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Abstract

For a given permutation τ , let P τN be the uniform probability distribution on
the set of N -element permutations σ that avoid the pattern τ . For τ = µk :=
123 . . . k, we consider PµkN (σI = J) where I ∼ γN and J ∼ δN for γ, δ ∈ (0, 1). If
γ + δ 6= 1, then we are in the large deviations regime with the probability decaying
exponentially, and we calculate the limiting value of PµkN (σI = J)1/N . We also
observe that for τ = λk,` := 12 . . . `k(k − 1) . . . (` + 1) and γ + δ < 1, the limit of
P τN (σI = J)1/N is the same as for τ = µk.

Keywords: random permutation; monotone pattern-avoiding permutation; left-to-
right minimum; large deviations

1 Introduction and Statement of Results

This paper concerns an aspect of the probabilistic properties of a class of pattern-avoiding
permutations. As surveyed in the books of Bóna [4] and Kitaev [9], pattern avoidance
has been of considerable interest in combinatorial theory, interacting with fields ranging
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from algebraic combinatorics to the theory of algorithms. In the next few paragraphs, we
give a brief description of the context.

For each positive integer N , let SN be the set of all permutations of 1, 2, . . . , N .
We represent a permutation σ ∈ SN as a string of numbers using the one-line notation
σ = σ1 . . . σN . We also view σ as the function on {1, . . . , N} that maps i to σ(i) = σi.
The graph of the function σ is the set of N points {(i, σi) : i = 1, . . . , N} in Z2. Given
τ ∈ Sk (with k 6 N), we say that a permutation σ ∈ SN avoids the pattern τ (or
“σ is τ -avoiding”) if there is no k-element subsequence of σ1, . . . , σN having the same
relative order as τ . (See Section 1.1 for a more formal definition.) Let SN(τ) be the set of
permutations in SN that avoid τ . For example, the permutation 24153 is not in S5(312)
because it contains the subsequence 413, which has the same relative order as 312. In
contrast, the permutation 35421 has no such subsequence, and hence 35421 ∈ S5(312).

We write |A| to denote the number of elements in a set A. Knuth [10] proved that
|SN(τ)| is the same for all τ ∈ S3 and is equal to the Nth Catalan number, that is(

2N
N

)
/(N + 1) for every N . For τ ∈ Sk with k > 4, the values of |SN(τ)| depend on the

pattern τ and have been computed for only some cases. For example, Gessel [6] used
generating functions to show that

|SN(1234)| = 2
N∑
k=0

(
2k

k

)(
N

k

)2
3k2 + 2k + 1−N − 2kN

(k + 1)2(k + 2)(N − k + 1)
.

In 2004 Marcus and Tardos [13] proved that

L(τ) := lim
N→∞

|SN(τ)|1/N exists and is finite for every τ,

thereby confirming the Stanley-Wilf conjecture that had been open for more than two
decades. For example, for k > 3 and 1 6 ` 6 k − 2, consider the patterns

µk = 123 . . . k and λk,` = 123 . . . (`−1)`k(k−1) . . . (`+ 1) ;

that is, µk is the increasing pattern of length k, and λk,` is obtained by reversing the last
k−` elements of µk. A theorem due to Regev [15] implies that L(µk) = (k−1)2. Backelin,
West and Xin [3] prove that µk and λk,` are Wilf equivalent, i.e. that |SN(µk)| = |SN(λk,`)|
for every N , which implies that L(λk,`) = (k − 1)2. More generally, [3] finds a bijection
from SN(τ1 . . . τ`(`+1) . . . (k−1)k) to SN(τ1 . . . τ`k(k−1) . . . (`+ 1)) for any τ ∈ S`.

Recently, some researchers have taken a probabilistic viewpoint towards investigating
pattern-avoiding permutations, especially for patterns in S3. They have been concerned
with the configurational properties of a typical τ -avoiding permutation of length N—more
precisely, of a permutation drawn uniformly at random from the set SN(τ). Accordingly,
we shall write P τ

N to denote the uniform probability distribution over the set SN(τ). In
this paper several Theorems and Propositions use certain conditions on γ, δ, IN and JN
and to avoid repetition we write these conditions below and refer to them as needed.
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Condition 1. Let γ and δ be fixed numbers in (0, 1) such that γ < 1− δ.
For each N , let IN and JN be integers in [1, N ] such that

lim
N→∞

IN
N

= γ and lim
N→∞

JN
N

= δ . (1)

The following result, proven independently by Miner and Pak [14] and by Atapour
and Madras [2], motivates the present paper.

Theorem 2. [2, 14] Let γ, δ, IN and JN be as specified in Condition 1. Then

lim
N→∞

P 123
N (σIN = JN)1/N =

1

4
G(γ, 1− δ; 1) (2)

= lim
N→∞

P 132
N (σIN = JN)1/N , (3)

where we define

G(u, v; 1) :=
(u+ v)(u+v)(2− u− v)2−u−v

uuvv(1− u)(1−u)(1− v)(1−v)
. (4)

Since G(u, v; 1) < 4 whenever u 6= v, we see that the probabilities P 123
N (σIN = JN) and

P 132
N (σIN = JN) decay exponentially in N when γ < 1− δ. Thus, a random 123-avoiding

or 132-avoiding permutation is exponentially unlikely to contain any points εN below the
diagonal {(i, N−i+1) : 1 6 i 6 N}; we refer to this as the “large deviations” regime.
In the case that γ > 1 − δ, Equation (2) still holds (by symmetry about the diagonal),
but for τ = 132 there is no exponential decay—i.e. the limit in Equation (3) is 1. In
fact, P 132

N (σIN = JN) is asymptotically proportional to N−3/2 ([12], [14]). Madras and
Pehlivan [12] also examined joint probabilities under P 132

N , proving for example that the
probability that graph of σ has two specified points below the diagonal is of order N−3

(under certain conditions on the points). Rizzolo, Hoffman, and Slivken [7] proved that
for τ ∈ S3, the shape of a τ -avoiding random permutation can be described by Brownian
excursion. Janson [8] studied the number of occurrences of another pattern π inside a
random 132-avoiding permutation.

Although patterns of length 3 are amenable to precise probabilistic results, analogues
for longer patterns seem to be much harder. One reason for this is that for τ ∈ S3, there
are nice bijections from SN(τ) to the set of Dyck paths of length 2N , and these bijec-
tions translate various configurational properties of τ -avoiding permutations into tractable
properties of Dyck paths (e.g. [7],[12]). (At a more metaphysical level: when the Catalan
numbers appear in a problem, nice things happen.) However, nice bijections are much
harder to find for patterns of length 4. Although exact formulas for |SN(τ)| are known
for some patterns τ of length 4, their proofs are much more complicated than for length
3 and do not seem to be useful for investigating properties of P τ

N . In this paper our goal
is to extend the large deviation result of Theorem 2 to the patterns µk for k > 4. In
contrast to the proof for µ3, our derivation of the precise large deviations results does not
require exact formulas for finite values of N .
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We shall examine the cardinalities of sets of the form

FN(I, J ; τ) := {σ ∈ SN(τ) : σI = J} . (5)

Then in terms of the uniform distribution over SN(τ), we have

P τ
N(σI = J) =

|F(I, J ; τ)|
|SN(τ)|

.

Monte Carlo simulations by Gökhan Yıldırım (as seen in Figure 1) suggests as N gets
larger the number of points well below the x+ y = 1 line decreases.
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Figure 1: Randomly generated 1234-avoiding permutation with N = 100 on the left and
N= 500 on the right figure

We shall typically consider the case J � N − I (i.e., points “below the diagonal”);
when τ = µk, the case J � N − I follows from symmetry considerations. Since we know
the asymptotics of the denominator |SN(τ)| for our patterns of interest, and since our
methods are essentially combinatorial, we shall henceforth discuss only the numerator,
dealing directly with |FN(I, J ; τ)| and related combinatorial quantities.

Theorem 3. Fix k > 4 and 1 6 ` 6 k − 2. Let γ, δ, IN and JN be as specified in
Condition 1. Then

lim
N→∞

|FN(IN , JN ;µk)|1/N = G(γ, 1− δ; (k − 2)2) (6)

= lim
N→∞

|FN(IN , JN ;λk,`)|1/N , (7)

where we define

G(u, v; c) := 4c g(u, v; c)g(v, u; c)g(1− u, 1− v; c)g(1− v, 1− u; c) (8)

and g(x, y; c) :=

(
2cx+ (y − x)−

√
(y − x)2 + 4cxy

x(c− 1)

)−x
. (9)
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Figure 2 gives an example of the level curves of G(u, v; c) for (u, v) ∈ [0, 1]2 and c = 4.
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Figure 2: Level curves in [0, 1]2 for G(u, v; 4), showing limit values of |FN(I, J ; 1234)|1/N .
To obtain limit values of P 1234

N (σIN = JN)1/N , divide the displayed values by 9.

Remark 4. When JN ≈ N−IN (i.e., when we are close to the diagonal), then we are in the
(limiting) case γ = 1− δ. This is not a “large deviation,” since G(u, u; (k− 2)2) = L(µk);
indeed,

g(x, x; c) =

(
2cx−

√
4cx2

x(c− 1)

)−x
=

(
2
√
c(
√
c− 1)

c− 1

)−x
=

(
2
√
c√

c+ 1

)−x
,

and it follows that

G(u, u; c) = 4c

(√
c+ 1

2
√
c

)2

= (
√
c+ 1)2 ,

which equals (k−1)2 when we substitute c = (k−2)2. The regime |N−IN −JN | = o(N)
is examined by Fineman, Slivken, Rizzolo, and Hoffman (in preparation).
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Remark 5. The numerator and denominator inside the parentheses in Equation (9) are
both 0 when we set c = 1. Therefore we define g(x, y; 1) by taking the limit of g(x, y; c)
as c→ 1+. We then obtain

g(x, y; 1) =

(
2x

x+ y

)−x
which in turn implies that G(u, v; 1) is given by Equation (4). Thus our Theorem 3
formally recovers Theorem 2.

Remark 6. Assume that γ, δ, IN and JN are as in Condition 1 except that γ > 1−δ. Then
Equation (6) still holds (by symmetry), while limN→∞ |FN(IN , JN ;λk,`)|1/N = (k− 1)2 by

Proposition 3.1 of [2] (i.e., limN→∞ P
λk,`
N (σIN = JN)1/N = 1).

The term (k− 2)2 appears in Equations (6) and (7) because it is the value of L(µk−1).
This is highlighted and generalized in Theorem 9 below.

Definition 7. Let N and A be positive integers, and let τ be a fixed permutation. Define

S∗AN (τ) := {σ ∈ SN(τ) : σi > N − i− A for every i = 1, . . . , N }.

Thus, the graph of a permutation in S∗AN (τ) has no point that is more than A units below
{(i, N + 1− i) : 1 6 i 6 N}, the decreasing diagonal of [1, N ]2.

Then Theorem 1.2 of [2] implies that for every ε > 0, |S∗NεN (123)|/|SN(123)| and
|S∗NεN (132)|/|SN(132)| converge to 1 exponentially rapidly as N →∞.

Definition 8. For ω ∈ Sm, let 1�ω be the permutation 1(ω1 + 1)(ω2 + 1) . . . (ωm + 1) in
Sm+1.

For example, 1� 3124 = 14235. Observe that 1� µk−1 = µk and 1� λk−1,`−1 = λk,`.
Most of the present paper will focus on the proof of the following theorem.

Theorem 9. Let τ̂ be a pattern of length 3 or more, and assume that

lim
N→∞

|S∗NεN (τ̂)|1/N = L(τ̂) for every ε > 0. (10)

Let τ = 1� τ̂ . Let γ, δ, IN and JN be as specified in Condition 1. Then

lim
N→∞

|FN(IN , JN ; τ)|1/N = G (γ, 1− δ;L(τ̂)) . (11)

Remark 10. (a) Theorem 1.2 of [2] implies that Equation (10) holds for µ3 and λ3,1.
(b) Theorem 1.3(b) of [2] implies that if Equation (10) holds, then τ̂1 must equal 1. The
converse of this statement has neither been proved nor disproved; however, simulations
in [2] and [11] suggest that (10) is false for τ̂ = 1324.

the electronic journal of combinatorics 23(4) (2016), #P4.36 6



As we shall see in Section 4, Theorem 3 follows from Theorem 9 by induction on k,
with Remark 10(a) leading to the base case k = 4. The idea behind the proof of Theorem
9 consists of three main steps. An important role is played by the set F∗N(I, J ; τ) of
permutations in FN(I, J ; τ) for which (I, J) is a left-to-right minimum (i.e., σi > J for all
i < I). The first step is to derive an explicit upper bound to show that |F∗N(I, J ; τ)|1/N is
less than or equal to G(γ, 1−δ;L(τ̂)) in the limit. The second step is to use monotonicity
of G to show that we can replace F∗ by F in the preceding assertion. The third step uses
the dominant terms from the upper bound of the first step to construct a lower bound
on |FN(I, J ; τ)|1/N that is arbitrarily close to the upper bound. Section 2 carries out the
first two steps, while Section 3 performs the third step. Section 4 ties the pieces together
to complete the proofs of the two theorems. Section 1.1 presents some basic definitions
and a useful lemma.

We close this section with a physical analogy to help visualize our results about µk.
It is well known that an N -element permutation σ is in SN(µk) if and only if σ can be
partitioned into k−1 decreasing subsequences. It is not hard to see that these decreasing
subsequences are all likely to stay close to the decreasing diagonal of [1, N ]2. Think of
the subsequences as k−1 elastic strings, each with one end tied to the point (1, N) and
the other end tied to (N, 1), and each string tight. Requiring σI to equal J is like forcing
one of the strings to pass through the point (I, J). With this constraint, the rest of the
string deforms into two line segments, one from (1, N) to (I, J) and the other from (I, J)
to (N, 1). Tension in the string dictates how the mass of the string is balanced among
the two segments, and the mass is evenly distributed within each segment. This physical
picture parallels our lower bound construction in Section 3.

1.1 Some Formalities and Preliminaries

For a string ω of length k whose entries are all distinct numbers, let Patt(ω) be the
permutation in Sk that has the same relative order as ω. E.g., Patt(91734) = 51423.
More precisely, Patt(ω1ω2 . . . ωk) is the unique permutation π in Sk with the property
that for all i, j ∈ {1, . . . , k}, ωi < ωj if and only if πi < πj.

Assume τ ∈ Sk and σ ∈ SN . We say that σ contains the pattern τ if there exists
1 6 I1 < I2 < · · · < Ik 6 N such that Patt(σI1σI2 . . . σIk) = τ . We say that σ avoids the
pattern τ if σ does not contain τ . We write SN(τ) for the set of all permutations in SN
that avoid τ .

For functions f and g, we write f ∼ g to mean limN→∞ f(N)/g(N) = 1.

Definition 11. A finite subset of Z2 is said to be decreasing if it can be written in the
form {(x(m), y(m)) : m = 1, . . . , w} with x(1) < x(2) < · · · < x(w) and y(1) > y(2) >
· · · > y(w) for some w > 0.

We shall also use the following well-known results.

Lemma 12. (i) Let s and t be integers satisfying 0 6 s 6 t. Then(
t

s

)
6

tt

ss(t− s)t−s
.
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(ii) Let {sN} and {tN} be sequences of integers with 0 6 sN 6 tN such that limN→∞ sN/N
= S and limN→∞ tN/N = T . Then

lim
N→∞

(
tN
sN

)1/N

=
T T

SS(T − S)T−S
.

In this lemma, we interpret 00 to be 1.

Proof : Part (ii) follows from Stirling’s formula, and part (i) is proven for example in
Lemma 2.1(b) in [2]. �

2 The Upper Bound

We begin with some definitions. For a given permutation σ, define

M ≡ M(σ) := {(i, σi) : σi < σt for every t < i} . (12)

That is, M is the set of points of the graph of σ corresponding to left-to-right minima.
Next, let σ \ M be the string consisting of those σt such that (t, σt) 6∈ M(σ). Figure
3 shows an example. More generally, if A is a subset of Z2, let σ \ A denote the string
consisting of those σt such that (t, σt) 6∈ A.

0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

Figure 3: The graph of σ = 794526813 ∈ S9. Here, M = {(1, 7), (3, 4), (5, 2), (8, 1)} and
σ \M = 95683.

The following observations are useful. We omit the straightforward proof.

Lemma 13. (i) A permutation σ is uniquely determined by the setM and the permutation
Patt(σ \M).
(ii) Let τ̂ be a pattern with τ̂1 = 1. The permutation σ avoids 1 � τ̂ if and only if
Patt(σ \M) avoids τ̂ .
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Recall from Section 1 that

F∗N(I, J ; τ) = {σ ∈ FN(I, J ; τ) : σi > J for all i < I }.

We shall now perform the first step in the proof of our main theorem.

Proposition 14. Let τ̂ be a pattern of length 3 or more such that τ̂1 = 1, and let τ = 1�τ̂ .
Let γ, δ, IN and JN be as specified in Condition 1. Then

lim sup
N→∞

|F∗N(IN , JN ; τ)|1/N 6 G(γ, 1− δ;L(τ̂)). (13)

Proof : For I ∈ [1, N ] and σ ∈ SN , we define

M<I = {(i, σi) ∈M(σ) : i < I} and M>I = {(i, σi) ∈M(σ) : i > I} .

Fix I and J in [1, N ] with J < N − I. Suppose we know that σ ∈ F∗N(I, J ; τ),
l = |M<I | and m = |M>I |. Then M<I is a set of l integral points in [1, I)× (J,N ], and
this set must be decreasing (recall Definition 11). Therefore there are at most

(
I−1
l

)(
N−J
l

)
possible realizations of M<I . Similarly, there are at most

(
N−I
m

)(
J−1
m

)
possibilities for

M>I . Recalling Lemma 13, we obtain the following bound:

|F∗N(I, J ; τ)|

6
I−1∑
l=0

J−1∑
m=0

(
I−1

l

)(
N−J
l

)(
N−I
m

)(
J−1

m

)
|SN−l−m−1(τ̂)|

6 H(I−1, N−J ;L(τ̂))H(J−1, N−I;L(τ̂))L(τ̂)N−1 (14)

where we define

H(a, b; c) :=
a∑

n=0

(
a

n

)(
b

n

)
c−n . (15)

In the last step, the bound |SN−l−m−1(τ̂)| 6 L(τ̂)N−l−m−1 is proven in Theorem 1 in [1].
We now wish to bound H(a, b; c) for a 6 b and c > 1. By Lemma 12(i), we have

H(a, b; c) 6 (a+ 1) sup{f(y; a, b, c) : 0 6 y 6 a} (16)

where

f(y; a, b, c) =
(y
a

)−y (
1− y

a

)y−a (y
b

)−y (
1− y

b

)y−b
c−y . (17)

We now pause to state and prove a lemma, which will also be useful later.

Lemma 15. Fix real numbers a, b > 0 and c > 1. Define the function f as in Equation
(17) for real y in the interval [0, a ∧ b] (where a ∧ b is the minimum of a and b). We
interpret 00 = 1, which makes f continuous on this interval. Then there is a unique point
y∗ ≡ y∗[a, b, c] that maximizes f in this interval, and 0 < y∗ < a ∧ b. Furthermore,

y∗[a, b, c] =

√
(a− b)2 + 4cab− (a+ b)

2(c− 1)
(18)

the electronic journal of combinatorics 23(4) (2016), #P4.36 9



and the maximum value of f is

f(y∗[a, b, c]; a, b, c) = 2a+bg(a, b; c) g(b, a; c) , (19)

where g was defined in Equation (9).

Proof: By calculus, log f is a strictly concave function of y on [0, a∧b], and is maximized
at the (unique) point y∗ ≡ y∗[a, b, c] in (0, a ∧ b) that satisfies the equation

(a− y∗)(b− y∗) = c(y∗)2 . (20)

Thus Equation (17) becomes

f(y∗; a, b, c) =
aa bb

(y∗)2y∗(a− y∗)a−y∗(b− y∗)b−y∗cy∗

=

(
1− y∗

a

)−a(
1− y∗

b

)−b
(using (20)). (21)

Solving the quadratic equation (20) for the positive root gives

y∗[a, b, c] =

√
(a+ b)2 + 4(c− 1)ab− (a+ b)

2(c− 1)
, (22)

which leads to Equation (18). Finally, inserting (18) into (21) gives (19). �

We now return to the proof of Proposition 14. By Equation (16) and Lemma 15, we
have

H(I − 1, N − J ; c) 6 I 2N+I−J−1g(I − 1, N − J ; c) g(N − J, I − 1; c) . (23)

By Equation (1) and the explicit form of g, we can take the limit in Equation (23) to get

lim sup
N→∞

H(IN−1, N−JN ; c)1/N 6 21+γ−δ g(γ, 1− δ; c) g(1− δ, γ; c) .

Similarly, we have

lim sup
N→∞

H(JN−1, N−IN ; c)1/N 6 21+δ−γ g(δ, 1− γ; c) g(1− γ, δ; c) .

Proposition 14 follows directly from the above (with c = L(τ̂)) and Equation (14). �

Our next task is to replace F∗N by FN in the statement of Proposition 14. We shall do
this by proving a monotonicity property of G (Lemma 17) and then using a compactness
argument.

Proposition 16. Under the hypotheses of Proposition 14, we have

lim sup
N→∞

|FN(IN , JN ; τ)|1/N 6 G(γ, 1− δ;L(τ̂)). (24)
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We begin by showing that G decreases as we move away from the diagonal. We
emphasize that in this lemma, “increasing” and “decreasing” are used in their strict
sense.

Lemma 17. Fix c > 1. The function G(u, v; c) defined in Equation (8) is increasing in
u and decreasing in v for 0 < u < v < 1. By symmetry, it is also increasing in v and
decreasing in u for 0 < v < u < 1. In particular, G is maximized when u = v, where we
have

G(u, u; c) = (
√
c+ 1)2 for every u ∈ (0, 1). (25)

Proof: Recall that Equation (25) was proved in Remark 4.
Since c is fixed, we shall suppress it in the following notation. Let r(u, v) =√

(v − u)2 + 4cuv and h(u, v) = [2cu+ (v − u)− r(u, v)]/u. Then

G(u, v; c) = 4c(c− 1)2h(u, v)−uh(v, u)−vh(1−u, 1−v)1−uh(1−v, 1−u)1−v

and hence

lnG(u, v; c) = ln(4c(c− 1)2)− u ln(h(u, v))− v ln(h(v, u))

− (1− u) ln(h(1−u, 1−v))− (1− v) ln(h(1−v, 1−u)) . (26)

By routine calculus and some algebraic manipulation, we obtain

∂

∂u
ln(h(u, v)) =

v

u r(u, v)
and

∂

∂u
ln(h(v, u)) = − 1

r(u, v)
. (27)

Using this and Equation (26), we can show that

∂

∂u
lnG(u, v; c) = − ln(h(u, v)) + ln(h(1−u, 1−v)) . (28)

From this and Equation (27), we also obtain

∂2

∂u2
lnG(u, v; c) = − v

u r(u, v)
− (1− v)

(1− u) r(1−u, 1−v)
< 0

for every u and v in (0, 1). Therefore G(u, v; c) is strictly concave in u for fixed v (and,
by symmetry, it is strictly concave in v for fixed u).
Since h(u, u) = 2c − 2

√
c for every u, it follows that the partial derivative in Equation

(28) is zero whenever u = v. By symmetry, the same is true for the partial derivative
with respect to v. Combining this with the concavity result of the previous paragraph
completes the proof of the lemma. �

Proof of Proposition 16: It is easy to see that

FN(IN , JN ; τ) ⊆
⋃

16u6IN ,16t6JN

F∗N(u, t; τ).
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Let u(N) and t(N) be the values of u and t that maximize |F∗N(u, t; τ)| over u in [1, IN ]
and t in [1, JN ]. Then we have

|FN(IN , JN ; τ)| 6 N2 |F∗N(u(N), t(N); τ)| . (29)

Let LS = lim supN→∞ |F∗N(u(N), t(N); τ)|1/N . There exists a subsequence N ′ such that
|F∗N ′(u(N ′), t(N ′); τ)|1/N ′ converges to LS. By compactness of [0, 1]2, this subsequence
has a sub-subsequence N ′′ for which
(u(N ′′)/N ′′, t(N ′′)/N ′′) converges to a point (ũ, t̃) in [0, γ] × [0, δ]. Thus Proposition 14
tells us that LS 6 G(ũ, 1− t̃;L(τ̂)). The monotonicity of G (in Lemma 17) implies that
G(ũ, 1 − t̃;L(τ̂)) 6 G(γ, 1 − δ;L(τ̂)). Therefore LS 6 G(γ, 1 − δ;L(τ̂)). Hence, using
Equation (29), we obtain Equation (24). �

3 The Lower Bound

To get the lower bound on |FN(I, J ; τ)|, we shall perform an explicit construction of some
permutations in F∗N(I, J ; τ) (this is done in the proof of Proposition 20 below). The
construction is motivated by examining the dominant terms in our proof of the upper
bound, and showing that they are approximately achieved.

The main result of this section is the following.

Proposition 18. Under the hypotheses of Theorem 9, we have

lim inf
N→∞

|F∗N(IN , JN ; τ)|1/N > G(γ, 1− δ;L(τ̂)). (30)

The proof of Proposition 18 relies on Proposition 20 and Lemma 21. We shall first
state these two auxiliary results, then prove Proposition 18, and conclude the section by
proving the two auxiliary results.

The construction of Proposition 20 uses a positive parameter A, which will afterwards
be of the order Nε for fixed small ε. We start with a definition.

Definition 19. Let w, M1, and M2 be positive integers, with w 6M1 ∧M2.
• Let Dec(w;M1,M2) be the collection of all w-element decreasing subsets of {1, . . . ,M1}
×{1, . . . ,M2}. (Recall Definition 11.)
• For given A > 0, let Dec∗A(w;M1,M2) be the collections of all w-element sets B ∈
Dec(w;M1,M2) such that

y < M2 − x
M2

M1

+ A for all (x, y) ∈ B. (31)

The collections Dec(0;M1,M2) and Dec∗A(0;M1,M2) each contain one member: the
empty set.

Observe that the line y = M2 − xM2/M1 is the decreasing diagonal of the rectangle
[0,M1]× [0,M2]. Thus, Dec∗A(w;M1,M2) is the collection of sets in Dec(w;M1,M2) that
rise less than A above the diagonal.
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Proposition 20. Let τ̂ be a pattern of length 3 or more such that τ̂1 = 1, and let τ = 1�τ̂ .
Let N , I, J , and A be positive integers with J < N − I − 2A. Let w1 and w2 be integers
with

0 6 w1 6 I − 1 and 0 6 w2 6 J − 1 . (32)

Then (recall Definitions 7 and 19)

|F∗N(I, J ; τ)| > |Dec∗A(w1; I − 1, N − 2A− J)|
× |Dec∗A(w2;N − 2A− I, J − 1)|

× |S∗AN−w1−w2−1(τ̂)| . (33)

Lemma 21. Consider sequences of positive integers w(N), M1(N), M2(N), and AN such
that

lim
N→∞

w(N)

N
= θ, lim

N→∞

M1(N)

N
= α, lim

N→∞

M2(N)

N
= β, lim

N→∞

AN
N

= ε,

with 0 < θ < α ∧ β and ε > 0. Then

lim
N→∞

|Dec∗AN (w(N);M1(N),M2(N))|
|Dec(w(N);M1(N),M2(N))|

= 1 (34)

and (for f defined by Equation (17))

f(θ;α, β, c) cθ = lim
N→∞

|Dec(w(N);M1(N),M2(N))|1/N (35)

= lim
N→∞

|Dec∗AN (w(N);M1(N),M2(N))|1/N (36)

for any c. (Notice that f(θ;α, β, c)cθ is independent of c by definition.)

Proof of Proposition 18: Let c = L(τ̂). Choose ε > 0 such that γ < 1 − δ − 2ε.
Let {AN} be a sequence of positive integers such that limN→∞AN/N = ε. Therefore
JN < N − IN − 2AN holds for all sufficiently large N .

Let {w1(N)} and {w2(N)} be sequences of positive integers such that

lim
N→∞

w1(N)

N
= y∗[γ, 1− δ − 2ε, c] =: y∗1 and

lim
N→∞

w2(N)

N
= y∗[1− γ − 2ε, δ, c] =: y∗2 .

Lemma 15 assures us that y∗1 < γ ∧ (1− δ − 2ε) and y∗2 < (1− γ − 2ε) ∧ δ, and therefore
Equation (32) holds for all sufficiently large N (where I is interpreted to be IN , etc.).
Using these sequences in Proposition 20 and invoking Lemma 21 and Equations (19) and
(10), we see that the N th root of the right hand side of Equation (33) converges to

2γ+1−δ−2εg(γ, 1− δ − 2ε; c) g(1− δ − 2ε, γ; c) cy
∗
1

× 21−γ+δ−2εg(1− γ − 2ε, δ; c) g(δ, 1− γ − 2ε; c) cy
∗
2 × c1−y∗1−y∗2 . (37)
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Thus Equation (37) is a lower bound for lim infN→∞ |F∗N(IN , JN ; τ)|1/N for all sufficiently
small positive ε. Now let ε decrease to 0. By the continuity of g, the expression of
Equation (37) converges to G(γ, 1− δ; c). This proves the proposition. �

Proof of Proposition 20: Fix N , I, J , A, w1 and w2 as specified. We shall prove the
proposition by constructing an injection from D into F∗N(I, J ; τ), where

D = Dec∗A(w1; I − 1, N − 2A− J)×Dec∗A(w2;N − 2A− I, J − 1)

× S∗AN−w1−w2−1(τ̂).

Consider (B1,B2, φ) ∈ D (that is, B1 is one of the w1-element sets in Dec∗A(w1; I−1, N−
2A − J), and so on). Let Ψ ≡ Ψ(B1,B2) be the (w1 + w2 + 1)-element decreasing set
defined by

(B1 + (0, J)) ∪ {(I, J)} ∪ (B2 + (I, 0))

(where B + (x, y) denotes translation of the set B by the vector (x, y)). Thus Ψ is a
decreasing subset of [1, N − 2A]× [1, N − 2A] that contains (I, J).

We claim that
y < N − x− A for every (x, y) ∈ Ψ. (38)

For (x, y) = (I, J), this follows from our assumption J < N − I − 2A. For (x, y) in
B1 + (0, J), we have (x, y − J) ∈ B1 and hence

y − J < (N − 2A− J) − x
N − 2A− J

I − 1
+ A < N − A− J − x

(using I < N − 2A− J), which verifies the claim in this case. A similar argument works
if (x, y) ∈ B2 + (I, 0). Therefore the claim (38) is true.

Given Ψ and a permutation φ ∈ S∗AN−w1−w2−1(τ̂), we shall define a permutation σ ∈ SN
such that Ψ is contained in the graph of σ (i.e., y = σx whenever (x, y) ∈ Ψ) and
Patt(σ \ Ψ) = φ. Let w = w1 + w2 + 1, and write the elements of Ψ as (x(`), y(`)) (` =
1, . . . , w) with x(`) increasing in ` and y(`) decreasing in `. Define the functions Γx and Γy
from {1, . . . , N −w} into {1, . . . , N} as follows. Writing x(0) = 0 and x(w+ 1) = N + 1,
and observing that x(`)− ` is decreasing in `, we define

Γx(i) = i+m where m satisfies x(m)−m < i 6 x(m+ 1)− (m+ 1);

i.e., where m satisfies x(m) < i+m < x(m+ 1).

The possible values for m are 0, 1, . . . , w. Analogously, writing y(0) = N+1 and y(w+1) =
0, we define

Γy(i) = i+ n where n satisfies y(w−n+1)− n+ 1 6 i < y(w−n)− n;

i.e., where n satisfies y(w−n+1) < i+ n < y(w−n).

Again, the possible values for n range from 0 to w. Observe that Γx (respectively, Γy) is the
unique strictly increasing function from {1, . . . , N − w} to {1, . . . , N} \ {x(1), . . . , x(w)}
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(respectively, {1, . . . , N} \ {y(1), . . . , y(w)}). Now define σ1, . . . , σN by

σx(`) = y(`) for ` = 1, . . . , w,

σΓx(i) = Γy(φi) for i = 1, . . . , N − w.

Then the string σ := σ1σ2 . . . σN is well defined and σ is a permutation in SN whose graph
contains Ψ, and that Patt(σ \Ψ) = φ. See Figure 4.

1 NN−2A

N

N−2A

x(1) x(w)I

y(1)

y(w)

J

Figure 4: An example of the permutation σ constructed in the proof of Proposition 20, in
which N = 41, w1 = 3, w2 = 2, w = 6, and A = 3, and the permutation φ is the decreasing
permutation of length N − w. The circled black dot is at (I, J). The dashed blue line is
the diagonal of [1, N ]2. The two red rectangles enclose B1 + (0, J) and B2 + (I, 0). The
sloped red line segment within each red rectangle is drawn A units above the diagonal of
the rectangle. No point of Ψ is above a sloped red line segment. The solid blue line is
the line y = N − x−A, which partitions the graph of σ as described in the Key Claim in
the proof. The two sloped red line segments lie below the solid blue line. Observe that
I = x(w1 + 1) and J = y(w1 + 1).

The proof of the proposition is based on the following claim. Let Ψx = {x(1), x(2),
. . . , x(w)}.
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Key Claim: We have σj < N − j − A for every j ∈ Ψx, and σj > N − j − A for
every j 6∈ Ψx.

Once the Key Claim is proven, we proceed as follows. The Key Claim implies that
Ψ ⊂ M(σ) (recall Equation (12)). Therefore, since Patt(σ \ Ψ) avoids τ̂ , so does
Patt(σ \M(σ)). Hence, by Lemma 13(ii), σ avoids τ . It follows that σ ∈ F∗N(I, J ; τ).
Consequently, writing Q(B1,B2, φ) = σ, we have defined a function Q : D → F∗N(I, J ; τ).
To see that the function Q is one-to-one, suppose Q(B1,B2, φ) = σ. Since Ψ is contained
in the graph of σ, the Key Claim shows that Ψ(B1,B2) is uniquely determined by σ, as is
φ. Finally, since (I, J) is specified, B1 and B2 are determined by Ψ(B1,B2). Hence Q is
one-to-one, and the proposition follows.

It only remains to prove the Key Claim. For j ∈ Ψx, say j = x(`), we have σj = y(`),
and the assertion of the Key Claim follows from Equation (38). Now suppose j 6∈ Ψx.
Then for some i ∈ [1, N − w] we have j = Γx(i) and σj = Γy(φi). Since φ ∈ S∗AN−w(τ̂),
we know that φi > (N − w) − i − A. Following the notation in the definitions of Γx
and Γy, let m = Γx(i) − i and n = Γy(φi) − φi. Then x(m) < i + m < x(m + 1) and
y(w−n+1) < φi + n < y(w−n). Also, we have

σj = φi + n

> (N − w)− i− A+ n

= N − w − (j −m)− A+ n .

Thus, to show σj > N − j − A, as required for proving the Key Claim, we need to show
that m > w − n.

Assume that m > w − n is false, i.e. that m + 1 6 w − n. Since y(`) > y(` + 1) + 1
for every `, we see that

y(m+ 1) > y(w − n) + (w − n)− (m+ 1) .

Using this inequality and those of the preceding paragraph, we obtain

N − w − A < φi + i

6 y(w − n)− n− 1 + x(m+ 1)−m− 1

6 [y(m+ 1)− w + n+m+ 1]− n+ x(m+ 1)−m− 2

6 N − A− w − 1 (by (38))

which is a contradiction. Therefore m > w − n. This proves the Key Claim, and hence
the proposition. �

Proof of Lemma 21: For positive integers w and M , let Seq(w;M) be the set of all w-
element subsets of {1, 2, . . . ,M}. We shall write a member of Seq(w;M) as a w-element
vector with the entries in increasing order: ~x = (x(1), x(2), . . . , x(w)), with x(1) < · · · <
x(w). Then there is a natural bijection Θ : Seq(w;M1)×Seq(w;M2)→ Dec(w;M1,M2)
via

Θ(~x, ~z) = {(x(1), z(w)), (x(2), z(w − 1)), . . . , (x(w), z(1))} .
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In particular, we have

|Dec(w;M1,M2)| = |Seq(w;M1)| |Seq(w;M2)| =

(
M1

w

)(
M2

w

)
. (39)

Applying Lemma 12 to Equation (39) proves Equation (35). Equation (36) will follow
immediately once we have proven Equation (34).

For positive integers A, we now define

Seq∗A(w;M) =

{
~x ∈ Seq(w;M) :

∣∣∣∣x(`)− ` M

w + 1

∣∣∣∣ < A for ` = 1, . . . , w

}
.

Roughly speaking, a w-element subset of {1, . . . ,M} is in Seq∗A(w;M) if its elements
are within distance A of a uniform spacing configuration over the interval. We shall now
show the following.

Property I : If ~x ∈ Seq∗A(w;M1) and ~z ∈ Seq∗A(w;M2), then

Θ(~x, ~z) ∈ Dec∗B(w;M1,M2), where B = A

(
1 +

M2

M1

)
.

Property I says that if ~x and ~z are close to being uniformly spaced on their intervals, then
Θ(~x, ~z) is close to the diagonal of its rectangle. To prove Property I, consider ~x and ~z as
specified. Then a generic point of Θ(~x, ~z), (x(`), z(w + 1− `)), satisfies∣∣∣∣z(w + 1− `)−

(
M2 − x(`)

M2

M1

)∣∣∣∣
6

∣∣∣∣z(w + 1− `)− (w + 1− `) M2

w + 1

∣∣∣∣ +
M2

M1

∣∣∣∣x(`)− ` M1

w + 1

∣∣∣∣
< A+

M2

M1

A .

This proves Property I. Now, Property I implies that |Dec∗B(w;M1,M2)| >
|Seq∗A(w;M1)| |Seq∗A(w;M2)|. Recalling Equation (39), we see that Equation (34) will
follow if we can prove

Property II : lim
N→∞

|Seq∗AN (w(N);N)|(
N

w(N)

) = 1 whenever

lim
N→∞

w(N)

N
=: θ ∈ (0, 1) and lim

N→∞

AN
N

=: ε > 0.

We shall prove Property II by converting it into a probabilistic statement. Let p ∈
(0, 1). Let G1, G2, . . . be a sequence of independent random variables having the geometric
distribution with parameter p; that is, Pr(Gi = `) = p(1 − p)`−1 for ` = 1, 2, . . .. Next,
let Ti = G1 + G2 + · · · + Gi for each i. These random variables have negative binomial
distributions

Pr(Tj+1 = `+ 1) =

(
`

j

)
pj+1(1− p)`−j for ` > j. (40)
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Moreover, for any ~x ∈ Seq(w;N) (writing x(0) = 0 and x(w + 1) = N + 1),

Pr(T` = x(`) for ` = 1, . . . , w |Tw+1 = N+1) =

∏w+1
`=1 p(1− p)x(`)−x(`−1)−1(
N
w

)
pw+1(1− p)N−w

=

(
N

w

)−1

. (41)

Equation (41) says that the conditional distribution of (T1, . . . , Tw) given that Tw+1 = N+1
is precisely the uniform distribution on Seq(w;N). This assertion is true for any p. Let
us now fix p = (w + 1)/N ; we shall soon see why this is a convenient choice.

By Equation (41),

|Seq∗A(w;N)|(
N
w

) = Pr (|T` − `/p| < A for l = 1, . . . , w |Tw+1 = N + 1) .

and therefore

0 6 1 − |Seq∗A(w;N)|(
N
w

) 6
Pr(max`=1,...,w |T` − `/p| > A)

Pr(Tw+1 = N + 1)
. (42)

Next, we obtain the asymptotic behaviour Pr(Tw+1 = N + 1) using Stirling’s Formula
m! ∼

√
2πm(m/e)m and p = (w + 1)/N , with w = w(N) ∼ θN , as follows.

Pr(Tw+1 = N + 1) =
N !

w!(N − w)!

(w + 1)w+1(N − w − 1)N−w

NN+1

∼
√

2πN√
2πw

√
2π(N − w)

(
w+1

w

)w+1
w

N

(
N−w−1

N−w

)N−w
∼

√
θ√

2π(1− θ)N
. (43)

For the numerator of the right-hand side of Equation (42), we use Kolmogorov’s Inequality
[5], along with the property that the random variables Gi have mean 1/p and variance
(1− p)/p2:

Pr

(
max
`=1,...,w

|T` − `/p| > A

)
6

Var(Tw)

A2

∼ N(1− θ)/θ2

N2ε2
(44)

Applying Equations (43) and (44) to Equation (42) proves Property II. This completes
the proof of Lemma 21. �
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4 Conclusion

Recalling Remark 10(b), we see that Theorem 9 follows immediately from Propositions
16 and 18.

We now show that Equation (6) of Theorem 3 follows from Theorem 9 by induction.
Remark 10(a) tells us that we can apply Theorem 9 when τ is 1� µ3, which shows that
Equation (6) holds for k = 4. Now assume that Equation (6) is true for a given k > 4.
Lemma 17 and Remark 4 prove that G(γ, 1− δ; (k− 2)2) < (k− 1)2 whenever γ < 1− δ.
This means that Equation (6) implies Equation (10) when τ̂ is µk, using

SN(µk) \ S∗NεN (µk) ⊂
⋃

i,j : j 6N−i−Nε

FN(i, j;µk)

and a compactness argument as in the proof of Proposition 16. Hence Equation (11) holds
when τ is µk+1, in which case L(τ̂) equals (k − 1)2. This says that Equation (6) holds
with k replaced by k+ 1. This completes the induction, showing that Equation (6) holds
for every k > 4.

Finally we shall prove Equation (7) for k > 4 and 1 6 ` 6 k − 2. The proof of
Proposition 2.3 in [3] shows that there is a bijection from SN(1 . . . `(`+1) . . . (k−1)k) to
SN(1 . . . `k(k−1) . . . (`+1)) that preserves all the left-to-right minima of each permutation.
(To see this, observe that when A = J` in the proof of [3], each right-to-left minimum
and everything below it and to its right are all coloured blue, and hence are unchanged
by the bijection α.) It follows that

F∗N(I, J ;λk,`) = F∗N(I, J ;µk)

always holds. Using this and our Proposition 18 with τ = µk, we obtain

lim inf
N→∞

|F∗N(IN , JN ;λk,`)|1/N > G(γ, 1− δ; (k − 2)2). (45)

Next, by Proposition 16 with τ = λk,`, we obtain

lim sup
N→∞

|FN(IN , JN ;λk,`)|1/N 6 G(γ, 1− δ;L(λk−1,`−1))

= G(γ, 1− δ; (k − 2)2). (46)

Equations (45) and (46) together imply Equation (7). This completes the proof of Theo-
rem 3.

Acknowledgements

Part of this work was done while N. Madras was visiting the Fields Institute for Research
in Mathematical Sciences. L. Pehlivan would like to thank to the Department of Mathe-
matics and Statistics at Dalhousie University for their hospitality while she was working
on the paper. The authors thank Erik Slivken for informative discussions.

the electronic journal of combinatorics 23(4) (2016), #P4.36 19



References

[1] Richard Arratia. On the Stanley-Wilf conjecture for the number of permutations
avoiding a given pattern. Electronic Journal of Combinatorics, 6 #N1, 1999.

[2] Mahshid Atapour and Neal Madras. Large deviations and ratio limit theorems for
pattern-avoiding permutations. Combinatorics, Probability and Computing, 23:160–
200, 2014.

[3] Jörgen Backelin, Julian West, and Guoce Xin. Wilf-equivalence for singleton classes.
Adv. in Appl. Math., 38(2):133–148, 2007.
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