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Abstract

A finite group G is a DCI-group if, whenever S and S′ are subsets of G with the
Cayley graphs Cay(G,S) and Cay(G,S′) isomorphic, there exists an automorphism
ϕ of G with ϕ(S) = S′. It is a CI-group if this condition holds under the restricted
assumption that S = S−1. We extend these definitions to infinite groups, and make
two closely-related definitions: an infinite group is a strongly (D)CIf -group if the
same condition holds under the restricted assumption that S is finite; and an infinite
group is a (D)CIf -group if the same condition holds whenever S is both finite and
generates G.

We prove that an infinite (D)CI-group must be a torsion group that is not locally-
finite. We find infinite families of groups that are (D)CIf -groups but not strongly
(D)CIf -groups, and that are strongly (D)CIf -groups but not (D)CI-groups. We
discuss which of these properties are inherited by subgroups. Finally, we completely
characterise the locally-finite DCI-graphs on Zn. We suggest several open problems
related to these ideas, including the question of whether or not any infinite (D)CI-
group exists.

1 Introduction

Although there has been considerable work done on the Cayley Isomorphism problem for
finite groups and graphs, little attention has been paid to its extension to the infinite case.

Definition 1.1. A Cayley (di)graph Γ = Cay(G;S) is a (D)CI-graph if whenever φ : Γ→
Γ′ is an isomorphism, with Γ′ = Cay(G;S ′), there is a group automorphism α of G with
α(S) = S ′ (so that α can be viewed as a graph isomorphism).
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Notice that since Aut(Γ) = Aut(Γ) (where Γ denotes the complement of Γ) and any
isomorphism from Γ to Γ′ is also an isomorphism from Γ to Γ′, a graph is a (D)CI-graph
if and only if its complement is also a (D)CI-graph. Since at least one of Γ and Γ must
be connected, the problem of determining (D)CI-graphs can be reduced to the connected
case.

This definition extends to a definition for groups.

Definition 1.2. A group G is a (D)CI-group if every Cayley (di)graph on G is a (D)CI-
graph.

These definitions (in the undirected case) as well as the following equivalent condition
for a graph to be a (D)CI-graph, first appeared in work by Babai [3], extending a research
problem posed by Àdàm for cyclic groups [1]. There has been a large body of work on
this topic, and Li published a survey paper [14] outlining many of the results.

Theorem 1.3 ([3]). A Cayley (di)graph Γ on the group G is a (D)CI-graph if and only
if any two regular copies of G in Aut(Γ) are conjugate.

In the infinite case, it is natural to consider locally-finite (di)graphs: that is, (di)graphs
whose valency is finite. When studying Cayley (di)graphs, this means that the set S is
finite. However, restricting our consideration to this case complicates matters, as the
complement of a locally-finite (di)graph is not locally-finite. For this reason, the standard
argument made above that reduces the finite problem to the case of connected (di)graphs,
does not apply to infinite (di)graphs that are locally-finite. In other words, if one wishes
to study this problem in the context of locally-finite (infinite) (di)graphs, it is necessary
to consider disconnected as well as connected (di)graphs.

For this reason, we give two new definitions. In the case of finite (di)graphs, both of
these definitions coincide with the definition of a (D)CI-group, but in the infinite case
they do not, and are themselves (we believe) worthy of study as natural generalisations
of finite (D)CI-groups.

Definition 1.4. A finitely-generated groupG is a (D)CIf -group if every connected locally-
finite Cayley (di)graph on G is a (D)CI-graph.

Note that it is not possible to have a connected locally-finite Cayley (di)graph on
a group that is not finitely-generated, so the requirement that the group be finitely-
generated only serves to avoid a situation where all non-finitely-generated groups are
vacuously CIf -groups.

Definition 1.5. A group G is a strongly (D)CIf -group if every locally-finite Cayley
(di)graph on G is a (D)CI-graph.

It should be apparent from these definitions that

(D)CI-group⇒ strongly (D)CIf -group
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and if we restrict our attention to finitely-generated groups,

strongly (D)CIf -group⇒ (D)CIf -group.

In this paper we will construct examples of groups that are (D)CIf -groups but not
strongly (D)CIf -groups (despite being finitely generated) and groups that are strongly
(D)CIf -groups but not (D)CI-groups, so these definitions are interesting. We further
study these classes, particularly in the case of infinite abelian groups, including a complete
characterisation of the locally-finite graphs on Zn that are (D)CI-graphs. We also prove
that no infinite abelian group is a (D)CI-group, and that any (D)CI-group must be a
torsion group that is not locally finite. We leave open the question of whether or not any
infinite (D)CI-groups exist.

The first paper we are aware of that solves a CI problem for infinite graphs was by
Möller and Seifter [18]. Since they were actually considering the problem of digraphical
regular representations (DRRs) of infinite finitely-generated groups, they considered only
connected graphs. In the course of determining the DRRs for Z, the results they proved
imply (in our terms) that Z is a CIf -group. In the only prior work that we are aware of
that is aimed specifically at solving the CI problem for infinite graphs, Ryabchenko [29]
uses the standard definition (the same one we gave above) for a CI-group, and claims to
have proven that every finitely-generated free abelian group is a CI-group. It is clear from
his proofs that what he in fact shows is that Z is a strongly CIf -group, and Zn is a CIf -
group. We will restate the results he actually proves in that paper using our terminology,
as well as pointing out several consequences of his proofs that he did not mention. We
also show that Zn is not a strongly (D)CIf -group if n > 1. Ryabchenko cites a paper by
Chuesheva as the main motivation for his paper, but the journal is obscure and the url
he provides no longer exists, so we were not able to obtain a copy of this paper. Löh has
published a paper [16] on the related question of when a graph can be represented as a
Cayley graph on more than one finitely-generated infinite abelian group.

We will proceed from the strongest property to the weakest. In Section 2, we will
consider infinite (D)CI-groups, and prove that various large families of infinite groups
cannot be (D)CI-groups; specifically, we show that any infinite CI-group must be a torsion
group that is not locally finite. (Since every DCI-group is a CI-group, this result carries
over to the directed case.) In Section 3, we consider strongly CIf -groups. We construct
an infinite family of such groups, but also prove that Zn is not a strongly CIf -group
for n > 1. We show that every finitely-generated subgroup of a strongly CIf -group is
a CIf -group, but leave open the question of whether or not all subgroups of strongly
CIf -groups are strongly CIf -groups. In Section 4, we consider CIf -groups. We show that
without the condition of local-finiteness, connectedness is not sufficient to ensure that
a Cayley graph on Zn is a CI-graph. We note that Zn is a CIf -group for every n. In
Section 5, we include the results from [29], the first of which is also attributable to [18].
We have slightly generalised as well as correcting the statements from [29] (which can
be done using the same proofs), and include some easy corollaries of his proofs, showing
that every locally-finite Cayley (di)graph on Zn is a normal Cayley (di)graph, and in fact
has a unique regular subgroup isomorphic to Zn. Finally, in Section 6, we completely
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characterise the locally-finite Cayley graphs on Zn that are CI-graphs. In particular, we
show that if n 6= 2 then a (nonempty) locally-finite Cayley graph on Zn is a (D)CI-graph
if and only if it is connected, and that a (nonempty) locally-finite Cayley graph on Z2 is
a (D)CI-graph if and only if it either

• is connected, or

• has exactly two connected components, and the connection set S is invariant under
some automorphism of order 3 of 〈S〉.

2 CI-groups

In this section of the paper, we demonstrate that various families of infinite groups are
not CI-groups. Since all DCI-groups are also CI-groups, this implies that these groups
are not DCI-groups. We also discuss the open questions that remain.

Remark 2.1 ([4]). We observe that the property of being a CI-group is inherited by sub-
groups.

There is a standard construction for the above fact, used for finite groups, that works
equally well for infinite groups if we are not requiring that graphs be locally finite. That
is: if H < G is not a CI-group, take a connected Cayley graph Γ = Cay(H;S) that is not
a CI-graph (use a complement if necessary to ensure that the graph is connected). Let
Γ′ = Cay(H;S ′) be an isomorphic graph that is not isomorphic via an automorphism of
H. Then Cay(G;S) and Cay(G;S ′) are clearly isomorphic, but any isomorphism must
take connected components to connected components, so would restrict to an isomorphism
from Γ to Γ′ that cannot come from a group automorphism of H.

We now show that Z is not a CI-group. Together with the preceding remark, this has
strong consequences.

Proposition 2.2. The group Z is not a (D)CI-group.

Proof. We prove this by finding a Cayley graph on Z that is not a CI-graph. Let S =
{i ∈ Z : i ≡ 1, 4 (mod 5)}. We will show that Γ = Cay(Z;S) is not a CI-graph.

Let S ′ = {i ∈ Z : i ≡ 2, 3 (mod 5)}, and let Γ = Cay(Z;S ′). We claim that if we
define φ : Γ→ Γ′ by

φ(i) =



i if i ≡ 0 (mod 5)

i+ 1 if i ≡ 1 (mod 5)

i+ 2 if i ≡ 2 (mod 5)

i− 2 if i ≡ 3 (mod 5)

i− 1 if i ≡ 4 (mod 5)

,

then φ is a graph isomorphism. Clearly φ is one-to-one and onto, so we need only show
that xy is an edge of Γ if and only if φ(x)φ(y) is an edge of Γ′.
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Suppose that xy is an edge of Γ; equivalently, y − x ≡ 1, 4 (mod 5). A case-by-
case analysis of the possible residue classes for x and y shows that this always forces
φ(y)− φ(x) ≡ 2, 3 (mod 5); equivalently, φ(x)φ(y) is an edge of Γ′.

Since the only automorphisms of Z fix sets that are closed under taking negatives
(which S and S ′ are), and S 6= S ′, we conclude that Γ is not a CI-graph.

This of course has very strong consequences.

Corollary 2.3. No infinite group containing an element of infinite order is a CI-group.
That is, infinite CI-groups must be torsion groups.

Proof. If G contains an element τ of infinite order, then 〈τ〉 ∼= Z. By Proposition 2.2,
this subgroup is not a CI-group, and by Remark 2.1, G cannot be a CI-group.

We now consider infinite abelian p-groups.

Proposition 2.4. No infinite abelian p-group is a CI-group.

Proof. By Remark 2.1, any subgroup of a CI-group is a CI-group. By Corollary 2.3, any
infinite CI-group must be a torsion group (i.e., every element has finite order). Elspas and
Turner [8] showed that Z16 is not a CI-group, and this was generalised in [4] to Zn2 for
n > 4, so any infinite abelian p-group would have to be elementary abelian (or contain an
infinite elementary abelian subgroup). But Muzychuk [22] showed that elementary abelian
p-groups of sufficiently high rank are not CI-groups. (Muzychuk’s rank requirement was
later improved by Spiga [32] and Somlai [31], but we only require a finite bound.)

The following simple lemma will allow us to eliminate all infinite abelian groups. This
idea has been used in the finite case, but we provide the proof here since it is short, to
show that it works equally well in the infinite case.

Lemma 2.5. Suppose that G is a CI-group. If H1, H2 6 G with |H1| = |H2| and |G :
H1| = |G : H2|, then some automorphism of G carries H1 to H2. In particular, H1

∼= H2.

Proof. We have Cay(G;H1 − {e}) ∼= Cay(G;H2 − {e}) since both consist of |G : H1|
disjoint copies of the complete graph on |H1| vertices. So there is an automorphism of G
that carries H1 to H2.

Using the above results, we can now show that no infinite abelian group is a CI-group.
In fact the idea of this proof does not really require the assumption that the infinite group
is abelian, but that is certainly more than sufficient, and results in the strong corollary
that follows.

Theorem 2.6. No infinite abelian group is a CI-group.

Proof. Suppose that G were an infinite abelian CI-group. By Corollary 2.2, we can assume
that every element of G has finite order. By Proposition 2.4 (and Remark 2.1), we can
assume that G does not contain an infinite p-group (applying Proposition 2.4 requires
the assumption that G is abelian). Thus every p-subgroup of G is a finite CI-group, and
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there are nontrivial p-subgroups of G for infinitely many primes. Fix some prime p for
which the p-subgroups of G are nontrivial. Let H1 be any infinite subgroup of G that
has infinite order and infinite index in G, and has no elements of order p. (Such an H1

exists since the Sylow p-subgroup of G is finite. For example, if P1, P2, . . . are all of the
nontrivial Sylow subgroups of G with the exception of the Sylow p-subgroup, we could
take 〈Pi : i is odd〉.) Let H2 be generated by H1 together with an element of order p from
G. Clearly, H1 and H2 are non-isomorphic since only one contains an element of order p,
but this contradicts Lemma 2.5.

A locally-finite group is a group in which every finitely-generated subgroup is finite.
The preceding theorem has the following consequence.

Corollary 2.7. No infinite locally-finite group is a CI-group.

Proof. Hall and Kulatilaka [11] and Kargapolov [13] independently proved that every
infinite locally-finite group contains an infinite abelian group. Both proofs rely on the
Feit-Thompson Theorem. Together with Remark 2.1, Theorem 2.6 therefore yields the
desired conclusion.

Given the above results, it would be tempting to conjecture that no infinite group is
a CI-group, but this is by no means clear, particularly in the case of unusual groups such
as the Tarski Monsters (see below). We leave this as a problem for future research, first
summarising what we can say about such a group.

Corollary 2.8. Every subgroup of a CI-group must be a CI-group. Furthermore, every
infinite CI-group must be:

1. a torsion group; and

2. not locally-finite.

In addition, if there is an infinite CI-group, there is one that is finitely generated.

Proof. The first statement is Remark 2.1. Conclusion (1) is Corollary 2.3. Conclusion (2)
is Corollary 2.7.

Suppose now that G is an infinite CI-group. Since G is not locally-finite, it must
have a subgroup that is finitely generated but infinite, and is still a CI-group (by Remark
2.1).

In determining whether or not there is an infinite CI-group, one possible family of
candidates that needs to be considered carefully is the family of so-called “Tarski Mon-
sters”. These are infinite groups whose only proper subgroups have order p for some fixed
(but dependent upon the group) large prime p. Thus, every element of the group has
order p, while any two elements in different cyclic subgroups generate the entire group.
Clearly, if a Tarski monster G were to be a CI-group, then there would have to be at most
two orbits of non-identity elements under Aut(G). More precisely, for any two elements
g, h ∈ G, g would have to be in the same orbit as either h or h−1 (otherwise, if there is
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no automorphism taking g to either h or h−1, then Cay(G; {g, g−1}) ∼= Cay(G; {h, h−1})
but there is no automorphism of G taking {g, g−1} to {h, h−1}), so there must be either a
single orbit, or two orbits Ω and Ω−1. We found discussions on the internet [17] indicating
that for some Tarski monsters, any two of the subgroups are conjugate, but did not find
an answer as to whether or not the stronger condition we are interested in is true for some
Tarski monsters. Even if it were true, this is not enough to guarantee that such a group
is a CI-group. We leave this as an open question.

Question 2.9. Does there exist an infinite CI-group? In particular, is any Tarski monster
a CI-group?

3 Strongly CIf-groups

In contrast to the class of CI-groups, we were able to find infinite groups that are strongly
CIf -groups. To begin this section, we note that Ryabchenko [29] proved that Z is a
strongly CIf -group. This result is stated in Section 5 of this paper, as Corollary 5.2.

This naturally leads to the question of Zn. We show that Zn is not a strongly CIf -
group for any n > 1. We in fact prove a stronger result, for use later in this paper when
we precisely characterise locally-finite graphs in Theorem 6.1.

Proposition 3.1. Let n > 1, and let Γ = Cay(Zn;S) be any Cayley (di)graph on Zn such
that the number of connected components of (the underlying graph of) Γ is either infinite,
or is divisible by p2 for some prime p. Then Γ is not a (D)CI-graph.

Proof. For this proof, we use the formulation of the CI problem given in Theorem 1.3.
Let G = 〈S〉, and let Γ0 = Cay(G;S) (so this is connected). Then Aut(Γ) will either

be SZ oAut(Γ0), or Sn oAut(Γ0), where n is finite and there is some prime p such that p2 | n.
Consider the subgroup of the appropriate symmetric group that is induced by the natural
action of Zn on the connected components of Γ. Clearly this will be a regular abelian
subgroup that is either countably infinite, or of order n. There are many nonisomorphic
countably infinite regular abelian subgroups of SZ (Z and Z2×Z, for example). Likewise,
there are at least two nonisomorphic regular subgroups of Sn (Zp×Zn/p and Zp2×Zn/p2).
Since n > 1, each of these can be expanded to a regular action isomorphic to Zn in
Aut(Γ). Since the subgroups are nonisomorphic, they are not conjugate in the appropriate
symmetric group, so the expanded actions on Γ are not conjugate in Aut(Γ). Thus Γ is
not a (D)CI-graph.

Corollary 3.2. The group Zn is not a strongly CIf -group for n > 1.

Proof. When n > 1, it is easy to construct finitely-generated Cayley graphs on Zn for
which the number of connected components is either countably infinite, or divisible by
a square. For example, Γ1 = Cay(Zn; {±(1, 0, . . . , 0)}) has a countably infinite number
of connected components, while Γ2, the Cayley graph on Zn whose connection set is the
standard generating set for Zn (together with inverses) with the first generator (and its
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inverse) replaced by ±(p2, 0, . . . , 0), will have p2 connected components. So Proposition
3.1 is sufficient.

Had we only wanted to show that Zn is not a strongly CIf -group for n > 1, we could
have pointed out that Γ1

∼= Cay(Zn; {±(2, 0, . . . , 0)}) but not via a group automorphism
of Zn, or similarly that Γ2 is isomorphic to the Cayley graph on Zn whose connection set
is the standard generating set for Zn (together with inverses) with the first generator (and
its inverse) replaced by ±(p, 0, . . . , 0), and the second generator (and its inverse) replaced
by ±(0, p, . . . , 0), but not via a group automorphism of Zn.

Having determined the status of free abelian groups, we turn our attention to the
opposite end of the spectrum of infinite abelian groups and consider torsion groups. First
we prove a restriction on torsion groups that are strongly CIf -groups (dropping the abelian
constraint for the time being).

Lemma 3.3. Suppose that G is a locally-finite torsion group that is a strongly CIf -group.
Then every finite subgroup of G is a CI-group.

Furthermore, for p > 5 the Sylow p-subgroups of G are elementary abelian, and the
Sylow 3-subgroups are either cyclic of order at most 27, or elementary abelian.

Proof. Since G is a strongly CIf -group, an argument similar to that of Remark 2.1 shows
that every finite subgroup must be a CI-group.

Babai and Frankl [4] showed that for p > 5 the only finite p-groups that are CI-groups
are elementary abelian, and the finite 3-groups that are CI-groups are either cyclic of order
at most 27, or elementary abelian. Furthermore, Muzychuk [22] proved that elementary
abelian groups of sufficiently high rank are not CI-groups. Since G is locally-finite and
the results just stated imply that every finite p-subgroup has bounded order, there must
be a finite number of generators that contribute to any p-group in G. In particular, this
means that the p-groups in G must all be finite. Thus by [4] again, we obtain the desired
conclusion.

In addition to Z which seems to be a sporadic example, we have been able to find an
infinite family of groups that are strongly CIf -groups.

Theorem 3.4. Let G be a countable abelian torsion group. Then G is a strongly (D)CIf -
group if and only if every finite subgroup of G is a (D)CI-group.

Proof. Abelian torsion groups are locally-finite, so necessity is shown in Lemma 3.3.
For the converse, suppose that G is a countable abelian torsion group, and every finite

subgroup of G is a (D)CI-group.
By Lemma 3.3, when p > 3 the Sylow p-subgroups of G are elementary abelian, or

cyclic of order at most 27. To understand the Sylow 2-subgroups and to improve our
understanding of the Sylow 3-subgroups, we use Lemma 3.3 to note that they must be
Sylow 2-subgroups of finite (D)CI-groups. Aside from some finite exceptional groups
whose order does not exceed 2532 = 288, it is known that in any finite abelian (D)CI-
group H, every Sylow p-subgroup of H must be either Z4, or elementary abelian. This
strengthening of the work of Babai and Frankl [4] for p = 2 and p = 3 is mentioned in
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[15]. Since G has arbitrarily large finite subgroups all of which are (D)CI-groups, this
implies that every Sylow p-subgroup of G must be either Z4, or elementary abelian.

Let Γ = Cay(G;S) ∼= Γ′ = Cay(G;S ′), with S finite. Since G is an abelian torsion
group, 〈S〉 must be finite, and 〈S ′〉 has the same finite order, so H = 〈S, S ′〉 is a finite
subgroup of G, so is a (D)CI-group. Clearly Cay(H;S) ∼= Cay(H;S ′), so as H is a
(D)CI-group, there is an automorphism α of H taking S to S ′.

Since G is countable, list the elements of G: g1, g2, . . ., so that H = {g1, . . . , g|H|} (the
rest of the list can be arbitrary). For i > |H|, define Gi = 〈g1, . . . , gi〉 (so G|H| = H).

We claim that for i > |H|, there is an automorphism αi of Gi that takes S to S ′ (so is an
isomorphism from Cay(Gi;S) to Cay(Gi;S

′)) such that for every j ∈ {|H|, |H|+1, . . . , i},
the restriction of αi to Gj is αj. We prove this claim by induction. The base case of
i = |H| has been established. By induction, we can assume that we have αi−1 such that
the restriction of αi−1 to Gj is αj for every |H| 6 j 6 i− 1, so we need only find αi such
that the restriction of αi to Gi−1 is αi−1. Since Gi is abelian, it is the direct product of its
Sylow p-subgroups, so if we show that the action of αi−1 on any Sylow p-subgroup of Gi−1
is the restriction of the action of αi on the corresponding Sylow p-subgroup of Gi, this will
suffice. Let Pi be a Sylow p-subgroup of Gi, and Pi−1 the corresponding Sylow p-subgroup
of Gi−1. If Pi−1 = Pi then we define αi(g) = αi−1(g) for every g ∈ Pi = Pi−1. If Pi is
elementary abelian and Pi 6= Pi−1, then since Gi = 〈Gi−1, gi〉 is abelian, we must have
Pi ∼= Pi−1 × Zp. In this case use this representation, and for any (g, h) ∈ Pi = Pi−1 × Zp,
define αi(g, h) = (αi−1(g), h). The only remaining possibility is that p = 2, Pi = Z4, and
Pi−1 = Z2. In this case, define αi(g) = g for every g ∈ Pi. Since αi−1 must act as the
identity on Pi−1 ∼= Z2, the restriction of αi to Pi−1 is again αi−1.

Now we define α′, which will be an automorphism of G that takes S to S ′. For ease of
notation, first define αi = α for 1 6 i 6 |H|. Now for any gi ∈ G, define α′(gi) = αi(gi).
We show that the map α′ is an automorphism of G. Let gi, gj ∈ G with i 6 j. First,
notice that because the restriction of αj to Gi is αi (where Gi = H for every 1 6 i 6 |H|),
we have αj(gi) = αi(gi). Now, gi, gj, gigj ∈ Gj and

α′(gi)α
′(gj) = αi(gi)αj(gj) = αj(gi)αj(gj) = αj(gigj) = α′(gigj).

While the finite abelian (D)CI-groups have not been completely determined, elemen-
tary abelian groups of rank at most 4 are known to be DCI-groups [7, 10, 12, 20, 33].
So the preceding theorem gives us an infinite class of infinite strongly (D)CIf -groups:
namely, pick any infinite set of primes Q. For each p ∈ Q, take a cyclic p-group. Define
G to be the direct product of the chosen groups. Then G is a strongly (D)CIf -group. (It
would be nice to be able to select an elementary abelian p-group of rank higher than one
for at least some of the primes in Q; unfortunately, the question of whether or not finite
direct products of most such groups are (D)CI-groups remains open.)

It is, unfortunately, not clear whether the property of being a strongly (D)CIf -group
is necessarily inherited by subgroups of strongly (D)CIf -groups. In the examples that we
have found, it is inherited, since the only infinite subgroup of Z is Z, and if G is any group
in the family of strongly (D)CIf -groups described in Theorem 3.4, and H is any infinite
subgroup of G, then (by our structural characterisation of the family) H is in the family,
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so H is a strongly (D)CIf -group. In general, though, we do not see why the following
situation might not arise: G is a strongly (D)CIf -group, and for some infinite subgroup H
and some finite subsets S, S ′ of G, Cay(G;S) ∼= Cay(G;S ′), but for every automorphism
α of G that takes S to S ′, we have α(H) 6= H, and in fact no automorphism of H takes
S to S ′.

Question 3.5. Is it true that every subgroup of a strongly (D)CIf -group is a strongly
(D)CIf -group?

Note the answer to Question 3.5 is yes in the case of countable abelian torsion groups
that are (D)CIf -groups. If G is such a group and H 6 G, then H is also a countable
abelian torsion group (possibly finite) and by Theorem 3.4, every finite subgroup of both
G and H is a (D)CI-group, so that H is a strongly (D)CIf -group.

We can at least say that when a subgroup of a strongly (D)CIf -group is finitely-
generated, it must be a (D)CIf -groups.

Proposition 3.6. A finitely-generated subgroup of a strongly (D)CIf -group is always a
(D)CIf -group.

Proof. Let G be a strongly (D)CIf -group, and let H 6 G be finitely generated. Suppose
that 〈S〉 = H, and Cay(H;S) ∼= Cay(H;S ′) for some subset S ′ of H. Since Cay(H;S)
(or the underlying undirected graph) is connected, we also have 〈S ′〉 = H. Clearly,
Cay(G;S) ∼= Cay(G;S ′) since each is the disjoint union of |G : H| copies of the original
(di)graph. Since G is a strongly (D)CIf -group, there is an automorphism α of G such
that α(S) = S ′. Since H = 〈S〉 = 〈S ′〉, we must have α(H) = H, so the restriction of α
to H is an automorphism of H that takes S to S ′.

4 CIf-groups

Although it was not the statement he gave, Ryabchenko [29] proved that Zn is a CIf -group
for every n; that is, every finitely-generated free abelian group is a CIf -group. We include
a slight generalisation of his proof in Section 5, as Corollary 5.4. Currently, these are the
only infinite (D)CIf -groups that we know of, since the family of strongly (D)CIf -groups
determined in Theorem 3.4 has no finitely-generated members.

An interesting observation is that although connectedness is enough to ensure that a
locally-finite Cayley graph on Zn is a (D)CI-graph, it is not sufficient if the graph is not
locally-finite.

Corollary 4.1. Let n > 1. Amongst connected Cayley (di)graphs on Zn that are not
locally finite, some will be (D)CI-graphs and some will not.

Proof. Corollary 5.4 tells us that any such (di)graph for which the complement is locally
finite and connected will be (D)CI, while Proposition 3.1 tells us that any such (di)graph
for which the complement is locally finite with a number of connected components that
is infinite or is not square-free, will not be (D)CI. In fact, later in Theorem 6.1, we will
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see that any such (di)graph for which n > 2 and the complement is locally finite and
disconnected, or for which n = 2 and the complement is locally finite and has more than
2 connected components, will not be (D)CI.

Since subgroups of finitely-generated groups need not be finitely-generated, it is again
not at all evident whether or not the property of being a (D)CIf -group is inherited by
subgroups. Amongst other things, we would need to determine that all subgroups of
(D)CIf -groups are finitely generated. Setting this aside, it is not evident whether or not
finitely generated subgroups of (D)CIf -groups are (D)CIf -groups. Since for a (D)CIf -
group we only know that connected, locally-finite Cayley (di)graphs are (D)CI-graphs,
it is hard to see even how, given two locally-finite, isomorphic Cayley (di)graphs on
H 6 G, one might construct suitable Cayley (di)graphs on G that are locally-finite and
connected, to use the (D)CIf -property. One possible approach would involve proving that
every Cayley colour graph on G actually has the CI-property, and then using a second
colour of edges on a finite number of generators to connect cosets of H. We leave this as
another question. To prove any result along these lines (e.g. with the additional condition
that |G : H| be finite) would be interesting, we believe.

Question 4.2. If G is a (D)CIf -group and H 6 G is finitely-generated, is H a (D)CIf -
group?

5 Ryabchenko’s results

In this section we state the results from Ryabchenko’s paper, and some closely-related
results.

Although Ryabchenko does not consider digraphs, his proofs in fact cover the more
general situation, and have a number of easy and interesting consequences that he does
not make note of.

Theorem 5.1 ([18], Theorem 1.2; also [29], Theorem 1). Let S ⊂ Z be finite. If
Cay(Z;S ′) ∼= Cay(Z;S) then S ′ = ±S.

The statement of Möller and Seifter’s result [18, Theorem 1.2] looks much like this,
but they assume that S is a generating set for Z (so that the graphs are connected), since
they were looking for DRRs. The general statement given above is an easy consequence of
the connected case. Two isomorphic disconnected Cayley graphs on Z will have the same
number of connected components, which determines the index of the subgroup generated
by S (and S ′); each connected component is isomorphic to a Cayley graph on Z to which
the result for connected graphs applies.

The statements of Theorem 5.1 and of Theorem 5.3 look quite different from the
versions in Ryabchenko’s paper, so for the reader’s convenience and confidence complete
proofs (based on Ryabchenko’s proofs, which are quite different from the Möller-Seifter
proofs) are provided in the arχiv version of this paper, [21].

This has the following immediate consequence.
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Corollary 5.2. The group Z is a strongly (D)CIf -group.

Proof. If Cay(Z;S) and Cay(Z;S ′) are isomorphic and S is finite, then by Theorem 5.1,
S ′ = ±S, so either the identity or the automorphism of Z that takes every integer to its
negative will act as an isomorphism from Cay(Z;S) to Cay(Z;S ′).

The next result does not look at all like the statement of Theorem 2 from [29], but is
the clearest and most precise statement of the proof he gives for that theorem.

Theorem 5.3 ([29], Theorem 2). Let S be a finite generating set for Zn, and let Γ =
Cay(Zn;S). Then if Γ′ = Cay(Zn;S ′) and there is an isomorphism φ : Γ → Γ′ such that
φ takes the identity of Zn to the identity of Zn, then φ is a group automorphism of Zn.

Again, a complete proof of this is provided in [21].
This has an easy corollary, which is (except for his omission of his assumption that

the graphs are locally-finite) the result that was stated in [29], Theorem 2.

Corollary 5.4. The group Zn is a (D)CIf -group.

Proof. Let Γ = Cay(Zn;S) and Γ′ = Cay(Zn;S ′) with φ : Γ → Γ′ an automorphism.
Let 0 represent the identity element of Zn. If c is the element of Zn that corresponds to
the vertex φ(0), then φ′ = φ − c is an isomorphism from Γ to Γ′ that takes 0 to 0. By
Theorem 5.3, φ′ must be an automorphism of Zn.

The following corollary was not mentioned in Ryabchenko’s paper but is an immediate
consequence of his proof.

Corollary 5.5. If Γ = Cay(Zn;S) for some finite generating set S of Zn, then Γ is a
normal Cayley (di)graph of Zn.

Proof. Let 0 be the vertex of Γ corresponding to the identity element of Zn. Let γ be
any automorphism of Γ. If c is the element of Zn that corresponds to the vertex γ(0),
then γ′ = γ − c is an automorphism of Γ that fixes 0. By Theorem 5.3, γ′ must be an
automorphism of Zn, so normalises Zn. Since translation by c also normalises Zn, we see
that Zn / Aut(Γ).

The final corollary presented in this section is slightly less obvious, but is still essen-
tially a consequence of the proof in [29].

Corollary 5.6. If Γ = Cay(Zn;S) for some finite generating set S of Zn, then Aut(Γ)
has a unique regular subgroup isomorphic to Zn.

Proof. Let Z1 and Z2 be two regular subgroups isomorphic to Zn in Aut(Γ) (with Z1 =
〈S〉). Let α′ ∈ Z2 be arbitrary; we plan to show that α′ ∈ Z1. Let α ∈ Z1 such that
α′(0) = α(0), where 0 is the vertex corresponding to the identity of Zn. Then β = α−1α′

is an automorphism of Γ that fixes 0, so by Theorem 5.3, β ∈ Aut(Z1).
Since S is finite, Z1 and Z2 each have finite index in Aut(Γ). It is well-known that the

intersection of two groups of finite index, itself has finite index (c.f. Problem 6, Section
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5.1, [2]). Let Z = Z1 ∩ Z2. Clearly, since Z1 and Z2 are abelian, β commutes with every
element of Z. But since β ∈ Aut(Z1), it can only commute with the elements of Z if
it fixes all of them. This means that β fixes a finite-index subgroup of Z1 pointwise, so
since β ∈ Aut(Z1), we must have β = 1. Hence α′ = α ∈ Z1, as claimed. Since α′ was
arbitrary, Z2 = Z1 is the unique regular subgroup isomorphic to Zn in Aut(Γ).

6 Characterisation of locally-finite (D)CI-graphs on Zn

We have already seen that Z is a strongly (D)CIf -group, and that for n > 1, Zn is
a (D)CIf -group but not a strongly (D)CIf -group. The following theorem gives a simple
characterisation of the locally-finite Cayley (di)graphs on Zn that are (D)CI-graphs (where
n > 1):

Theorem 6.1. Let Γ = Cay(Zn, S) be nonempty and locally finite. Then Γ is a (D)CI-
graph if and only if either:

1. Γ is connected, or

2. n = 1, or

3. n = 2, Γ has only two connected components, and S is invariant under some auto-
morphism φ of the group 〈S〉, such that φ has order 3.

The proof of the above theorem will occupy the rest of this section. The proof of the
main lemma (Lemma 6.4) will use the following well-known consequence of Smith normal
form (cf. 4.6.1 of [2]).

Theorem 6.2 (Simultaneous Basis Theorem). Let M be a free abelian group of finite rank
n > 1 over Z, and let H be a subgroup of M of rank r. Then there is a basis {y1, . . . , yn}
for M and nonzero elements a1, . . . , ar ∈ Z such that r 6 n, ai divides ai+1 for all i, and
{a1y1, . . . , aryr} is a basis for H.

Corollary 6.3. Let H = b1Z × · · · × bnZ for some b1, . . . , bn ∈ Z with Πn
i=1bi = k,

where k is finite and square-free. Then there is an automorphism σ of Zn such that
Hσ = kZ× Zn−1.

Proof. By Theorem 6.2, there is a basis {y1, . . . , yn} for Zn and nonzero integers a1, . . . an
such that ai divides ai+1 for all i, and {a1y1, . . . , anyn} is a basis for H. Notice that the
index of H in Zn is clearly a1a2 · · · an, so for this product to be the square-free integer k
(given that ai divides ai+1 for every i), the only possibility is that a1 = · · · = an−1 = 1
and an = k. Thus, there is a basis {y1, . . . , yn} for Zn such that {y1, . . . , yn−1, kyn} is a
basis for H, so taking σ to be the automorphism of Zn that takes yn to e1, y1 to en, and
yi to ei for 2 6 i 6 n − 1, where e1, . . . , en is the standard basis for Zn, establishes the
desired result.

The following technical result is the foundation of the proof of Theorem 6.1.
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Lemma 6.4. Let Γ = Cay(Zn, S) be nonempty and locally finite, with n > 1. Then Γ is
a (D)CI-graph if and only if:

• Γ (or its underlying graph) has a finite, square-free number of components; and

• Aut(H) = Aut(H)Zn · StabAut(H)(S),

where H = 〈S〉, StabAut(H)(S) is the group of all automorphisms of H that fix S setwise,
and Aut(H)Zn := {φ|H : φ ∈ Aut(Zn), φ(H) = H}, where φ|H denotes the restriction of
φ to its action on H.

Proof. (⇒) We assume that Γ is a (D)CI-graph. By Proposition 3.1, Γ must have a finite,
square-free number of components.

Take any automorphism β of H. Then Cay(Zn, β(S)) ∼= Γ, so since Γ is a (D)CI-
graph, there must be some γ ∈ Aut(Zn) such that γ(S) = β(S). So γ−1β|H ∈ Aut(H)
and fixes S setwise. Hence γ−1β|H ∈ StabAut(H)(S). Also since β ∈ Aut(H), H = 〈S〉,
and β(S) = γ(S), we have γ(H) = β(H) = H, so γ|H ∈ Aut(H). Hence γ|H ∈ Aut(H)Zn .
Therefore β = (γ|H)(γ−1β|H) ∈ Aut(H)Zn · StabAut(H)(S). This shows that Aut(H) 6
Aut(H)Zn ·StabAut(H)(S); since both of the groups in the product are subgroups of Aut(H),
the other inclusion is immediate.

(⇐) Suppose that Γ ∼= Γ′ = Cay(Zn, S ′). Let H = 〈S〉 and H ′ = 〈S ′〉. Let k be the
number of connected components of Γ (and therefore of Γ′), so by assumption k is finite
and square-free. Then |Zn : H| = |Zn : H ′| = k. Since k is finite, the rank of H (and of
H ′) is also n.

By Corollary 6.3, we can conjugate both H and H ′ to kZ× Zn−1 using an element of
Aut(Zn), so H and H ′ are conjugate to each other in Aut(Zn). Thus, replacing S ′ by a
conjugate if necessary, we may assume without loss of generality that H ′ = H.

Now since H ′ = H ∼= Zn and since Cay(H,S) ∼= Cay(H ′, S ′) = Cay(H,S ′) is con-
nected, Corollary 5.4 tells us that this is a (D)CI-graph, so there is some τ ∈ Aut(H) such
that τ(S) = S ′. By assumption, τ = τ1τ2 where τ1 ∈ Aut(H)Zn and τ2 ∈ StabAut(H)(S).
Now, since τ2 fixes S setwise, we have τ1(S) = ττ−12 (S) = τ(S) = S ′. By definition of
Aut(H)Zn , there is some σ′ ∈ Aut(Zn) such that σ′|H = τ1, so since S ⊆ H, we have
σ′(S) = τ1(S) = S ′. This has shown that there is an automorphism of Zn taking S to S ′,
so Γ is a (D)CI-graph.

The proof of Theorem 6.1 will also use a bit of number theory and a classical fact from
group theory.

Definition 6.5 ([9]). Let (q, n) ∈ Z × Z with q, n > 1. A prime number p is a large
Zsigmondy prime for (q, n) if p | (qn − 1), but p - (qi − 1) for 1 6 i < n, and either
p > n+ 1 or p2 | (qn − 1).

Remark 6.6 ([9]). If p is a large Zsigmondy prime for (q, n), then q has order n in the
multiplicative group of units modulo p (which has order p− 1), so n 6 p− 1.

Lemma 6.7 (Feit [9, Thm. A]). If (q, n) ∈ Z × Z with q, n > 1, then there is a large
Zsigmondy prime for (q, n), unless either
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1. n = 2, or

2. n = 4 and q ∈ {2, 3}, or

3. n = 6 and q ∈ {2, 3, 5}, or

4. n ∈ {10, 12, 18} and q = 2.

Lemma 6.8 (Minkowski [30, Thm. 1(i), p. 3]). Let F be a finite subgroup of GL(n,Q) for
some n, and let p be a prime.

1. If |F | is divisible by p, then n > p− 1.

2. If |F | is divisible by p2, then n > 2(p− 1).

Proof of Theorem 6.1. (⇒) Assume Γ is (D)CI, but is not connected, and n > 1. We
will show that the conditions in part 3 of the statement of the theorem are satisfied. Let
H = 〈S〉, and let k = |Zn : H| be the number of connected components of Γ. Then k > 1,
and Proposition 3.1 tells us that k is square-free (and finite, so H ∼= Zn). Therefore,
Corollary 6.3 allows us to assume H = kZ× Zn−1, after conjugating S by an element of
Aut(Zn) = GL(n,Z).

Let

σ =


1/k 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1

 .

Then σ is an isomorphism from H to Zn. Now

Aut(H)Zn =

φ|H : φ =

b11 . . . b1n
...

...
bn1 . . . bnn

 ∈ GL(n,Z) and b12, . . . , b1n ≡ 0 mod k

 ,

so

AσH := σ · Aut(H)Zn · σ−1 =


b11 . . . b1n

...
...

bn1 . . . bnn

 ∈ GL(n,Z) : b21, . . . , bn1 ≡ 0 mod k

 .

Lemma 6.4 tells us Aut(H) = Aut(H)Zn · StabAut(H)(S). Conjugating both sides by σ
yields GL(n,Z) = AσH F , where F = StabAut(Zn)

(
σ(S)

)
is a finite subgroup of GL(n,Z).

Let q be a prime divisor of k, and let π be the natural homomorphism from GL(n,Z)
to GL(n,Zq). Letting SL±(n,Zq) = {g ∈ GL(n,Zq) | det g = ±1}, we have

SL±(n,Zq) = π
(
GL(n,Z)

)
= π(AσH) · π(F ).
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Since SL±(n,Zq) is transitive on the finite projective space PG(n − 1, q), and π(AσH) is
the stabilizer in SL±(n,Zq) of a point in this space, this implies that π(F ) is transitive on
PG(n− 1, q). In particular,

|π(F ) : π(F ) ∩ π(AσH)| is divisible by |PG(n− 1, q)| = (qn − 1)/(q − 1).

(And the same is true when F is replaced by any of its conjugates in GL(n,Z).)
The remainder of the proof is a slight extension of an argument suggested by G. Robin-

son [28]. Let p be a prime factor of (qn − 1)/(q − 1), so p | |F |. From Lemma 6.8(1), we
see that p 6 n+ 1. Furthermore, if p = n+ 1, then, since F has an element of order p (by
Cauchy’s Theorem) and the cyclotomic polynomial (xp− 1)/(x− 1) is irreducible over Q,
the representation of F on Qn is irreducible (over Q).

We claim that p is not a large Zsigmondy prime for (q, n). Otherwise, Remark 6.6
tells us that p > n+ 1, so Lemma 6.8(2) implies that p2 - |F |, so p2 - (qn− 1)/(q− 1). If p
is a large Zsigmondy prime, then p - (q− 1), so we conclude that p2 - (qn− 1). The claim
now follows by combining this with the fact (in the preceding paragraph) that p 6 n+ 1.

We now know that there are no large Zsigmondy primes for (q, n). We conclude from
Lemma 6.7 that

n ∈ {2, 4, 6, 10, 12, 18}
(and for each n, there are only a few possible values of q, unless n = 2). We consider each
possible value of n as a separate case.

Case 1. Assume n = 2. It is well known that every finite subgroup of GL(2,Z) is
conjugate to a subgroup of either

D8 =

〈(
0 1
1 0

)
,

(
0 −1
1 0

)〉
or D12 =

〈(
0 1
1 0

)
,

(
0 1
−1 1

)〉
.

(A list of all the finite subgroups of GL(2,Z), up to conjugacy, can be found in [23,
pp. 179–180].) Thus, we may assume, after passing to a conjugate, that F ⊆ Dm, with
m ∈ {8, 12}. Note that |Dm| = m 6 12. Then, since{(

±1 0
0 ±1

)}
⊆ D8 ∩ AσH and

〈(
−1 0
0 −1

)
,

(
−1 1
0 1

)〉
⊆ D12 ∩ AσH ,

we have

q + 1 =
q2 − 1

q − 1
=
qn − 1

q − 1
6

|π(F )|
|π(F ) ∩ π(AσH)|

6
|Dm|

|Dm ∩ AσH |
6

12

4
= 3.

So q = 2. This means k > 1 is a square-free positive integer whose only prime divisor
is 2. So k = 2. In other words, Γ has only two connected components.

Furthermore, |F | is divisible by (qn − 1)/(q − 1) = (22 − 1)/(2− 1) = 3, so F has an
element of order 3. Therefore StabAut(H)(S) = σ−1Fσ also has an element φ of order 3.
So the conditions in (3) are satisfied.

Case 2. Assume n = 4. From Lemma 6.7, we have q ∈ {2, 3}, so |F | must be
divisible by either (24 − 1)/(2 − 1) = 15 or (34 − 1)/(3 − 1) = 40. Therefore, F is
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contained in a maximal finite subgroup M of GL(4,Z) whose order is divisible by 5. The
nine maximal finite subgroups of GL(4,Z) are listed in [6, Thm. 4.27] (up to conjugacy),
and, by inspection, the only two whose order is divisible by 5 are Sx4 and Py4. So (after
passing to a conjugate) M is either Sx4 or Py4.

However, for each maximal subgroup M , the proof in [6] provides a finite M -invariant
subset S that contains a basis of Z4. For Py4, we have |S| = 10, so M has an orbit of
cardinality 6 10 on PG(3, q); therefore M is not transitive. For Sx4, we have |S| = 20,
and M is transitive on S; therefore, the cardinality of some orbit on PG(3, q) must be a
divisor of 20, and is therefore neither 15 nor 40. Once again, M is not transitive. Since
F ⊆M , this is a contradiction.

Case 3. Assume n = 6. From Lemma 6.7, we have q ∈ {2, 3, 5}. However, if
q ∈ {3, 5}, then (q6 − 1)/(q− 1) is divisible by either p = 13 or p = 31, which contradicts
the fact that p 6 n + 1 = 7. Therefore, we must have q = 2, so (q6 − 1)/(q − 1) = 32 · 7
is divisible by p = 7.

Let M be a maximal finite subgroup of GL(6,Z) that contains F . We note that M is
absolutely irreducible, not merely irreducible over Q. For example, it is implicit in [25,
Thm. IV.5 and p. 117] (and stated explicitly, but without proof, on page 483 of [26])
that if a maximal finite subgroup of GL(6,Z) is irreducible (over Q), then it is absolutely
irreducible. G. Robinson [28] has provided two (short) alternative arguments. Begin by
noting that if M is not absolutely irreducible, then it is (isomorphic to) a finite subgroup
of GL(d,C), with d 6 3 = (p−1)/2. One argument simply notes that the finite subgroups
of GL(3,C) have been classified. The other argument uses a theorem of R. Brauer [5],
which implies that either M is isomorphic to PSL(2, p) = PSL(2, 7) (which is of order 168),
or the Sylow p-subgroup of M is normal (which implies |M | is a divisor of 2(p−1)p = 84);
in either case, |M | is not divisible by |PG(n− 1, 2)| = 63.

The seventeen absolutely irreducible maximal finite subgroups of GL(6,Z) are listed in
[27, Thm. 4.1] (up to conjugacy), and, by inspection, the only three whose order is divisible
by 7 are Aut(F12), Aut(F13), and Aut(F14). The order of Aut(F14) ∼= PGL(2, 7)×{±1} is
672, which is not divisible by |PG(n− 1, 2)| = 63.

Therefore, M is either Aut(F12) or Aut(F13). These are both isomorphic to Sp×{±1},
and they are conjugate over Q to the automorphism group of the root lattice Ap−1. In the
notation of [6], this automorphism group is Sxp−1. Specifically, note that Sp acts on Zp
by permuting the standard basis vectors e1, . . . , ep. The embedding of Sxp−1 = Sp×{±1}
in GL(n,Z) is obtained by identifying Zn = Zp−1 with the Z-span of the Sp-invariant set
Φ = {ei − ej : i 6= j}. Choose g ∈ GL(n,Q) that conjugates M to Sxp−1, so gΦ is an
M -invariant subset of Qn. After multiplying g by a scalar, we may assume gZn ⊆ Zn,
and (since Φ contains a basis of Zn) that there exists v ∈ gΦ r 2Zn. Then v represents a
point [v] in PG(n− 1, 2), and, since gΦ is M -invariant, we have∣∣M · [v]

∣∣ 6 |gΦ| = |Φ| = p · (p− 1) < (2p−1 − 1)/(2− 1),

which contradicts the fact that M is transitive on PG(n− 1, 2) (with n = p− 1).

Case 4. Assume n = 10. From Lemma 6.7, we have q = 2, so (qn − 1)/(q − 1) =
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210 − 1 = 3 · 11 · 31, so letting p = 31 contradicts the fact that p 6 n+ 1 = 11.

Case 5. Assume n = 12. From Lemma 6.7, we have q = 2. So |F | must be divisible
by (212 − 1)/(2 − 1) = 32 · 5 · 7 · 13. Let p = 13. Since p > 11, we know from [24,
Thm. V.10(iii), p. 31] that any finite subgroup of GL(p − 1,Z) whose order is divisible
by p is either isomorphic to a subgroup of PGL2(p)× {±1}, or conjugate in GL(p− 1,Q)
to a subgroup of Sxp−1, the automorphism group of the root lattice Ap−1. However, we
know, from the argument in the last paragraph of Case 3 of the proof, that F cannot be
conjugate in GL(p− 1,Q) to a subgroup of Sxp−1.

Therefore, F must be isomorphic to a subgroup of PGL2(13)×{±1}. But this, too, is
impossible, because

|PGL2(13)× {±1}| = 13(132 − 1) · 2 < (212 − 1)/(2− 1) = |PG(11, 2)|.

Case 6. Assume n = 18. From Lemma 6.7, we have q = 2, so (qn − 1)/(q − 1) =
218 − 1 = 33 · 7 · 19 · 73, so letting p = 73 contradicts the fact that p 6 n+ 1 = 19.

(⇐) From Corollaries 5.4 and 5.2, we know that if either (1) or (2) holds, then Γ is a
CI-graph. Therefore, we need only consider assumption (3): assume Γ has two connected
components, and S is invariant under some automorphism φ of the group 〈S〉, such that
φ has order 3.

Since the number of components of Γ is 2, which is a finite, square-free number, we
only need to verify the second condition of Lemma 6.4 to see that this is a CI graph. Let
H = 〈S〉. Since Γ has two components, we know |Z2 : H| = 2, so Corollary 6.3 tells us
that we may assume H = 2Z×Z, after applying an automorphism of Z2. As in the proof
of (⇒), let

σ =

(
1/2 0
0 1

)
.

Since φ ∈ StabAut(H)(S), we have σφσ−1 ∈ StabAut(Zn)

(
σ(S)

)
. It is well known that no

element of order 3 in GL(n,Z) acts trivially on PG(n, 2). (See, for example, Case 1 of
the proof of [19, Thm. 4.8.2, pp. 66–67] with p = 2 and k = 3.) Since |PG(2, 2)| = 3,
this implies that 〈φ〉 is transitive on PG(2, 2). Since σ ·Aut(H)Z2 · σ−1 is the stabilizer in
GL(2,Z) of a point in PG(2, 2), and 〈φ〉 ⊆ StabAut(Zn)

(
σ(S)

)
, we conclude that(

σ · Aut(H)Z2 · σ−1
)
· StabAut(Zn)

(
σ(S)

)
= GL(2,Z).

Conjugating by σ−1 yields the desired conclusion that Aut(H) = Aut(H)Zn ·StabAut(H)(S).

We remark that graphs described in Theorem 6.1(3) (that is, disconnected, nonempty,
locally-finite (D)CI-graphs on Z2) do arise.

Example 6.9. The graph Cay(Z2, S) where S = {±(2, 0),±(0, 1),±(2, 1)} is a CI-graph.
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Proof. The matrix (
−1 2
−1

2
0

)
has order 3 (its cube is the identity matrix) and is invariant on S (it maps ±(2, 0) to
±(−2,−1) to ±(0, 1)), so is an automorphism of 〈S〉. Therefore by Theorem 6.1(3), it is
a CI-graph.
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