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Abstract

For a graph G, the generating function of rooted forests, counted by the num-
ber of connected components, can be expressed in terms of the eigenvalues of the
graph Laplacian. We generalize this result from graphs to cell complexes of arbi-
trary dimension. This requires generalizing the notion of rooted forest to higher
dimension. We also introduce orientations of higher dimensional rooted trees and
forests. These orientations are discrete vector fields which lead to open questions
concerning expressing homological quantities combinatorially.

1 Introduction

The celebrated matrix-tree theorem gives a determinantal formula for the number of
spanning trees of a graph. Specifically, for a graph G, the number τ(G) of spanning trees
is expressed in terms of the Laplacian matrix LG by:

τ(G) = det(LvG), (1.1)

where LvG is the matrix obtained from LG by deleting the row and column corresponding
to a vertex v (any vertex gives the same determinant). One of the known generalizations
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of the matrix-tree theorem is a counting formula for rooted forests (acyclic subgraph with
one marked vertex per component). Namely, the generating function of the rooted forests
of a graph G, counted by the number of connected components, is

∑

F⊆G

xκ(F ) = det(LG + x Id) =
∏

λ

(x+ λ), (1.2)

where the sum is over all rooted forests of G, the product is over the eigenvalues of LG,
and κ(F ) denotes the number of connected components of the forest F . This formula
appears, for instance, in [4], where it is credited to Kelmans. Note that (1.2) implies in
particular that the number of rooted spanning trees of G is

[x1] det(LG + x Id) =
∑

v∈V

det(LvG) = |V | det(LvG),

hence the number of unrooted spanning trees is det(LvG), thereby recovering (1.1).
Building on work of Kalai [13], the previous works [1, 7, 8, 14] gave generalizations

of the matrix-tree theorem (1.1) for higher dimensional analogues of graphs, namely sim-
plicial complexes; see also the survey [10]. More specifically, these works introduced the
notion of spanning trees (and more generally maximal spanning forests) for simplicial
complexes (and more generally cell complexes). These higher dimensional spanning trees
are the subcomplexes that satisfy certain properties generalizing the graphical properties
of being acyclic, connected, and having one less edge than the number of vertices. It
has been shown that the matrix-tree theorem (1.1) generalizes to this higher dimensional
setting. An important difference in higher dimensions, however, is that the quantity τ(G)
in (1.1) has to be understood as a weighted count of spanning trees. Each spanning tree T
of G is counted with multiplicity equal to its homology cardinality |H(T )| squared. Kalai
was the first to understand the significance of this weighted count [13], and in particular
he derived the following higher dimensional analogue of Cayley’s theorem for the complete
simplicial complex Kd

n of dimension d on n vertices:

τ(Kd
n) = n(n−2

d ).

No closed formula is known for the unweighted count of the spanning trees of Kd
n.

The first goal of this paper is to generalize (1.2) to simplicial complexes of arbitrary
dimension; see Theorem 19. This generalization requires defining the higher dimensional
analogue of a rooted forest. Unlike in the graphical case (i.e. dimension 1), the rooted
forests are not disjoint unions of rooted trees. Moreover, the root of a forest is a non-
trivial structure (essentially an entire co-dimension one tree). Lastly, the enumeration is
again weighted by homological quantities. For instance, for the complete complex Kd

n our
result gives ∑

(F,R)

|Hd−1(F,R)|2x|R| = x(n−1
d−1)(x+ n)(

n−1
d ), (1.3)

where the sum is over the pairs (F,R) where F is a forest of Kd
n, R is a root of F ,

and |Hd−1(F,R)| is the cardinality of the relative homology group (see Section 3 for
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definitions). We also show that other generalizations of the matrix-tree theorem such as
those for directed weighted graphs have analogues in higher dimension.

Our second goal is to define the notion of fitting orientation for rooted forests of a
complex. In dimension 1, the unique fitting orientation of a rooted forest is the orien-
tation of its edges making each tree oriented towards its root. In higher dimension, a
fitting orientation of a forest is a bijective pairing between the facets and the non-root
ridges, see Figure 1. Interestingly, in dimension greater than 1, there can be several fitting
orientations of a rooted forest (F,R). In fact, we show that the number of fitting orienta-
tions of (F,R) is at least |Hd−1(F,R)|, and show how to express |Hd−1(F,R)| as a signed
count of the fitting orientations of (F,R). We consider, but leave open, the possibility of
expressing |Hd−1(F,R)| as an unsigned count of certain fitting orientations.

(b)(a)

Figure 1: The fitting orientations of a graphical rooted tree and a two dimensional rooted
tree.

Our last goal is of pedagogical nature. We aim to give a self-contained presentation
of simplicial trees and forests in a way that makes them more immediately accessible to
combinatorialists with little knowledge of homological algebra.

This paper is organized as follows. In Section 2 we recall and extend the definitions
for forests and roots of simplicial complexes. We also give geometric interpretations of
these objects (starting from linear algebra definitions). In Section 3, we define rooted
forests and their the homological weights. In Section 4, we establish the generalization
of (1.2). Lastly, in Section 5 we define the fitting orientations of rooted forests, study
their properties and conclude with some open questions.

2 Forests and roots of simplicial complexes

In this section we review and extend the theory of higher dimensional spanning trees
developed in [1, 7, 8, 13, 14]. For simplicity, we will restrict our attention to simplicial
complexes throughout, but all results extend more generally to cell complexes.

2.1 Simplicial complexes

A simplicial complex on n vertices is a collection G of subsets of [n] which is closed under
taking subsets, that is, if g ∈ G and f ⊂ g then f ∈ G. Elements of G are called faces.
A k-dimensional face, or k-face for short, is a face f of cardinality k + 1. The dimension
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of a complex is the maximal dimension of its faces. Observe that graphs1 are the same
as 1-dimensional simplicial complexes : the edges are the 1-dimensional faces, and the
vertices are the 0-dimensional faces.2

1 2

3

4 5

∂G
2 =




1 1 0 0 0
−1 0 1 0 0
0 −1 −1 0 0
1 0 0 1 0
0 1 0 −1 1
0 0 0 0 −1
0 0 1 1 0
0 0 0 0 1




{1, 2}

{1, 2, 3}

{1, 3}
{1, 4}
{2, 3}
{2, 4}
{2, 5}
{3, 4}
{4, 5}

{1, 2, 4} {1, 3, 4} {2, 3, 4} {2, 4, 5}{1, 3, 4}

G

G={∅, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {4, 5},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {2, 4, 5}}

Figure 2: A simplicial complex G of dimension 2, and its incidence matrix ∂G2 . The
standard orientations of the 1-faces and 2-faces are indicated.

Let k > 0. The kth incidence matrix of a simplicial complex G is the matrix ∂Gk
defined as follows:
• the rows of ∂Gk are indexed by the (k− 1)-faces and the columns are indexed by the
k-faces,
• the entry ∂Gk [r, f ] corresponding to a (k − 1)-face r and a k-face f is (−1)j if f =
{v0, v1, . . . , vk} with v0 < v1 · · · < vk and r = f \ {vj} for some j, and 0 otherwise.

To fix a convention, we will order the rows and columns of ∂Gk according to the lexico-
graphic order of the faces as in Figure 2 (but all results are independent of this convention).

Remark 1. There is a natural matroid structure associated to any simplicial complex G.
Namely, the simplicial matroid MG of a d-dimensional complexG is the matroid associated
with the matrix ∂Gd : the elements of MG are the d-faces of G, and the independent sets
of MG are the sets of d-faces such that the corresponding columns of ∂Gd are independent.
See [3] for more on this class of matroids which generalize graphic matroids. See also [5]
which gives a polyhedral proof of the matrix tree theorem for subclass of regular matroids.

Remark 2. Every simplicial complex has a geometric realization in which the k-faces are
convex hulls of k + 1 affinely independent points. A 0-face is a point, a 1-face a segment,
a 2-face a triangle, etc. The complex is a geometric space constructed by gluing together
simplices along smaller-dimensional simplices.

A complex of dimension 2 is represented in Figure 2. On this figure we also show the
standard orientation of each face, that is, the orientation corresponding to the order of the
vertices. The incidence matrix records whether two faces r, f are incident : ∂Gk [r, f ] 6= 0 if

1Our graphs are finite, undirected, and have neither loops nor multiple edges.
2Observe that simplicial complexes are special cases of hypergraphs: if the faces of a simplicial complex

are seen as hyperedges then a simplicial complex is a hypergraph whose collection of hyperedges is closed
under taking subsets.
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r is on the boundary of f . Furthermore, ∂Gk [r, f ] = +1 if when traversing the boundary
of f according to the orientation of f , the edge r is traversed in the same direction it is
oriented. Otherwise, ∂Gk [r, f ] = −1.

2.2 Forests of a complex

Definition 3. Let G be a d-dimensional complex, and let F be a subset of the d-faces.
We say that F is a forest of G if the corresponding columns of ∂Gd are independent. We say
that F is a spanning subcomplex of G if the corresponding columns of ∂Gd are of maximal
rank. Accordingly, we say that F is a spanning forest of G if the corresponding columns
of ∂Gd form a basis of the columns.

Example 4. For the complex represented in Figure 2, there are 4 spanning forests,
which correspond to the 4 ways of deleting one of the triangles on the boundary of the
tetrahedron.

Remark 5. The forests, spanning subcomplexes, and spanning forests of a complex G
correspond respectively to the independent sets, spanning sets, and bases of the simplicial
matroid MG.

We now discuss how these definitions naturally extend their counterparts in graph
theory. In the dimension 1 case, F is a forest if it is acyclic, and F is spanning if it has
the same number of components as G. In particular, spanning forests are subgraphs made
of one spanning tree per connected component of G.

In higher dimensions, let Gk denote the set of k-faces of G, and RGk the set of formal
linear combinations of k-faces with coefficient in R. Note that RGk is a vector space, and
that ∂Gk can be interpreted as the matrix of a linear map from RGk to RGk−1. This map is
called the boundary map in simplicial topology. It is not hard to show that ∂Gk−1 ◦∂Gk = 0.

Example 6. For the complex in Figure 2, ∂G2 ({1, 2, 3}) = {1, 2} − {1, 3} + {2, 3} and
∂G2 ({1, 2, 3} − {1, 2, 4}+ {1, 3, 4} − {2, 3, 4}) = 0.

A k-cycle of G is a non-zero element of RGk in the kernel ker(∂Gk ). Informally, a
k-cycle of G is a combination of k-faces such that their boundaries “cancel out”, as in
the preceding example. Note that a 1-cycle is a linear combination of cycles in the usual
sense of graph theory, while a 2-cycle is a linear combination of triangulated orientable
surfaces without boundary (i.e. spheres, and g-tori). We will say that a set S of k-faces
contains a k-cycle if there exists a k-cycle in RS.

By definition, a collection F of k-faces of G is a forest if and only if ker(∂Fk ) = {0},
that is, if F does not contain any k-cycle. This is a natural generalization of the condition
of being acyclic for graphs. Note here that in taking the boundary ∂Fk , we are implicitly
considering the simplicial complex formed from the k-faces of F and all possible subsets
of the k-faces.

Note that for any complex and any k > 1, the image of an element x ∈ RGk is a
(k − 1)-cycle because ∂Gk−1 ◦ ∂Gk = 0. A (k − 1)-cycle is called a G-boundary if it is in the
image Im(∂Gk ), that is, if it is the boundary of a combination of k-faces.
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By definition, a collection F of d-faces of G is a spanning subcomplex if and only if
Im(∂Fk ) = Im(∂Gk ), that is, if any G-boundary is an F -boundary.

We claim that the above condition is the generalization of being maximally connected
for subgraphs. Indeed, observe that in dimension d = 1, ∂G0 ({v}) = ∅ for every vertex v of
G. Hence, a 0-cycle is a linear combination of vertices with the sum of coefficients equal
to 0. Moreover a 0-cycle is a G-boundary if and only if in each connected component C
of G, the sum of the coefficients of the vertices in C is equal to 0. Thus, in dimension 1,
the G-boundaries are all F -boundaries if and only if F has the same number of connected
components as G.

Example 7. If G is a triangulated torus of dimension 2, then the spanning forests are
obtained from G by removing any one of the triangles (hence the forests are obtained by
removing any non-empty subset of triangles). If G is a triangulated projective plane (see
for instance Figure 5), then G itself is a spanning forest since it contains no 2-cycle.

Example 8. Let G be a triangulated sphere of any dimension d (these are the the higher
dimensional analogues of cycle graphs). The spanning forests are obtained by removing
exactly one of the d-faces, hence the forests of G are obtained from G by removing any
non-empty subset of d-faces.

The familiar reader will note that the conditions for being a spanning forest can be
efficiently expressed in terms of homology. Spanning forests F of a d-dimensional complex
G are characterized as the complexes whose maximal faces are the sets of d-faces satisfying
any two of the three following conditions:

(i) HF
d = {0} (F contains no d-cycle),

(ii) rankHF
d−1 = rankHG

d−1 (any G-boundary is an F -boundary),
(iii) |F | = |Gd| − rank(HG

d ) (the cardinality of F equals the rank of ∂Gd ).
In dimension 1, a spanning forest is called a spanning tree when G is connected.

For a d-dimensional complex, the condition G is connected can be generalized by the
condition that any (d− 1)-cycle is a G-boundary (i.e. ker(∂Gd−1) = Im(∂Gd )). In this case,
following [7], the spanning forests are also called spanning trees of G. However, unlike for
graphs, spanning forests are not in general disjoint unions of spanning trees.

2.3 Roots of a complex

Definition 9. Let G be a d-dimensional complex. Let R be a subset of the (d− 1)-faces,
and let R = Gd−1 \R. We say that R is relatively-free if the rows of ∂Gd corresponding to
the faces in R are of maximal rank. We say that R is relatively-generating if the rows of
∂Gd corresponding to the faces in R are independent. We say that R is a root of G if it
is both relatively-free and relatively-generating, that is, the rows of ∂Gd corresponding to
the faces in R form a basis of the rows.

When G is a graph, a subset of vertices R is relatively-free if it contains at most
one vertex per connected component, and relatively-generating if it contains at least one
vertex per connected component. Accordingly, roots of G are sets consisting of exactly
one vertex per connected component.
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We now explain how this generalizes to higher dimensions. First, it is easy to see that
R is relatively-free if and only if Im(∂Gd ) ∩ RR = {0}. Geometrically, this means that R
is relatively-free if and only if R contains no G-boundary. This generalizes the dimension
1 condition of containing at most one vertex per connected component of G.

Second, it is easy to see that R is relatively-generating if and only if for any (d−1)-face
s ∈ R, there exists r ∈ RR such that s + r ∈ Im(∂Gd ). Geometrically, this means that R
is relatively-generating if and only if any elements not in R forms a G-boundary with R.
This generalizes the dimension 1 condition of containing at least one vertex per connected
component.

Example 10. Let G be a 2-dimensional complex such that any 1-cycle is a boundary (for
instance, a triangulated disc, sphere, or projective plane). In this case, a set R of edges is
relatively-free if and only if it does not contain any 1-cycle, that is, if R is a forest of the
1-skeleton of G (its underlying graph). Moreover a set R of edges is relatively-generating
if any additional edge creates a 1-cycle with R, that is, if R connects any pair of vertices.
Thus, a set R is a root of G if and only if it is a spanning tree of the 1-skeleton of G; see
for instance Figure 3 (a) and (b).

Example 11. Let G be a triangulated 2-dimensional torus. In this case, some 1-cycles
are not G-boundaries, a set R of edges can be relatively-free even if it contains some
cycles. A set R of edges is relatively-free if and only if cutting along the edges of R
does not disconnect the torus. Moreover, R is relatively-generating if any additional edge
creates a G-boundary (i.e. a contractible cycle) with R. Hence, R is relatively-generating
if and only if cutting along the edges of R gives a disjoint union of triangulated polygons
without interior vertices. Thus, R is a root of G if and only if cutting along R gives a
triangulated polygon without interior vertices.

(a) (b) (c) (d)

Figure 3: Examples of rooted forests in dimension 2 (the root is indicated by thick lines).
Observe that in (c) and (d) the root contains some 1-cycles.

3 Rooted forests and their homological weights

Definition 12. Let G be a d-dimensional simplicial complex. A rooted forest of G is a
pair (F,R), where F is a forest of G, and R is a root of F 3. We call (F,R) a rooted
spanning forest if moreover F is a spanning forest of G.

3Formally, R is a root of the simplicial complex generated by F : the subcomplex containing all the
faces and subfaces of F .
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Example 13. Figure 3 shows four examples of rooted forests. In parts (a) and (b), the
root is a graphical spanning tree of the one-dimensional faces. On the other hand, the
root in part (c) contains a cycle and the root in part (d) contains two cycles. Figure 4 (a)
shows the 2-dimensional complex G which is the equatorial bipyramid. Figure 4 also
shows a rooted forest of G with three 2-faces. Again, in this case, the root is not an
acyclic graph (any root must contain a non-contractible 1-cycle).

(a) (b)

24

1

5

3

Figure 4: (a) The equatorial bipyramid G containing all 7 triangles supported on the
1-skeleton. (b) A rooted forest (F,R): the forest F is made of the three shaded triangles
while the root R is made of the bold edges.

Next we reproduce two lemmas which already appeared in [9]. We include the results
here in order to give proofs obtained from our linear algebra definitions.

Lemma 14. [9, Proposition 3.2] Let G be a d-dimensional simplicial complex, let F be a
set of d-faces, and let R be a set of (d−1)-faces. Let R = Gd−1\R and ∂R,F be the submatrix

of ∂Gd obtained by keeping the rows corresponding to R and the columns corresponding to
F . Then, (F,R) is a rooted forest if and only if |F | = |R| and det(∂R,F ) 6= 0.

Proof. Suppose first that (F,R) is a rooted forest. Since F is a forest, the columns of ∂Fd
are independent. Since R is a root of F , the rows of ∂Fd corresponding to R form a basis,
so that |F | = |R| and det(∂R,F ) 6= 0. Suppose now that |F | = |R| and det(∂R,F ) 6= 0.

Since det(∂R,F ) 6= 0, the columns of ∂Gd corresponding to F are independent, hence F is

a forest. Since |F | = |R| and det(∂R,F ) 6= 0, the rows of ∂Fd corresponding to R form a
basis, hence R is a root of F .

Given a set R of faces of a complex G, denote by G/R the cell complex obtained by
identifying all the vertices that belong to a face in R (this can be thought of as contracting

all the faces of R to a single point). Observe that ∂R,G is the incidence matrix ∂
G/R
d of the

cell complex G/R. Moreover, the conditions |F | = |R| and det(∂R,F ) 6= 0 hold if and only
if the rows of ∂R,G are independent (i.e. R is relatively-generating for G) and the columns

of ∂
G/R
d corresponding to F form a basis (i.e. F/R is a spanning forest of G/R). Thus,

Lemma 14 gives the following alternative characterization of rooted forests: (F,R) is a
rooted forest of G if and only if R is relatively-generating for G and F/R is a spanning
forest of G/R.

In order to state the next lemma, we need to introduce the homology groups asso-
ciated to a rooted forest. Thus far, we have considered formal linear combinations of
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faces of G with coefficients in R. We will now consider the sets ZGk which are the for-
mal linear combinations of k-faces of G with integer coefficients. Thus ZGk is a free
abelian group isomorphic to Z|Gk|, and the map ∂Gk is a group homomorphism. We denote
ImZ(∂Gk ) = ∂Gk (ZGk) and kerZ(∂Gk ) = ker(∂Gk ) ∩ ZGk the image and kernel of this group
homomorphism.

For all k, we have the following inclusion of subgroups:

ImZ(∂Gk+1) ⊆ ∂Gk+1(RGk+1) ∩ ZGk ⊆ kerZ(∂Gk ).

The kth homology group is the quotient group

HG
k := kerZ(∂Gk )�ImZ(∂Gk+1). (3.1)

It is easy to see that HG
k is a finite group if and only if ker(∂Gk ) = Im(∂Gk+1). However it

can happen that HG
k 6= 0 even if ker(∂Gk ) = Im(∂Gk+1).

Example 15. For the triangulated projective plane represented in Figure 5, we have

ker(∂G1 ) = Im(∂G2 ) (because any 1-cycle is a boundary), but HG
1 ' Z�2Z 6= 0. This is

because, while all 1-cycles of G can be obtained as boundaries of combinations of 2-faces
with real coefficients, some 1-cycles (such as C = {1, 2} + {2, 3} − {1, 3}) can only be
obtained with even multiplicity using integer coefficients. For example, if S denotes the
sum of all 2-faces oriented clockwise in Figure 5, then ∂2(S) = 2 · C.

Definition 16. Let G be a d-dimensional simplicial complex. Given a subset F of d-faces
and a subset R of (d− 1)-faces, consider the following group homomorphism

ΨF,R : ZF → ZGd−1�ZR,
x 7→ ∂Gd (x) + ZR.

The relative homology groups for the pair (F,R) are given by:

Hd(F,R) = ker ΨF,R,

Hd−1(F,R) = coker ΨF,R :=

(
ZGd−1�ZR

)
�Im(ΨF,R).

Lemma 17. [9, Proposition 3.5] If (F,R) is a rooted forest of G, then | det(∂R,F )| =
|Hd−1(F,R)|.
Proof. Recall that for any non-singular integer matrix M of dimension n × n one has

|det(M)| =
∣∣∣Z

n
�L
∣∣∣ where L is the subgroup of Zn generated by the columns of M . Thus

∣∣det(∂R,F )
∣∣ =

∣∣∣∣
ZR�LF,R

∣∣∣∣, where ∂R,F is the subgroup of ZR generated by the columns of

LF,R. Moreover, the isomorphism ZR ' ZGd−1�ZR gives LF,R ' Im(ΨF,R). Thus,

∣∣det(∂R,F )
∣∣ =

∣∣∣∣
ZR�LF,R

∣∣∣∣ =

∣∣∣∣

(
ZGd−1�ZR

)
�Im(ΨF,R)

∣∣∣∣ = |Hd−1(F,R)| .
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Remark 18. Readers familiar with algebraic topology will recognize the groups Hd(F,R)
and Hd−1(F,R) as the relative homology groups of the complexes F and R. In the case
|R| = |F | one has det(∂R,F ) 6= 0 if and only if Hd(F,R) = 0. Thus Lemma 14 can be

restated as: (F,R) is a rooted forest if and only if |R| = |F | and Hd(F,R) = 0.

4 Counting rooted forests

In this section we establish a determinantal formula, generalizing (1.2), for the generating
function of rooted forests enumerated by size.

The Laplacian matrix of a simplicial complex G of dimension d is the matrix

LG = ∂Gd · (∂Gd )T .

The rows and columns of LG are indexed by (d−1)-faces. For any (d−1)-face r, the entry
LG[r, r] is equal to the number of d-faces containing r. Moreover, for any (d − 1)-face
s 6= r, the entry LG[r, s] is 0 if r and s are not incident to a common d-face, and is (−1)i+j

if there exists a d-face f = {v0, . . . , vd} with v0 < · · · < vd such that r = f \ {vi} and
s = f \ {vj}.

Theorem 19. For a d-dimensional simplicial complex G, the characteristic polynomial
of the Laplacian matrix LG gives a generating function for the rooted forest of G. More
precisely, ∑

(F,R) rooted forest of G

|Hd−1(F,R)|2x|R| = det(LG + x · Id), (4.1)

where Id is the identity matrix of dimension |Gd−1|.
Formula (4.1) can also be enriched by attributing weights to the faces in the forest and

its root: if {xr}r∈Gd−1
and {yf}f∈Gd

are indeterminates indexed by the (d − 1)-faces and
d-faces of G respectively, then

∑

(F,R) rooted forest of G

|Hd−1(F,R)|2
∏

r∈R

xr
∏

f∈F

yf = det(LyG +X), (4.2)

where LyG = ∂Gd ·Y · (∂Gd )T , and where X (resp. Y ) is the diagonal matrix whose rows and
columns are indexed by Gd−1 (resp. Gd), and whose diagonal entry in the row indexed by
r is xr (resp. indexed by f is yf).

Remark 20. Equations (4.1) and (4.2) are closely related to Equations (7) and (8) of [15]
giving a general formula for the determinant of the form det(MYMT + x · Id) were M is
an arbitrary rectangular matrix and Y is a diagonal matrix. Indeed, (4.1) and (4.2) can
be obtained simply by combining Equations (7) and (8) of [15] with Lemmas 14 and 17.

Proof. It suffices to prove (4.2) since it implies (4.1) by setting xr = x for all r and yf = 1
for all f . We first define two matrices M,N whose rows are indexed by Gd−1 and whose
columns are indexed by Gd ∪ Gd−1. The matrix M (resp. N) is the matrix obtained by
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concatenating the matrix ∂Gd · Y (resp. ∂Gd ) with the matrix X (resp. Id). Observe that
LyG +X = M ·NT . Now, applying the Binet-Cauchy formula gives

det(LyG +X) = det(M ·NT ) =
∑

S⊆Gd∪Gd−1, |S|=|Gd−1|

det(MS) det(NS),

where MS and NS are the submatrices of M and N obtained by selecting only the columns
indexed by the set S. Let us fix S = F ∪ R with F ⊆ Gd, R ⊆ Gd−1, and |S| = |Gd−1|.
Let ∂R,F (resp. ∂y

R,F
) be the submatrix of ∂Gd (resp. ∂Gd · Y ) obtained by keeping the rows

corresponding to R and the columns corresponding to F . By rearranging the rows of MS

so that the bottom rows correspond to the elements in R we obtain a matrix with upper-
left block ∂y

R,F
, upper-right block 0, and lower-left block equal to the diagonal matrix XR

(with rows and column indexed by R) with diagonal entry xr in the row indexed by r ∈ R.
Thus,

det(MS) = ± det(∂y
R,F

)
∏

r∈R

xr = ± det(∂R,F )
∏

r∈R

xr
∏

f∈F

yf ,

where the second equality comes from the fact that ∂y
R,F

= ∂R,F · YF , where YF is the

diagonal matrix (with rows and columns indexed by F ) with diagonal entry yf in the row
indexed by f ∈ F . Since N is obtained from M by setting xr = 1 for all r and yf = 1 for
all f , we get det(NS) = ± det(∂R,F ) (with the same sign as in det(MS)). Hence

det(MS) det(NS) = det(∂R,F )2
∏

r∈R

xr
∏

f∈F

yf ,

and
det(LyG +X) =

∑

F⊆Gd, R⊆Gd−1, |F |+|R|=|Gd−1|

det(∂R,F )2
∏

r∈R

xr
∏

f∈F

yf .

By Lemma 14 only the pairs (F,R) corresponding to rooted forests of G contribute to
the above sum, and for these pairs Lemma 17 gives det(∂R,F )2 = |Hd−1(F,R)|2. This
gives (4.2).

Theorem 19 implies the Simplicial Matrix Tree Theorem derived in [1, 7, 8, 9, 13, 14]
which generalizes the usual matrix-theorem (1.1) to higher dimension.

Corollary 21 (Simplicial matrix-tree theorem). Let G be a simplicial complex and let R
be a root of G. Then

∑

F spanning forest of G

|Hd−1(F,R)|2 = det(LRG),

where LRG is the submatrix of LG obtained by deleting the rows and columns of LG corre-
sponding to faces in R.
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Proof. Note that R is a root of G if and only if it is the root of some, equivalently all,

spanning forests of G. Thus, extracting the coefficient of
∏

r∈R

xr in (4.2) and setting yf = 1

for all f gives the corollary.

Example 22. For the 2-dimensional complex G represented in Figure 4, we have

det(LG + x · Id) = x4(x+ 5)3(x+ 3)2 = x9 + 21x8 + 174x7 + 710x6 + 1425x5 + 1125x4.

Moreover, for any rooted forest (F,R) of G we have H1(F,R) = {0}. Thus Theorem 19
gives

∑

(F,R) rooted forest of G

x|R| = x9 + 21x8 + 174x7 + 710x6 + 1425x5 + 1125x4.

The complex has 1125 rooted spanning forests (which are in fact rooted spanning
trees). There are 15 spanning forests of G because one obtains a spanning forest by
either removing the equator face {2, 3, 4} and any other 2-face (6 possibilities), or keeping
the equator face and removing a 2-face from the top and a 2-face from the bottom (9
possibilities). For each of these spanning trees, there are 75 possible roots (which are the
spanning trees of the 1-skeleton of G), hence a total of 1125 = 15 × 75 rooted spanning
forests. This gives the coefficient of x4.

In general, the coefficient of xk gives the number of rooted forests with 9− k triangles
(since for any rooted forest |F |+ |R| = |Gd−1| = 9).

Example 23. For the triangulation of the real projective plane represented in Figure 5,
we have

det(LG + x · Id) = x5(x+ 3)4(x+ 3 +
√

5)3(x+ 3−
√

5)3

= x15 + 30x14 + 390x13 + 2880x12 + 13305x11 + 39906x10

+78040x9 + 97320x8 + 73440x7 + 30240x6 + 5184x5.

In this case, G is itself a spanning forest (actually a spanning tree). The possible roots
of G correspond to the spanning trees of the 1-skeleton of G. The 1-skeleton of G is the
complete graph K6, which has 64 spanning trees, hence there are 64 = 1296 possible roots
for G, and they have cardinality 5. Finally, for each root R of G, the homology group
H1(G,R) has order 2. Accordingly the coefficient of x5 is 22 · 1296 = 5184.

Example 24. LetKd
n be the complete complex of dimension d on n vertices. The eigenval-

ues of LKd
n

are 0 with multiplicity
(
n−1
d−1

)
and n with multiplicity

(
n−1
d

)
. Thus, Theorem 19

gives ∑

(F,R) rooted forest of Kd
n

|Hd−1(F,R)|2 x|R| = x(n−1
d−1)(x+ n)(

n−1
d ). (4.3)

Observe that some of the weights |Hd−1(F,R)| are greater than 1. For instance, the
triangulated projective plane F represented in Figure 5 is one of the spanning forests of
K2

6 , and for any rooting R of F we have |H1(F,R)| = 2.
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Example 25. Let Cd
n be the hypercube on 2n vertices in dimension d. It was shown in [8]

that the non-zero eigenvalues of LCd
n

are 2j for j ∈ {d, d + 1, . . . , n} with multiplicity(
j−1
d−1

)(
n
j

)
. Thus, Theorem 19 gives

∑

(F,R) rooted forest of Cd
n

|Hd−1(F,R)|2 x|R| = x( n
d−1)2n+1−d

n∏

j=d

(
1 +

2j

x

)(j−1
d−1)(

n
j)
. (4.4)

At present, both (4.3) and (4.4) have combinatorial proofs only for d = 1 (see [16,
2]). Finding a combinatorial proof for d > 2 represents a major challenge in bijective
combinatorics. The first difficulty is to interpret the term |Hd−1(F,R)| on the left-hand
side combinatorially. This is one of the motivations for the notion of fitting orientation
presented in the next section.

5 Orientations of rooted forests

In this section we define fitting orientations for rooted forests. Fitting orientations are a
generalization of the standard orientation of a rooted graphical forest in which each tree
is oriented towards its root-vertex. Namely, this is the unique orientation of the edges of
the forest such that every non-root vertex has outdegree 1.

Definition 26. Let G be a simplicial complex of dimension d. A fitting orientation of a
rooted forest (F,R) is a bijection φ between R := Gd−1 \ R and F , such that each face
r ∈ R is mapped to a face f ∈ F containing r. A bi-directed rooted forest of G is a triple
(F,R, φ, φ′) such that (F,R) is a rooted forest and φ, φ′ are fitting orientations.

Observe that for a graph G, the unique fitting orientation of a rooted forest (F,R) is
the bijection φ which associates an incident vertex v to each edge e = {u, v} ∈ F , where
v is the child of u in the rooted forest. This unique fitting orientation naturally identifies
with the standard orientation of (F,R) defined above.

An important difference in dimension d > 1, is that there can be several fitting orien-
tations for a rooted forest. For instance, Figure 5 shows the two fitting orientations for a
rooted forest of the projective plane.

Remark 27. Fitting orientations are a special case of discrete vector fields from discrete
Morse theory [12]. A discrete vector field is a collection of pairs of faces where each pair
(r, f) is such that: (1) dim(r) = dim(f) − 1, (2) r ⊂ f , (3) every face of the complex
is in at most one pair. Fitting orientations are not in general discrete gradient vector
fields, as gradient vector fields are forbidden to contain closed paths of faces (e.g. the
bold pairings for the 5 triangles at the bottom of the projective plane example). In [11]
Forman actually considers vector fields on graphs in relation to the graph Laplacian with
respect to a representation of the fundamental group of G.

Discrete vector fields do not require that the face pairings are only between faces in
the top two dimensions. One natural extension of a fitting orientation is to recursively
root and orient trees down in dimension. For example, for the projective plane, the root
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Figure 5: The two fitting orientations of a rooted forest (F,R) of a triangulated projective
plane. Here F consists of every triangle and R is indicated in bold lines.

is a graphical spanning tree, and this tree can be given a fitting orientation. Such recur-
sive orientations are then more similar to the bijections used in simplicial decomposition
theorems for f -vector characterizations, see for example [6, 17].

We now prove a lower bound for the number of fitting orientations of rooted forests.

Proposition 28. Let (F,R) be a rooted forest of a simplicial complex G. The num-
ber of fitting orientations of (F,R) is greater than or equal to the homological weight
|Hd−1(F,R)|. In particular, any rooted forest admits a fitting orientation.

Proof. By Lemma 17, |Hd−1(F,R)| = | det(∂R,F )|, where ∂R,F is the submatrix of ∂Gd with

rows corresponding to R = Gd−1 \ R and columns corresponding to F . Let us denote by
n = |F | = |R| the size of the matrix ∂R,F , and by ∂R,F [i, j] its coefficient in row i and
column j. We have

det(∂R,F ) =
∑

π∈Sn

sign(π)
n∏

i=1

∂R,F [i, π(i)],

where the sum is over all the permutation of [n] and sign(π) is the sign of the permutation
π. Now we identify the permutations π ∈ Sn with the bijections from R to F (via the
ordering of faces in R and F by lexicographic order), and we get

det(∂R,F ) =
∑

φ:R→F bijection

sign(φ)
∏

r∈R

∂Gd [r, φ(r)], (5.1)

where sign(φ) is the sign of the permutation π identified to φ, and ∂r,f is the coefficient
of the boundary matrix ∂Gd corresponding to the (d − 1)-face r and d-face f . Moreover,
since ∂r,f is 0 unless r is contained in f , the only bijections φ contributing to the sum
in (5.1) are the fitting orientations of (F,R). This gives

|Hd−1(F,R)| =
∣∣∣∣
∑

φ∈O

sign(φ)
∏

r∈R

∂Gd [r, φ(r)]

∣∣∣∣ 6
∑

φ∈O

∣∣∣∣ sign(φ)
∏

r∈R

∂Gd [r, φ(r)]

∣∣∣∣ = |O|,

where O is the set of fitting orientations of (F,R).
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Remark 29. It is tempting to conjecture that the number of fitting orientations is equal
to |Hd−1(F,R)|. This is however not the case as Figure ?? illustrates: the rooted forest
is topologically a 3-fold dunce cap and has 3 fitting orientations, whereas |H1(F,R)| = 1.

1
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33
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1

2

1

2
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1

2

23

33

1

φ′ φ′′φ

Figure 6: The three fitting orientations for the rooted forest (F,R), where F contains all
the triangles (hence is a triangulation of the 3-fold dunce cap) and R is made of the bold
edges.

We now define the sign of a fitting orientation. Let (F,R) be a rooted forest of a
d-dimensional complex G, and let n = |F | = |R|. Let α be a linear ordering of R, and β
a linear ordering of F . For any bijection φ : R→ F , we associate the unique permutation
πα,β,φ ∈ Sn such that φ maps the ith face in R (in the α order) to the πα,β,φ(i)th face in
F (in the β order).

For any fitting orientation φ of (F,R), define

λα,β(φ) = sign(πα,β,φ)
∏

r∈R

∂Gd [r, φ(r)].

Define sign(α, β) ∈ {−1, 1} as the sign of the determinant of the matrix ∂α,β
R,F

obtained by

reordering ∂R,F so that the rows are ordered according to α and the columns are ordered
according to β. Finally, define the sign of the fitting orientation φ as

Λα,β(φ) = sign(α, β) · λα,β(φ). (5.2)

Proposition 30. For any rooted forest (F,R) and any linear ordering α of F and β of
R, ∑

φ fitting orientation of (F,R)

Λα,β(φ) = |Hd−1(F,R)|. (5.3)

Moreover, Λα,β(φ) ∈ {−1, 1} does not depend on (α, β), and we abbreviate it to Λ(φ).

Remark 31. Previously we showed that the number of fitting orientations of a rooted
forest (F,R) is at least the size of the homology group Hd−1(F,R). Proposition 30 shows
how fitting orientations “cancel down in pairs” to precisely |Hd−1(F,R)|; see the related
Question 35 below.
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Proof. Using Lemma 17, and expanding the determinant gives

|Hd−1(F,R)| = sign(α, β) det(∂α,β
R,F

)

= sign(α, β)
∑

π∈Sn
sign(π)

∏n
i=1 ∂

α,β

R,F
[i, π(i)]

= sign(α, β)
∑

φ:R→F bijection sign(πα,β,φ)
∏

r∈R ∂r,φ(r)

=
∑

φ fitting orientation of (F,R) Λα,β(φ).

We now show that Λα,β(φ) does not depend on α, β. Let α′ be a linear ordering of R,
and let β′ be a linear ordering of F . Let σ be the permutation mapping α to α′ and
θ be the permutation mapping β to β′. Then, for any fitting orientation φ : F → R,
one has πα′,β′,φ = θ ◦ πα,β,φ ◦ σ−1, so that λα′,β′(φ) = sign(σ) sign(θ)λα,β(φ). Moreover,
sign(α′, β′) = sign(σ) sign(θ) sign(α, β), hence Λα′,β′(φ) = Λα,β(φ).

Using Proposition 30 one can reinterpret Theorem 19 in terms of bi-directed rooted
forests : in place of a homologically weighted enumeration of rooted forest, one gets a
signed enumeration of bi-directed rooted forests.

Theorem 32. Let G be a d-dimensional simplicial complex, and let LG be its Laplacian
matrix. Then,

∑

(F,R,φ,φ′) bi-directed rooted forest

Λ(φ)Λ(φ′)x|R| = det(LG + x · Id). (5.4)

More generally, given indeterminates {wr,f}r∈Gd−1,f∈Gd
, define the weighted Laplacian

matrix as LG,w = ∂G,wd · (∂Gd )T , where ∂G,wd is the matrix obtained from ∂Gd by multiplying
by wr,f the entry corresponding to the faces r and f . Then, for any indeterminates
{xr}r∈Gd−1

,

∑

(F,R,φ,φ′) bi-directed rooted forest

Λ(φ)Λ(φ′)


∏

r∈R

wr,φ(r)



(∏

r∈R

xr

)
= det(LG,w +X), (5.5)

where X is the diagonal matrix whose rows and columns are indexed by Gd−1, and whose
diagonal entry in the row indexed by r is xr.

Remark 33. Note that in the special case where wr,f = yf for all r ⊂ f , (5.5) gives

∑

(F,R,φ,φ′) bi-directed rooted forest

Λ(φ)Λ(φ′)
∏

r∈R

xr
∏

r∈R

yf = det(LG,w +X) = det(LyG +X),

which implies (4.2) via Proposition 30. Another special case of (5.5) corresponds to setting
wr,f ∈ {0, 1} for all r ⊆ f . This has the effect of restricting which pairs of incident faces
are allowed in the fitting orientations. In this case, the matrix LG,w can be thought as
the Laplacian for a directed simplicial complex (the case d = 1 gives the Laplacian of a
directed graph). For general indeterminates {wr,f}, (5.5) generalizes to higher dimensions
the forest extension of the matrix-tree theorem for weighted directed graphs.
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Proof of Theorem 32. This is similar to the proof of Theorem 19. Define two matrices
M,N whose rows are indexed by Gd−1 and whose columns are indexed by Gd ∪Gd−1: the
matrix M (resp. N) is obtained by concatenating the matrix ∂G,wd (resp. ∂Gd ) with the
matrix X (resp. Id). Observe that LG,w +X = M ·NT . The Binet-Cauchy formula gives

det(LG,w +X) = det(M ·NT ) =
∑

S⊆Gd∪Gd−1,

|S|=|Gd−1|

det(MS) det(NS),

where MS and NS are the submatrices of M and N obtained by selecting only the columns
indexed by the set S. Let us fix S = F ∪ R with F ⊆ Gd, R ⊆ Gd−1, and |S| = |Gd−1|.
It is easy to see that det(MS) = ± det(∂w

R,F
)
∏

r∈R xr, where ∂w
R,F

is the submatrix of

∂G,wd with rows corresponding to R and columns corresponding to F . By expanding the
determinant we get

det(MS) = ±
∑

φ fitting orientation of (F,R)

λα,β(φ)
∏

r∈R

wr,φ(r)

∏

r∈R

xr

= ±
∑

φ fitting orientation of (F,R)

Λ(φ)


∏

r∈R

wr,φ(r)



(∏

r∈R

xr

)
,

where α and β are the lexicographic order for R and F . Now since NS is obtained from
MS by setting xr = 1 and wr,f = 1 for all f, r, we have

det(MS) det(NS) =
∑

φ,φ′ fitting orientations of (F,R)

Λ(φ)Λ(φ′)


∏

r∈R

wr,φ(r)



(∏

r∈R

xr

)

if (F,R) is a rooted forest, and 0 otherwise (because in this case det(NS) = det(∂R,F ) = 0
by Lemma 14). This completes the proof of (5.5), hence also of (5.4).

We now give another, more natural, combinatorial expression for the sign of a bi-
directed forest. Given a bi-directed forest (F,R, φ, φ′) we consider the permutation
θ := φ−1 ◦ φ′ of R. The fixed points of θ are the (d − 1)-faces r ∈ R for which the
two orientations coincide: φ(r) = φ′(r). The other cycles (r1, r2, . . . , rk) of θ can be in-
terpreted geometrically as encoding a closed path on the faces in R and F of the form
r1, f1, r2, f2, . . . , rk, fk, rk+1 = r1, where φ′(ri) = fi = φ(ri+1) for all i ∈ {1 . . . k}. Such a
cycle of θ is called oriented strip of (φ, φ′) if

k∏

i=1

∂ri,fi∂ri+1,fi = (−1)k.

See Figure ?? for an example. The name “oriented strip” reflects the fact that in dimension
d = 2, an oriented strip of (φ, φ′) encodes a closed path on the faces forming a cylinder,
whereas the other (non-fixed point) cycles of θ encode closed paths forming a Möbius
strip.
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Figure 7: An oriented strip of (φ, φ′) and a non-oriented strip of (φ, φ′′), where φ, φ′, and
φ′′ are the three fitting orientations of the rooted forest represented from left to right in
Figure ??.

Proposition 34. For any bi-directed forest (F,R, φ, φ′),

Λ(φ)Λ(φ′) = (−1)#oriented strips of (φ,φ′).

This gives new expressions for (5.4) and (5.5). For instance,

∑

(F,R,φ,φ′) bi-directed rooted forest

(−1)#oriented strips of (φ,φ′)x|R| = det(LG + x · Id).

Proof. Let α, β be linear orderings of R and F respectively.

Λ(φ)Λ(φ′) = λα,β(φ)λα,β(φ′) = sign(πα,β,φ) sign(πα,β,φ′)
∏

r∈R

∂r,φ(r)∂r,φ′(r)

= sign(φ−1 ◦ φ′)
∏

r∈R

∂r,φ(r)∂r,φ′(r)

=
∏

C cycle of φ−1◦φ′

(
(−1)|C|−1

∏

r∈C

∂r,φ(r)∂r,φ′(r)

)
.

where the second identity uses φ−1 ◦ φ′ = πα,β,φ ◦ πα,β,φ′ . Moreover, the contribution of
oriented strips of φ−1 ◦ φ′ to the above product is −1, and the contribution of the other
cycles of φ−1 ◦ φ′ is 1.

We conclude this paper with some open questions.

Question 35. Is there a combinatorial way of defining a subset of the fitting orientations
of a rooted forest (F,R) which is equinumerous to |Hd−1(F,R)|? One way to achieve this
goal would be to define a (partial) matching of the fitting orientations of (F,R) such that
any matched pair of orientations (φ, φ′) satisfies Λ(φ)Λ(φ′) = −1, and any unmatched
orientation φ satisfies Λ(φ) = 1.

Question 36. Is there a combinatorial way of defining a subset of the pairs of fitting
orientations (φ, φ′) of a rooted forest (F,R) which is equinumerous to |Hd−1(F,R)|2?
Again, this could be defined in terms of a partial matching on the set of pairs (φ, φ′).
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Note that an answer to Question 35 would immediately give as answer to Question 36.
In view of Proposition 34, Question 36 may appear more natural.

Question 37. The notion of fitting orientations can be extended to pairs (F,R) with
|F | = |R| which are not rooted forests. Is there a direct combinatorial proof of Lemma 14
in terms of fitting orientation? More precisely, when (F,R) is not a rooted forest, we
would like to find a sign reversing involution implying

∑

φ fitting orientation of (F,R)

λα,β(φ) = 0.

The dimension 1 case is easy, but the higher dimensional cases seem more challenging.
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