpNqs , we will show that CpNqs is a transversal of the
equivalence classes for an equivalence relation on Cs which is fixed by the action of S̃s

on Cs. Given λ, µ P Cs, set λ ”N µ if there is a bijection φ : Spλq Ñ Spµq such that
φpkq ” k pmod Nsq for all k P Spλq. Then obviously ”N is an equivalence relation on Cs,
and we have the following two results.

Proposition 3.13. Each equivalence class in Cs under the relation ”N contains a unique
element of CpNqs .

Proof. First we show that each equivalence class contains at least one element of CpNqs ,
i.e. given λ P Cs, there is ν P CpNqs such that λ ”N ν. We proceed by induction on
ř

mPSpλqm
2. Supposing λ R CpNqs , there are k, l P Spλq such that k ´ l ą Ns. The

set Spλq Y tk ´Ns, l `Nsuztk, lu is the s-set of an s-core µ with µ ”N λ, satisfying
ř

mPSpµqm
2 ă

ř

mPSpλqm
2. By induction µ ”N ν for some ν P CpNqs .

For uniqueness, suppose λ, µ P CpNqs with λ ”N µ; then we must show that λ “ µ. Let
φ : Spλq Ñ Spµq be the bijection such that φpkq ” k pmod Nsq for all k. Since Spλq lies
within an interval of length Ns and so does Spµq, the only possibility is that for every
k, l P Spλq with k ą l, either φpkq´ k “ φplq´ l or φpkq´ k “ φplq´ l´Ns. So there are
integers a, b with a P t0, . . . , s´ 1u such that for k P Spλq

φpkq “

#

k`pb´ 1qNs pif k is one of the a largest elements of Spλqq
k` bNs potherwiseq.

But this gives
´

s

2

¯

“
ÿ

kPSpµq

k “
ÿ

kPSpλq

k`pbs´ aqNs “
´

s

2

¯

`pbs´ aqNs.

So a “ bs, and therefore a “ b “ 0. So Spλq “ Spµq, and hence λ “ µ.

Proposition 3.14. Suppose N P N. The equivalence relation ”N on Cs is preserved by
the level t action of S̃s.

Proof. Suppose λ ”N µ, and let φ : Spλq Ñ Spµq be a bijection such that φpkq ”
k pmod Nsq for all k P Spλq. Since Spλq contains exactly one integer in each equivalence
class modulo s, φ is in fact the unique bijection such that φpkq ” k pmod sq for each k.

Now take i P Z{sZ and consider applying w̌i to both λ and µ. Let k be the unique
element of Spλq X pit´ s˝tq, and l the unique element of Spλq X ppi´ 1qt´ s˝tq. Then
Spw̌iλq “ Spλq Y tk´ t, l` tuztk, lu. The definition of φ means that φpkq is the unique
element of Spµq X pit´ s˝tq, and similarly for φplq. So Spw̌iµq “ Spµq Y tφpkq ´ t, φplq `
tuztφpkq, φplqu.

So we can define a bijection ψ : Spw̌iλq Ñ Spw̌iµq by

ψpk´ tq “ φpkq´ t, ψpl` tq “ φplq` t, ψpmq “ ψpmq for all other m,

and we have ψpmq ” m pmod Nsq for all m. So w̌iλ ”N w̌iµ.
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Propositions 3.13 and 3.14 enable us to define a level t action of S̃s on CpNqs , which (if

N is understood) we denote w ÞÑ ŵ: given w P S̃s and λ P CpNqs , we define ŵλ to be the

unique element of CpNqs in the same ”N -class as w̌λ.

Example. Suppose s “ 3 and N “ 4. Then there are sixteen cores in CpNqs . We illustrate
the level t action for t “ 1 and 2 in Figures 2 and 3. In these diagrams, an edge labelled
with i P Z{3Z represents the action of ŵi; if there is no edge labelled i meeting a core λ,
then ŵiλ “ λ.

p3, 12q

p2, 12q

p12q

p1q

∅

p2q

p3, 1q

p4, 2q

p5, 3, 1q

p6, 4, 2q p5, 3, 12q

p4, 2, 12q

p4, 22, 12q

p3, 22, 12q

p32, 22, 12q

p22, 12q

s0

s1

s2

s1 s2

s1

s2

s0

s2

s1s0s2

s0

s1s0s2

s1

s0

Figure 2: The level 1 action of S̃3 on Cp4q3

Now we consider orbits and stabilisers for the level t action on CpNqs . For the rest of
this section we specialise to the case where N is divisible by t, and we write nt instead
of N . Our aim is to connect the level t action on Cpntqs to Conjecture 3.1 by showing that
each orbit contains a unique ps, tq-core, and that the size of the orbit containing an s-core
λ is inversely proportional to |Stabs,tpλq|.

The first step is to compute the kernel of the action. For the next proposition we must
exclude some cases where nt is very small.
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p3, 12q

p2, 12q

p12q

p1q

∅

p2q

p3, 1q

p4, 2q

p5, 3, 1q

p6, 4, 2q p5, 3, 12q

p4, 2, 12q

p4, 22, 12q

p3, 22, 12q

p32, 22, 12q

p22, 12q

s2

s1

s0

s1s0s2

s0

s2

s0

s0

s1 s2

s0s0

s2s1

s1 s2

Figure 3: The level 2 action of S̃3 on Cp4q3

Proposition 3.15. Suppose n P N, and assume nt ą 1 and nst ą 4. Then the kernel of
the level t action of S̃s on Cpntqs is

Kpnq :“
!

w P S̃s

ˇ

ˇ

ˇ
wpmq ” m pmod nsq for all m P Z

)

.

Proof. Take w P S̃s, and suppose first that wpmq ” m pmod sq for all m. We claim

that for any λ P Cpntqs we have ŵλ “ λ if and only if w P Kpnq. By Lemma 3.4 we
have ẘpmq ” m pmod sq for all m, so the unique bijection φ : Spλq Ñ Spw̌λq satisfying
φpxq ” x pmod sq for all x P X is just the restriction of ẘ to Spλq. If w P Kpnq, then by
Lemma 3.4 ẘpmq ” m pmod nstq for all m, so φpxq ” x pmod nstq for all x P Spλq. So
λ ”nt w̌λ, and hence ŵλ “ λ. On the other hand, if w R Kpnq, choose an integer m such
that wpmq ı m pmod nsq, and let x be the element of Spλq congruent to mt´ s˝t modulo
s; then we have ẘpxq ı x pmod nstq, so φpxq ı x pmod nstq, and hence w̌λ ınt λ, i.e.
ŵλ ‰ λ. So our claim holds, and in particular w lies in the kernel of the level t action on
Cpntqs if and only if w P Kpnq.

Now suppose instead that there is an integer m such that wpmq ı m pmod sq; letting
x “ mt´ s˝t, we have ẘpxq ı x pmod sq. Let y “ ẘpxq ` s; then obviously we have
y ” ẘx pmod sq but (by the assumption that nt ą 1) y ı ẘx pmod nstq. If s > 3, then
since y ı x pmod sq there is an s-set X containing both x and y; the unique bijection
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φ : X Ñ ẘpXq satisfying φpzq ” z pmod sq for all z P X must map y to ẘpxq, and in
particular φpyq ı y pmod nstq. So there is no bijection from X to ẘpXq fixing every
element modulo nst. So if µ is the s-core with s-set X, then µ ınt w̌µ. Hence if λ is the
unique element of Cptqs with λ ”nt µ, then λ ınt w̌λ, and hence λ ‰ ŵλ So w is not in the
kernel of the level t action of S̃s on Cpntqs .

It remains to consider the case s “ 2. Taking x as above, consider y “ 1´ x; then
tx, yu is a 2-set, so if ẘpxq ı 1´x pmod 2ntq, then we can repeat the argument from the
paragraph above. So suppose ẘpxq ” 1´x pmod 2ntq; repeating the argument with x`2
in place of x, we can also assume that ẘpx` 2q ” ´1´x pmod 2ntq. But now

´1´x ” ẘpx` 2q “ ẘpxq` 2 ” 1´x` 2 pmod 2ntq,

which gives 2nt 6 4, contradicting the assumptions on n.

Now we consider ps, tq-cores in Cpntqs .

Lemma 3.16. Suppose n > 1. Then each ps, tq-core lies in Cpntqs . If λ P Cpntqs , then the

orbit containing λ under the level t action of S̃s on Cpntqs contains a unique ps, tq-core,
namely the t-core of λ.

Proof. Suppose ξ is an ps, tq-core, and write the elements of Spξq in increasing order as
x1, . . . , xs. Then [F1, Propositions 4.2, 4.3] implies that xi`1´xi 6 t for each i, and this

implies that ξ P Cptqs , and hence ξ P Cpntqs .
For the second part of the lemma, let O be the orbit containing λ. Then by [F1,

Propositions 4.2, 4.3] there is w P S̃s such that µ :“ w̌λ is the t-core of λ, and in

particular µ is an ps, tq-core. Since by the first part of the lemma µ lies in Cpntqs , we
have µ “ ŵλ P O, so O contains an ps, tq-core. For uniqueness, suppose O contains
another ps, tq-core ν. Then ν “ v̂µ for some v P S̃s, so ν ”nt v̌µ. The definitions of
v̌ and the relation ”nt now imply that there is a bijection φ : Spµq Ñ Spνq such that
φpxq ” x pmod tq for each x; so by [F1, Proposition 4.1] µ and ν have the same t-core.
Since µ and ν are t-cores, this means that µ “ ν.

Now we look at orbit sizes. Recall that Stabs,tpλq denotes the stabiliser of an s-core λ
under the level t action of S̃s on Cs.

Lemma 3.17. Suppose λ P Cs. Then Stabs,tpλqXK
pnq “ t1u.

Proof. Suppose w P Kpnq. Then we have wpmq ” m pmod sq for all m P Z, and hence
ẘpmq ” m pmod sq for every m P Z.

If in addition w P Stabs,tpλq, then we have ẘpSpλqq “ Spλq. But the elements of Spλq
are pairwise incongruent modulo s, so in fact we must have ẘpxq “ x for every x P Spλq.
Since Spλq is a transversal of the congruence classes modulo s, this gives wpmq “ m for
every integer m, so w “ 1.

Now for λ P Cpntqs let Stab
pnq
s,t pλq denote the stabiliser of λ under the level t action of

S̃s on Cpntqs .
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Lemma 3.18. Suppose λ P Cpntqs . Then Stab
pnq
s,t pλq “ Kpnq Stabs,tpλq.

Proof. Clearly both Kpnq and Stabs,tpλq lie inside Stab
pnq
s,t pλq, so Kpnq Stabs,tpλq lies inside

Stab
pnq
s,t pλq as well. For the opposite containment, suppose w P Stab

pnq
s,t pλq. Then by defi-

nition w̌λ ”nt λ; let φ denote the bijection Spλq Ñ Spw̌λq such that φpxq ” x pmod nstq
for all x. Then there is y P S̃s such that φ is just the restriction to Spλq of y. Moreover,
we have ypmq ” m pmod tq for all m P Z, so by Proposition 3.5 there is v P S̃s such that
y “ v̊. Following the construction of v given in the proof of Proposition 3.5, we see that
since ypmq ” m pmod nstq for every m, we have vpmq ” m pmod nsq for every m; that
is, v P Kpnq.

Now v̊pSpλqq “ φpSpλqq “ Spw̌λq, so v̌λ “ w̌λ. So v´1w P Stabs,tpλq, and so w P

Kpnq Stabs,tpλq.

The last two results show that if λ P Cpntqs then the size of the orbit containing λ is
inversely proportional to |Stabs,tpλq|. In fact, we can be more precise, given the following
lemma.

Lemma 3.19. The index of Kpnq in S̃s is ns´1s!.

The case n “ 1 of this lemma is very well known in Lie theory; it arises from the fact
that the affine symmetric group is the semidirect product of the finite symmetric group
with its root lattice.

Proof. We begin with the case n “ 1. Let H denote the setwise stabiliser of t0, . . . , s´1u
in S̃s. Then clearly H XKp1q “ t1u, while HKp1q “ S̃s: given w P S̃s, there is an
element h P H defined by hpmq ” wpmq pmod sq for all m P t0, . . . , s´ 1u, and we have
h´1w P Kp1q. So |S̃s :Kp1q| “ |H|, which is obviously s!.

To go from the case n “ 1 to the general case, we just need to show that |Kp1q :Kpnq| “
ns´1. But Kp1q is a free abelian group of rank s´ 1, and Kpnq consists of the nth powers
of the elements in this group, which gives the result.

This yields the following result giving the sizes of level t orbits in Cpntqs .

Corollary 3.20. Suppose n > 1 and λ P Cpntqs . Then the size of the orbit containing λ

under the level t action of S̃s on Cpntqs is
ns´1s!

|Stabs,tpλq|
.

Proof. The cases where n “ t “ 1 or ps, t, nq “ p2, 1, 2q are easy to deal with, so
we assume that nt ą 1 and nst ą 4, which enables us to use Proposition 3.15. Let
S̃
pnq
s denote the image of the level t action of S̃s on Cpntqs . Then S̃

pnq
s “ S̃s{K

pnq by

Proposition 3.15, so that |S̃pnq
s | “ ns´1s! by Lemma 3.19. The stabiliser of λ under the

action of S̃
pnq
s is

Stab
pnq
s,t pλq

Kpnq
“

Kpnq Stabs,tpλq

Kpnq
, by Lemma 3.18. Hence the order of this

stabiliser is ∣∣∣∣Kpnq Stabs,tpλq

Kpnq

∣∣∣∣ “ ∣∣∣∣ Stabs,tpλq

Stabs,tpλqXKpnq

∣∣∣∣ “ |Stabs,tpλq|,

so by the Orbit-Stabiliser Theorem the size of the orbit containing λ is
ns´1s!

|Stabs,tpλq|
.
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This result enables us to make precise our informal motivation from Section 3.2 con-
cerning random s-cores. We now have S̃s acting on a finite set Cpntqs , and we can select
an s-core uniformly randomly from this set. By Lemma 3.16 each orbit contains a unique
ps, tq-core, which is the common t-core of all the partitions in this orbit. Hence if λ P CsXCt
then the probability of choosing an s-core whose t-core is λ is proportional to the size
of the orbit containing λ, which in turn is inversely proportional to |Stabs,tpλq|. So the
left-hand side of Conjecture 3.1 gives the expected size of the t-core of λ.

3.7 The denominator

Another consequence of the results in Section 3.6 is a formula for the denominator
appearing in Conjecture 3.1.

Proposition 3.21.
ÿ

λPCsXCt

1

|Stabs,tpλq|
“
ts´1

s!
.

Proof. We specialise the results of Section 3.6 to the case n “ 1. By Lemma 3.12,
|Cptqs | “ ts´1, and this is the sum of the sizes of the orbits of S̃s on Cptqs . Each of these
orbits contains a unique ps, tq-core, so we just sum the result of Corollary 3.20 over all
ps, tq-cores λ. We obtain

ÿ

λPCsXCt

s!

|Stabs,tpλq|
“ ts´1,

which gives the result.

4 A weighted version of Armstrong’s conjecture for self-conju-
gate ps, tq-cores

Now we consider analogues of the results and conjectures in the previous section for
self-conjugate cores. The structure of this section is largely the same as in Section 3,
though we will be able to be briefer by using some results from that section.

Throughout this section let Ds denote the set of all self-conjugate s-cores. Recall that
we define u “ ts{2u.

4.1 The affine hyperoctahedral group

We begin by defining a subgroup of S̃s that fixes Ds, and which will take the place of
S̃s in this section. For i P Z{sZ, define vi P S̃s by

vi “

$

’

&

’

%

wi pif i “ s0q

wiw´i pif i “ sl or ´sl for 1 6 l ă uq

wiw´iwi pif i “ su or ´ suq.
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Note that we have vi “ v´i for each i P Z{sZ. Now define H̃s “ xvi | i P Z{sZy. Then
H̃s is isomorphic to the affine hyperoctahedral group of degree u, i.e. the affine Coxeter
group of type C̃u.

It will be helpful to describe H̃s explicitly in terms of permutations.

Proposition 4.1.

H̃s “

!

w P S̃s

ˇ

ˇ

ˇ
wp´1´mq “ ´1´wpmq for all m P Z

)

.

Proof. Let H denote the given subgroup of S̃s. It is easily checked that each vi satisfies
vip´1´mq “ ´1´ vipmq for all m, so vi P H, and hence H̃s 6 H.

Conversely, suppose w P H, and define

Mpwq :“
u´1
ÿ

i“0

pwpiq´ iq2.

We will prove by induction on Mpwq that w P H̃s. In the case Mpwq “ 0, we have wpiq “ i
for i “ 0, . . . , u´ 1; the fact that w is s-periodic and wp´1´mq “ ´1´wpmq for all
m P Z then means that wpmq “ m for all m P Z, so w is the identity permutation, which
lies in H̃s.

For the inductive step, assume Mpwq ą 0 and suppose first that there is a P t1, . . . , u´
1u for which wpaq ă wpa´ 1q. Let w1 “ wv

sa; then for i P t0, . . . , u´ 1u we have

w1piq “

$

’

&

’

%

wpi´ 1q pi “ aq

wpi` 1q pi “ a´ 1q

wpiq potherwiseq,

so that Mpw1q “Mpwq´2wpa´1q`2wpaq ăMpwq. w1 lies in H, so by induction w1 lies
in H̃s, and hence so does w.

So we may assume that wp0q ă wp1q ă ¨ ¨ ¨ ă wpu´ 1q. Since Mpwq ą 0, this means
in particular that either wp0q ă 0 or wpu´ 1q ą u´ 1. In the first case, let w1 “ wv

s0;
then we have w1piq “ wpiq for i “ 1, . . . , u´ 1, while

w1p0q “ wp´1q “ ´1´wp0q,

so that Mpw1q “Mpwq` 2wp0q` 1 ăMpwq, and again we can use the induction hypoth-
esis.

Finally suppose that we are in the case where wpu´ 1q ą u´ 1. Note that if s is odd
then in fact wpu´ 1q > u` 1; this is because when s is odd the conditions on w give
wpuq “ u, so wpu´ 1q cannot equal u. Whether s is even or odd, we let w1 “ wv

su. Now
we find that w1piq “ wpiq for i “ 0, . . . , u´ 2, while w1pu´ 1q “ s´ 1´wpu´ 1q. We
obtain

Mpw1q´Mpwq “

#

2u´ 1´ 2wpu´ 1q ps evenq

4u´ 4wpu´ 1q ps oddq

which in either case is negative, so again we can apply the inductive hypothesis.
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By restricting the level t action of S̃s on Z, we obtain a level t action of H̃s on Z. As
with S̃s, we can describe the image of this action explicitly.

Proposition 4.2. The image of the level t action of H̃s on Z is
!

w P H̃s

ˇ

ˇ

ˇ
wpmq ” m pmod tq for all m P Z

)

.

Proof. Let H̃s,t denote the image of H̃s under the level t action of H̃s on Z, and let H
denote the given subgroup of H̃s. Recall that v̊ denotes the image of v P H̃s under the
level t action on Z. From Proposition 3.5 we know that v̊i P S̃s and v̊ipmq ” m pmod tq
for all i P Z{sZ and m P Z. It is easy to check that in addition v̊ip´1´mq “ ´1´ v̊ipmq
for all m, so we have v̊i P H. Hence H̃s,t “ x v̊i | i P Z{sZy is contained in H.

For the converse, we follow the proof of Proposition 3.5. Suppose we are given x P H;

for i P Z we let m “ it´ s˝t, and set wpiq “ i`
xpmq´m

t
. Then (from the proof of

Proposition 3.5) w P S̃s and x “ ẘ. Moreover, one can easily check that since x P H̃s we
have w P H̃s too. So x lies in H̃s,t.

Now we consider the action of H̃s on s-cores. We begin with the following lemma; note
that this is where we really require the term ´s˝t in the definition of the level t action of
S̃s on Z.

Lemma 4.3. Suppose λ is an s-core and i P Z{sZ. Under the level t action of S̃s on Cs
we have pw̌iλq

1 “ w̌´ipλ
1q.

Proof. It is well-known and easy to prove that

Bλ1

“
 

´1´ b
ˇ

ˇ b P ZzBλ
(

for any partition λ. The result now follows from the definition of the level t action of S̃s

via beta-sets.

Example. Suppose s “ 5, t “ 2 and λ “ p4, 12q. Then

Bλ “ t3,´1,´2,´4,´5,´6, . . . u.

To apply w̌
s1 to λ, we subtract 2 from all elements of Bλ congruent to 0 modulo 5, and

add 2 to all elements congruent to 3. We obtain

t5, 0,´1,´4,´5,´6, . . . u,

which is the beta-set of p6, 22q. So w̌
s1p4, 1

2q “ p6, 22q.
Now consider λ1 “ p3, 13q. We have

Bλ1

“ t2,´1,´2,´3,´5,´6,´7, . . . u.

To apply w̌
s4, we subtract 2 from all elements congruent to 1 modulo 5, and add 2 to all

elements congruent to 4. We obtain

t2, 1,´2,´3,´4,´5,´7,´8,´9, . . . u “ Bp32,14q,

so w̌
s4λ
1 “ p32, 14q “ p6, 22q1, verifying Lemma 4.3 in this case.
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Using Lemma 4.3 and the relations for the generators wi given in Section 3.1, we
deduce the following.

Corollary 4.4. If λ P Ds and w P H̃s, then under the level t action of S̃s on Cs we have
w̌λ P Ds.

In fact, it is not hard to show that (for any value of t) H̃s is the setwise stabiliser of
Ds under the level t action of S̃s on Cs.

So we have a level t action of H̃s on Ds, which we may also denote w ÞÑ w̌. Given
λ P Ds, let StabSCs,tpλq denote the stabiliser of λ under this action. Now we can state
our main conjecture for self-conjugate cores.

Conjecture 4.5.
ÿ

λPDsXDt

|λ|
|StabSCs,tpλq|

ÿ

λPDsXDt

1

|StabSCs,tpλq|

“

$

’

’

&

’

’

%

ps´ 1qpt2´ 1q

24
pif t is oddq

ps´ 1qpt2` 2q

24
pif t is evenq.

The rest of this section follows the structure of Section 3: we begin by giving a formula
for |StabSCs,tpλq|, and examining the connection to Johnson’s lattice of s-cores. We then
consider actions of H̃s on finite sets of self-conjugate s-cores, which will enable us to phrase
Conjecture 4.5 in terms of random self-conjugate s-cores, and to give an explicit formula
for the denominator in the weighted average in Conjecture 4.5.

We begin by showing that, as in the non-self-conjugate case, the level t orbit containing
a self-conjugate s-core λ is determined by the t-core of λ. First we make a definition: say
that an s-set X is symmetric if s´ 1´x P X for every x P X.

Lemma 4.6. Suppose λ P Cs. Then λ “ λ1 if and only if Spλq is symmetric.

Proof. The relationship between Bλ and Bλ1

given in the proof of Lemma 4.3 yields
Spλ1q “ ts´ 1´x | x P Spλqu for any λ P Cs. The result follows.

Proposition 4.7. If λ P Ds, then the t-core of λ lies in the same orbit as λ under the
level t action of H̃s on Ds.

Proof. We follow the last part of the proof of [F1, Proposition 4.3]. Let O be the
orbit containing λ, and let ν be a partition in this orbit for which the sum

ř

kPSpνq k
2 is

minimised. If we can show that ν is a t-core, then ν must be the t-core of λ (since the
level t action of S̃s on Cs preserves the t-core of an s-core).

Suppose for a contradiction that ν is not a t-core. For each i P Z{sZ let ki be the
unique element of Spνq X i. By Lemma 3.8, there must be some j P Z{sZ such that
kj ą kj´t` t. By Lemma 4.6 Spνq is symmetric, so we also have kt´j´1 ą k´j´1` t. Let
i P Z{sZ be such that j “ it´ s˝t, and consider several cases.
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• Suppose i “ s0 or s is even and i “ su. Then wi “ vi P H̃s, so w̌iν lies in O. Applying
ẘi to Spνq amounts to replacing kj and kj´t with kj ´ t and kj´t` t. But then

ÿ

kPSpw̌iνq

k2
´

ÿ

kPSpνq

k2
“ pkj ´ tq

2
`pkj´t` tq

2
´ k2

j ´ k
2
j´t “ ´2tpkj ´ kj´t´ tq ă 0,

contradicting the choice of ν.

• Suppose i “ sl or´sl, where 1 6 l 6 u´1, and consider v̌iν “ w̌iw̌´iν. The conditions
on l mean that j, j´ t, t´ j´ 1,´j´ 1 are distinct, so applying v̊i to Spνq amounts
to replacing kj, kj´t, kt´j´1, k´j´1 with kj´ t, kj´t` t, kt´j´1´ t, k´j´1` t. As in the
previous case we get

ř

kPSpv̌iνq k
2 ă

ř

kPSpνq k
2, a contradiction.

• Suppose s is odd and i “ su. Now consider v̌iν “ w̌
suw̌´suw̌suν. We now have j “ su,

so that j “ ´j ´ 1. Hence applying v̊i to Spνq amounts to replacing kj`t and kj´t
with kj`t´ 2t and kj´t` 2t. As in the previous cases we reach a contradiction.

• Finally suppose s is odd and i “ ´su. As in the previous case, we can apply v̌i and
reach a contradiction.

Hence we get the following analogue of Proposition 3.3.

Corollary 4.8. Suppose λ, µ P Ds. Then λ and µ have the same t-core if and only if they
lie in the same orbit under the level t action of H̃s on Ds.

Proof. If λ and µ lie in the same level t orbit of H̃s, then they lie in the same level t
orbit of S̃s and so have the same t-core by Proposition 3.3. The converse follows from
Proposition 4.7.

4.2 s-sets and stabilisers

Next we show how to compute |StabSCs,tpλq| from the s-set for λ, when λ is a self-
conjugate s-core. The method here is the same as in Proposition 3.7, but the statement
is more complicated.

Proposition 4.9. Suppose λ P Ds. For i P Z, let ci “ |SpλqX pi` tZq|.

1. If s and t are both odd, let y “ pcu´ 1q{2. Then

|StabSCs,tpλq| “ 2yy!

u`pt´1q{2
ź

i“u`1

ci!.

2. If t is even, let y “ pcu´ 1q{2 and z “ cu`t{2{2. Then

|StabSCs,tpλq| “ 2y`zy!z!

u`pt´2q{2
ź

i“u`1

ci!.
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3. If s is even, let y “ cu`pt´1q{2{2. Then

|StabSCs,tpλq| “ 2yy!

u`pt´3q{2
ź

i“u

ci!.

Proof. We begin exactly as in the proof of Proposition 3.7. |Stabs,tpλq| equals the number
of elements of H̃s fixing Spλq setwise under the level t action on Z. The fact that Spλq is
a symmetric s-set guarantees that if v is a permutation of Spλq satisfying vps´ 1´ iq “
s´ 1´ vpiq for all i P Spλq, then there is a unique element of H̃s extending v. By
Proposition 4.1, this element of H̃s lies in the image of the level t action if and only
if if fixes every integer modulo t, which happens if and only if v fixes every element
of Spλq modulo t. Since the level t action of S̃s (and hence the level t action of H̃s)
on Z is faithful, different permutations of Spλq correspond to different elements of S̃s,
so the size of the stabiliser is just the number of permutations v of Spλq that satisfy
vps´ 1´ iq “ s´ 1´ vpiq and vpiq ” i pmod tq for all i P Spλq. Call such a permutation
good.

Given j P Z{tZ, let Spλqj “ Spλq X j. Then any good permutation must permute
Spλqj. If j ‰ s´ 1´ j, then any permutation of Spλqj can occur as the restriction of a
good permutation v, and the condition that vps´1´ iq “ s´1´vpiq for all i then uniquely
determines the restriction of v to Spλqs´1´j. On the other hand, if j “ s´ 1´ j, then the
restriction of a good permutation v to Spλqj must itself satisfy vps´ 1´ iq “ s´ 1´ vpiq
for all i; the number of permutations of Spλqj achieving this is 2yy!, where y “ t1

2
|Spλqj|u.

Combining these observations with an analysis of when j equals s´ 1´ j (which
depends on the parities of s and t) yields the formulæ in the proposition.

Now as in Section 3.5 we connect this result to the lattice of s-cores; in the interests
of brevity, we omit some of the details here. Recall the affine space

P s
“

!

x P Rs
ˇ

ˇ

ˇ

ř

iPZ{sZ xi “
´

s

2

¯)

and the lattice of s-cores
Λs “ txλ | λ P Csu .

Define
Qs
“ tx P P s

| x´1´i “ s´ 1´xi for all i P Z{sZu .

By Lemma 4.6, an s-core λ is self-conjugate if and only if xλ P Q
s. So the set txλ | λ P Dsu

is the lattice ΛsXQ
s, which we call the lattice of self-conjugate s-cores.

As with Λs, we can identity the set txλ | λ P DsXDtu geometrically. Recall that Hj

denotes the hyperplane in P s defined by the equation xj´xj´t “ t, and that SCsptq is the
simplex bounded by these hyperplanes. Define Jj :“ Hj XQ

s and SDsptq :“ SCsptqXQ
s.

Then SDsptq is bounded by the hyperplanes Jj in Qs, and it is immediate from Lemma 3.8
that if λ P Ds, then λ is a t-core if and only if xλ lies in SDsptq.

Note that Jj “ Jt´1´j for each j, so there are only u`1 distinct hyperplanes Jj. Since
Qs is a u-dimensional space, this means that SDsptq is a simplex in Qs.
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Example. Consider the case ps, tq “ p4, 5q. In Figure 4 we illustrate part of the lattice
of self-conjugate 4-cores, labelling each point with its coordinates x

s0, xs1, xs2, xs3 and with
the corresponding 4-core. The lines drawn are the hyperplanes J

s0, J
s1 “ J

s3 and J
s2. The

triangle bounded by these lines is SD4p5q, and the points of Λs it contains are precisely
the points xλ for λ a self-conjugate p4, 5q-core.

p∅q

0, 1, 2, 3

p1q

4, 1, 2,´1

p2, 1q

0, 5,´2, 3

p22q

4, 5,´2,´1

p3, 12q

0,´3, 6, 3

p3, 2, 1q

4,´3, 6,´1

p4, 13q

´4, 1, 2, 7

p5, 2, 13q

8, 1, 2,´5

p4, 3, 2, 1q

´4, 5,´2, 7

p5, 32, 12q

8, 5,´2,´5

p42, 22q

´4,´3, 6, 7

p5, 4, 3, 2, 1q

8,´3, 6,´5

p6, 3, 2, 13q

0, 9,´6, 3

p6, 32, 13q

4, 9,´6,´1

p6, 5, 4, 3, 2, 1q

´4, 9,´6, 7

p8, 5, 23, 13q

´8, 1, 2, 11

p62, 42, 22q

8, 9,´6,´5

p8, 5, 4, 3, 2, 13q

´8, 5,´2, 11

p8, 52, 32, 13q

´8,´3, 6, 11

p8, 7, 6, 5, 4, 3, 2, 1q

´8, 9,´6, 11

J
s0J

s1

J
s2

Figure 4: 5-cores inside the lattice of self-conjugate 4-cores

We illustrate the case ps, tq “ p5, 4q similarly in Figure 5.

Recall that S̃s acts on P s via the map θ, under which wi maps to the reflection rit´s˝t.
It can be shown (essentially using Proposition 4.2) that the stabiliser of Qs under this
action is precisely H̃s. So we have an action (which we will also denote θ) of H̃s on Qs. If
we let r1j : Qs Ñ Qs denote the reflection in the hyperplane Jj, then θ maps vi to r1it´s˝t
for each i. We have an analogue of Lemma 3.10 for self-conjugate ps, tq-cores, from which
we may deduce the following analogue of Corollary 3.11.

Proposition 4.10. If λ is a self-conjugate ps, tq-core, then StabSCs,tpλq is isomorphic to
the group generated by

 

r1j
ˇ

ˇ xλ P Jj
(

.

Example. Looking again at the last example with ps, tq “ p4, 5q, we see that for λ P
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p∅q

0, 1, 2, 3, 4

p1q

5, 1, 2, 3,´1

p2, 1q

0, 6, 2,´2, 4

p22q

5, 6, 2,´2,´1

p4, 13q

0,´4, 2, 8, 4

p4, 2, 12q

5,´4, 2, 8,´1

p5, 14q

´5, 1, 2, 3, 9

p6, 2, 14q

10, 1, 2, 3,´6

p5, 3, 2, 12q

´5, 6, 2,´2, 9

p6, 32, 13q

10, 6, 2,´2,´6

p7, 3, 2, 14q

0, 11, 2,´7, 4

p52, 23q

´5,´4, 2, 8, 9

p7, 32, 14q

5, 11, 2,´7,´1

p6, 5, 3, 22, 1q

10,´4, 2, 8,´6

p9, 5, 23, 14q

0,´9, 2, 13, 4

p7, 6, 4, 3, 22, 1q

´5, 11, 2,´7, 9

p9, 5, 3, 22, 14q

5,´9, 2, 13,´1

p72, 42, 23q

10, 11, 2,´7,´6

p9, 62, 33, 13q

´5,´9, 2, 13, 9

p9, 7, 6, 4, 32, 2, 12q

10,´9, 2, 13,´6

p12, 8, 4, 3, 24, 14q

0, 16, 2,´12, 4

p12, 8, 42, 24, 14q

5, 16, 2,´12,´1

J
s1

J
s4

J
s0

Figure 5: 4-cores inside the lattice of self-conjugate 5-cores

D4XD5 we have

|StabSC4,5pλq| “

$

’

&

’

%

1 pλ “ ∅q
2 pλ “ p1q, p2, 1q, p22q, p4, 13qq

8 pλ “ p6, 32, 13qq.

So the weighted average in Conjecture 4.5 is

0
1
` 1

2
` 3

2
` 4

2
` 7

2
` 15

8
1
1
` 1

2
` 1

2
` 1

2
` 1

2
` 1

8

“ 3 “
p4´ 1qp52´ 1q

24
,

and Conjecture 4.5 holds in this case.
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If we take ps, tq “ p5, 4q instead, then we obtain

|StabSC5,4pλq| “

$

’

&

’

%

2 pλ “ ∅, p1q, p22qq

4 pλ “ p2, 1qq

8 pλ “ p4, 13q, p6, 32, 13qq,

so the weighted average in Conjecture 4.5 is now

0
2
` 1

2
` 3

4
` 4

2
` 7

8
` 15

8
1
2
` 1

2
` 1

2
` 1

4
` 1

8
` 1

8

“ 3 “
p5´ 1qp42` 2q

24
.

4.3 Actions on finite sets of self-conjugate cores

Now we consider actions on finite sets of self-conjugate s-cores, following the approach
in Section 3.6. Given N P N, let DpNqs “ CpNqs XDs; that is, the set of self-conjugate s-cores
λ such that k´ l ă Ns for all k, l P Spλq.

As with CpNqs , we begin by enumerating the elements of DpNqs .

Lemma 4.11. |DpNqs | “ Nu.

Proof. Choosing an element of DpNqs amounts to choosing a symmetric s-set whose ele-
ments differ by less than Ns. We define a shifted doubled symmetric s-set to be a set of s
integers all of the same parity and pairwise incongruent modulo 2s, which is fixed by the
map x ÞÑ ´x.

There is an obvious bijection from symmetric s-sets to shifted doubled symmetric s-
sets, which sends an s-set X to t2x´ s` 1 | x P Xu. Moreover, the elements of X differ
by less than Ns if and only if the elements of the corresponding shifted doubled symmetric
s-set differ by less than 2Ns. So it suffices to count the shifted doubled symmetric s-sets
contained in r1´Ns,Ns´ 1s. So suppose Y is such a set.

Suppose first that s is odd. Then |Y | is odd, so Y must contain 0. Furthermore, for
each i P t2, 4, . . . , s´1u Y must contain exactly one integer in r1´Ns,Ns´1s congruent
to i modulo 2s, and must also contain the negative of this integer. So there are N ps´1q{2

possibilities for Y .
Now suppose s is even. Then the elements of Y must be odd: if the elements of Y are

even, then one of them, say y, is divisible by s; but then y and ´y are congruent modulo
2s and both lie in Y , which is a contradiction unless y “ 0, but this would imply that |Y |
is odd, also a contradiction. Now we can see that there are N s{2 possibilities for Y : for
each i P t1, 3, . . . , s´1u, Y must contain exactly one of the N integers in r1´Ns,Ns´1s
congruent to i modulo 2s, and must also contain the negative of this integer.

Next we want to show that the level t action of S̃s on CpNqs restricts to an action of
H̃s on DpNqs . To do this, recall the equivalence relation ”N from Section 3.6. We have the
following analogue of Proposition 3.13.

Lemma 4.12. Each equivalence class in Ds under the relation ”N contains a unique
element of DpNqs .
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Proof. The uniqueness follows immediately from Proposition 3.13. For existence, we
follow the proof of Proposition 3.13. Suppose λ P Ds but λ R DpNqs ; then there are
k, l P Spλq such that k´ l ą Ns. We may as well take k, l to be the largest and smallest
elements of Spλq, and the fact that Spλq is symmetric then implies that k` l “ s´1. As in
the proof of Proposition 3.13 we replace Spλq with Spνq “ SpλqYtk´Ns, l`Nsuztk, lu,
and the fact that k ` l “ s´ 1 guarantees that this s-set is symmetric, so ν is self-
conjugate. By induction there is µ P DpNqs with µ ”N ν ”N λ.

Now recall that if w P S̃s and λ P CpNqs , then ŵλ is defined to be the unique element
of CpNqs for which ŵλ ”N w̌λ.

Proposition 4.13. The map w ÞÑ ŵ restricts to an action of H̃s on DpNqs .

Proof. We need to show that if λ is self-conjugate and w P H̃s, then ŵλ is self-conjugate.
By Corollary 4.4 we have w̌λ P Ds, and by definition ŵλ is the unique element of CpNqs for
which ŵλ ”N w̌λ. But by Lemma 4.12, the unique such core ŵλ lies in DpNqs .

We will refer to the action in Proposition 4.13 as the level t action of H̃s on DpNqs .

Example. Suppose s “ 5 and N “ 4. Then there are sixteen cores in DpNqs . We illustrate
the level t action for t “ 1 and 2 in Figures 6 and 7. In these diagrams, an edge labelled
sa for a P t0, 1, 2u represents the action of v̂

sa; if there is no edge labelled a meeting a core
λ, then v̂

saλ “ λ.

Now we consider the kernel of the level t action on Dptqs . As in Section 3.6, we now
specialise to the case where N is divisible by t. Recall that Kpnq is the set of elements of
S̃s that fix every integer modulo ns.

Proposition 4.14. Suppose n P N and that nt ą 2. Then the kernel of the level t action
of H̃s on Dpntqs is Lpnq :“ H̃sXK

pnq.

Proof. Take w P H̃s, and suppose first that wpmq ” m pmod sq for all m P Z. As we saw

in the proof of Proposition 3.15, for any λ P Cpntqs we have ŵλ “ λ if and only if w P Kpnq.
Restricting attention to λ P Dpntqs , we find that w lies in the kernel of the level t action of
H̃s on Dpntqs if and only if w P Kpnq.

Now suppose there is m P Z such that wpmq ı m pmod sq; note that if s is odd then
by Proposition 4.1 m ı u pmod sq. Setting x “ mt´ s˝t, we have ẘpxq ı x pmod sq, and
if s is odd then x ı u pmod sq.

If we can find a symmetric s-set containing x and an integer y such that y ” ẘpxq
pmod sq but y ı ẘpxq pmod nstq, then we can proceed as in the proof of Proposition 3.15.
Since x ı u pmod sq, we can certainly find symmetric s-sets containing x. The only
situation in which we are not free to take y “ ẘpxq ` s is if ẘpxq ” ´1´ x pmod sq; in
this case, if X is a symmetric s-set which contains x, then it must contain s´ 1´ x, so
cannot contain any other integer y ” ẘpxq pmod sq. So suppose we are in this situation.
If we have s´ 1´ x ı ẘpxq pmod nstq then we can proceed as above, so assume that
s´ 1´ x ” ẘpxq pmod nstq. Repeating the argument with x` s in place of x, we can
also assume that ´1´x ” ẘpx` sq pmod nstq. But this yields 2s ” 0 pmod nstq, so that
nt 6 2, contrary to assumption.
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∅

p1q

p2, 1q

p2, 2q

p4, 2, 12q

p4, 13q

p5, 14q

p6, 2, 14q

p7, 3, 2, 14q

p7, 32, 14q

p6, 32, 13q

p5, 3, 2, 12q

p52, 23q

p6, 5, 3, 22, 1q

p7, 6, 4, 3, 22, 1q

p72, 42, 23q

s0

s1

s0

s2

s1

s2

s0

s1

s0

s2

s0

s0

s2

s1

s0

s1

s0s1

Figure 6: The level 1 action of H̃5 on Dp4q5
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∅

p1q

p2, 1q

p2, 2q

p4, 2, 12q

p4, 13q

p5, 14q

p6, 2, 14q

p7, 3, 2, 14q

p7, 32, 14q

p6, 32, 13q

p5, 3, 2, 12q

p52, 23q

p6, 5, 3, 22, 1q

p7, 6, 4, 3, 22, 1q

p72, 42, 23q

s2

s2

s1

s0

s1

s1

s2

s1

s2

s0

s1

s0

s1

s0

s1

Figure 7: The level 2 action of H̃5 on Dp4q5
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Next we prove an analogue of Lemma 3.16.

Lemma 4.15. Suppose n > 1. Then each self-conjugate ps, tq-core lies in Dpntqs . If

λ P Dpntqs , then the orbit containing λ under the level t action of H̃s on Dpntqs contains a
unique ps, tq-core, namely the t-core of λ.

Proof. The first statement is immediate from the corresponding statement in Lemma
3.16. For the second part, the uniqueness follows from Lemma 3.16, since the orbit
containing λ under the action of H̃s on Dpntqs is contained in a level t orbit of S̃s on Cpntqs .
The fact that the t-core of λ lies in the same orbit as λ follows from Corollary 4.8.

Now, as in Section 3, we consider the sizes of orbits. Recall that StabSCs,tpλq denotes
the stabiliser of λ under the level t action of H̃s on Ds.

Lemma 4.16. Suppose λ P Ds. Then StabSCs,tpλqXL
pnq “ t1u.

Proof. This is immediate from Lemma 3.17, using the fact that the level t action of H̃s

is just the restriction of the level t action of S̃s.

Now we consider the index of Lpnq in H̃s.

Lemma 4.17. The index of Lpnq in H̃s is p2nquu!.

Proof. We begin with the case n “ 1. Let H denote the setwise stabiliser of t0, . . . , s´1u
in H̃s. Then, exactly as in the proof of Lemma 3.19 we have H X Lp1q “ t1u, while
HLp1q “ H̃s. So |H̃s :Lp1q| “ |H|; this equals the number of permutations h of t0, . . . , s´1u
such that hpiq`hps´ 1´ iq “ s´ 1 for each i, which is 2uu!.

For the general case, we again copy the proof of Lemma 3.19: Lp1q is a free abelian
group of rank u, and Lpnq consists of the nth powers of elements in the group, so
|Lp1q :Lpnq| “ nu.

Now for λ P Dpntqs let StabSC
pnq
s,t pλq denote the stabiliser of λ under the level t action

of H̃s on Dpntqs . Then we have the following analogues of Lemma 3.18 and Corollary 3.20,
which are proved in exactly the same way.

Lemma 4.18. Suppose λ P Dpntqs . Then StabSC
pnq
s,t pλq “ Lpnq StabSCs,tpλq.

Corollary 4.19. Suppose n > 1 and λ P Dpntqs . Then the size of the orbit containing λ
under the level t action of H̃s on Dpntqs is p2nquu!{|StabSCs,tpλq|.

As with Lemma 3.18, this result enables us to give a rigorous interpretation of Con-
jecture 4.5 in terms of random self-conjugate s-cores. Given n > 1, consider the level t
action of H̃s on Dpntqs . By Lemma 4.15 each orbit contains a unique ps, tq-core, which is

the common t-core of all the partitions in this orbit. Hence if we select λ P Dpntqs uniformly
randomly, then the left-hand side of Conjecture 4.5 gives the expected size of the t-core
of λ.
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4.4 The denominator

As in Section 3.7, we derive a formula for the denominator appearing in Conjecture 4.5.
This is proved in exactly the same way as Proposition 3.21.

Proposition 4.20.
ÿ

λPDsXDt

1

|StabSCs,tpλq|
“

tu

2uu!
.
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