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Abstract

For a graph G, a monotone increasing graph property P and positive integer q,
we define the Client-Waiter game to be a two-player game which runs as follows.
In each turn Waiter is offering Client a subset of at least one and at most q + 1
unclaimed edges of G from which Client claims one, and the rest are claimed by
Waiter. The game ends when all the edges have been claimed. If Client’s graph has
property P by the end of the game, then he wins the game, otherwise Waiter is the
winner. In this paper we study several Client-Waiter games on the edge set of the
complete graph, and the so called H-game, in which Client tries to build a copy of
some fixed graph H, played on the edge set of the random graph. For the complete
graph we consider games where Client tries to build a large star, a long path and
a large connected component. We obtain lower and upper bounds on the critical
bias for these games and compare them with the corresponding Waiter-Client games
and with the probabilistic intuition. For the H-game on the random graph we show
that the known results for the corresponding Maker-Breaker game are essentially
the same for the Client-Waiter game, and we extend those results for the biased
games and for trees.

∗Research supported in part by USA-Israel BSF Grant 2014361 and by grant 912/12 from the Israel
Science Foundation.
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1 Introduction

Positional games are games of complete information with no random moves. The inception
of the study of positional games goes back to the seminal papers of Hales and Jewett [18],
of Lehman [25], and of Erdős and Selfridge [16]. It has developed since to be a recognized
area of combinatorics, and the last decade has seen a burst of papers and an increasing
interest in this field (see, for example, the monograph of Beck [4] and the recent monograph
[19]).

Several variants of positional games have been considered in the literature. In the
classical Maker-Breaker game the two players (’Maker’ and ’Breaker’) alternately claim
elements from a set X (the board). Maker wins the game if he fully claims some set from a
predefined family F ⊆ P(X), which we call the winning sets, and Breaker wins otherwise.

Recently, some attention was turned to another type of game, namely the Waiter-
Client game. In this variant, initially defined and studied by Beck (e.g. [3]) under the
name “Picker-Chooser”, in each turn Waiter is picking a subset of q + 1 free elements,
where q is a fixed positive integer called the bias. Client then needs to choose one element
from this subset which he claims, while Waiter claims the remaining q elements. If there
are less than q+ 1 remaining elements then in the last turn Waiter will claim all of them.
Waiter’s goal is to force Client to fully claim a winning set while Client tries to avoid it. It
can be easily shown that this game is bias monotone, i.e. for two positive integers q1 < q2,
a winning strategy for Waiter when playing with bias q2 implies a winning strategy when
playing with bias q1. We can therefore define the critical bias, qc, to be the unique integer
for which Waiter has a winning strategy if and only if q 6 qc.

The Client-Waiter game runs much the same as the Waiter-Client with two differ-
ences. The first is that Client now tries to claim a winning set and Waiter tries to prevent
it. The second is that we introduce a special monotonicity rule which states that Waiter
may offer any number of elements between 1 and q + 1 in a turn. Client still claims one
element in each turn (including the last one). The motivation for this rule is the fact that
without it the game is not bias monotone. (Consider for example a game with n pairwise
disjoint winning sets of size 2. In this game Waiter wins whenever q+ 1 is even and loses
otherwise.) The critical bias, qc, in this game can thus be defined to be the unique integer
for which Client has a winning strategy if and only if q 6 qc.

We denote by WC(X,F , q) and CW (X,F , q) the Waiter-Client and Client-Waiter
games, with board X, winning sets F and bias q. Usually when considering a Waiter-
Client or a Client-Waiter game we are interested in finding, or at least bounding, the
critical bias. Another question we might ask is what is the probability threshold for
the property “Waiter wins WC(Xp,Fp, q)” or “Client wins CW (Xp,Fp, q)”, where Xp

is a random subset of X generated by removing each element from X randomly and
independently with probability 1 − p and Fp is the subfamily of F which includes only
the sets of F which are subsets of Xp.

Besides the interest in those games for their own right it was observed that in many
cases they exhibit a strong probabilistic intuition. That is, the outcome of many Waiter-
Client and Client-Waiter games is roughly the same as what we would expect it to be
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when both players just play randomly (although a random strategy for a single player is
usually far from being optimal). See for example [3, 4, 10, 14, 8, 9, 20, 21].

In this paper we look into Client-Waiter games played on the edge set of a graph G,
where G is either Kn — the complete graph on n vertices, or Gn,p — the random graph
generated by taking every edge of Kn to be in the graph randomly and independently
with probability p. The Gn,p model is the most commonly studied probability distribution
on graphs (see [12], [23], and the most recent [17]).
For an infinite series of events {An}n>1 we say that An happens with high probability
(w.h.p.) if lim

n→∞
Pr[An] = 1. Let P be a monotone increasing graph property. We say

that Gn,p goes through a phase transition around p∗ with relation to P if w.h.p. Gn,p /∈ P
whenever p� p∗, while w.h.p. Gn,p ∈ P when p� p∗.
For games on Kn we bound the critical bias for a few games where Client tries to achieve
some monotone graph theoretic property. The interpretation of the probabilistic intuition
in this case is that the critical bias should be qc ≈ 1/p∗, where p∗ is the value around
which Gn,p goes through a phase transition with relation to this property.
For a fixed graph H we define the H-game, denoted CW (G,H, q), to be the Client-Waiter
game on the edge-set of G with bias q, where Client’s goal is to build in his graph a copy
of H. We investigate the H-game on the edges of Gn,p and find the value of p∗ for the
property “Client wins CW (Gn,p, H, q)”.

Not many biased Client-Waiter games on graphs have been studied to date. Bednarska-
Bzdȩga, Hefetz and  Luczak ([10]) showed that in a Client-Waiter game on the edges of
Kn with bias q = (1 + o(1))n/ lnn Waiter can isolate a vertex in Client’s graph, while
if the bias is q = (1 − o(1))n/ lnn then Client can guarantee his graph will be k-vertex
connected, or alternatively he can guarantee his graph is Hamiltonian. This fits very
well with the probabilistic intuition as Gn,p goes through a phase transition with relation
to the properties of being k-vertex connected and Hamiltonian around p∗ = lnn/n (see,
for example, Chapters 4.2 and 6.2 of [17]). Recently Hefetz, Krivelevich and Tan ([21])
analysed the non-planarity, Kt-minor and non-k-colorability Client-Waiter games. They
showed that these games also exhibit some probabilistic intuition (though not as strong
as in the former games).

We start by considering the maximum-degree game, i.e. the game in which Client
tries to claim a star of maximum possible size. For integers n, q let S(n, q) denote the
size (no. of edges) of a largest star graph Client can build when playing a Client-Waiter
game with bias q on E(Kn).

Proposition 1. For any positive integers n, k, if q > dn/ke − 2 then S(n, q) 6 2k, while

for k > 2, if q <
n− 1

k − 1
− 1 then S(n, q) > k.

Notice that the claim in the above proposition is not asymptotic, and k can be fixed
or it can be a function of n.

In the large component game Client tries to build in his graph a connected com-
ponent as large as possible, while in the path game he tries to build a path as long as
possible. Let C(n, q),P(n, q) denote the size of a largest component, and the length of a
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longest path (no. of edges), respectively, that Client can build in the Client-Waiter game
on the edges of Kn with bias q.

Theorem 2.

(i) For every n and for every k > 0, if q > 6n2k/(2k−1) then C(n, q) < 3k.

(ii) For every ε > 0 and n large enough, if q > 1.6n then C(n, q) < (lnn)log2 3+ε.

(iii) For every 0 < ε < 1 and n large enough, if q 6 (1− ε)n
2

then C(n, q) > e−5/2ε+3/2n.

Theorem 3.

(i) For every n and for every k > 0, if q > 3n2k/(2k−1) then P(n, q) < 2k.

(ii) If q > n and n is large enough then P(n, q) < 3 ln lnn.

(iii) For every ε > 0 small enough there is n0 such that for every n > n0, if q 6 (1− ε)n
2

then P(n, q) > e−12/εn.

(iv) For every ε > 0 small enough there is n0 such that for every n > n0, if q 6 εn then
P(n, q) > (1− 8ε ln(1/ε))n.

We did not find a matching lower bound for Theorems 2(i) and 3(i). We conjecture
the following.

Conjecture 4. For every positive integer k and every constant C > 0, Client wins
CW (Kn, Pk, Cn), provided n is large enough.

Bednarska-Bzdȩga proved in [7] several criteria for Waiter’s win in biased Client-
Waiter games and as an application showed the following bounds on the critical bias in
the Client-Waiter H-game.

Theorem 5 (6.1 in [7]). Let H be a graph with at least two edges. For every 0 < ε < 1
and n large enough the following holds. If q > n1/m′(H)+ε then Waiter wins CW (Kn, H, q)
while if q 6 n1/m′′(H)−ε Client wins CW (Kn, H, q), where

m′(H) = max
H′⊆H:vH′>1

eH′ − 1

vH′
,

m′′(H) = max
H′⊆H:vH′>3

eH′ + 1

vH′ − 2
.

Here we give an improvement of the lower bound using the hypergraph containers
result of Saxton and Thomason ([29]). The idea for this proof was suggested to us by
Bednarska-Bzdȩga.
The density of a graph G is defined to be d(G) = eG/vG, and its 2-density to be d2(G) =
(eG − 1)/(vG − 2) or 0 if vG 6 2. The maximum density of G is m(G) = max

G′⊆G
d(G′),
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and its maximum 2-density is m2(G) = max
G′⊆G

d2(G
′). We say that a graph G is balanced

(resp. 2-balanced) if d(G) = m(G) (resp. d2(G) = m2(G)). If for any proper subgraph
G′ ⊂ G we have d(G′) < m(G) (resp. d2(G

′) < m2(G)) then G is strictly balanced (strictly
2-balanced).

Proposition 6. For every graph H there is c > 0 such that Client wins CW (Kn, H, q)
whenever q 6 cn1/m2(H)/ lnn.

In our treatment of the Client-Waiter games on the random graph we are very much
influenced by the proofs of Nenadov, Steger and Stojaković ([28]) for the unbiased Maker-
Breaker H-game played on random graphs. We show that the results in [28] are also true
in the Client-Waiter game. Moreover, we extend these results for any fixed bias and show
that the case of H = K3, which was an exception in the unbiased game, is no longer such
when q > 2.

Theorem 7. Let H be a graph which is not a forest. If either q > 2 or there exists H ′ ⊆ H
such that d2(H

′) = m2(H), H ′ is strictly 2-balanced and it is not a triangle, then there
exist constants c, C > 0 which depend only on H and q such that in the Client-Waiter
game CW (Gn,p, H, q)

lim
n→∞

Pr[Client wins] =

{
1, p > Cn−1/m2(H),

0, p 6 cn−1/m2(H).

Note: the same is true for the corresponding Maker-Breaker game.
For the case H = K3 and q = 1, which is missing in the above theorem, we have

the following theorem, whose proof is much the same as Theorem 1.3 of [26] for the
corresponding Maker-Breaker game and is therefore not included here.

Theorem 8. For every p = p(n),

lim
n→∞

Pr[Client wins CW (Gn,p, K3, 1)] = lim
n→∞

Pr[Gn,p contains K5 − e].

Lastly, we prove that for trees Client can win even when p� n−1.

Proposition 9. For positive integers k, q Client has a strategy to win CW (Gn,p, Tk,k, q)

w.h.p., where Tk,k is the complete k-ary tree of height k, and p = n−1−(k(q+1))−2(k+1)
.

Note: the same is true for the corresponding Maker-Breaker game.

1.1 Related results

In a groundbreaking paper ([15]), Erdős and Rényi showed that the random graph Gn,p

goes through a phase transition around p = 1/n, from typically having only connected
components of size at most logarithmic in n to having a linear sized (‘giant’) component.
Later Ajtai, Komlós and Szemerédi ([1]) proved that in the supercritical regime p =
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(1 + ε)/n, Gn,p will typically contain not only a giant component, but a linearly-long path
(see also [24] for a simple proof).

The Maker-Breaker and Waiter-Client variants of the component game are excellent
demonstrations of the probabilistic intuition. Indeed, Bednarska and  Luczak ([6]) showed
in particular that when q = (1 + ε)n then Breaker can prevent a component of size
larger than 1/ε, while if q = (1 − ε)n then Maker can build a component of size at least
εn. Moreover, Krivelevich and Sudakov ([24]) proved that in the latter case Maker can
even achieve a linearly long path. A similar sharp phase transition was sketched for the
Waiter-Client component game by Bednarska-Bzdȩga et al. ([8]). Theorems 2(ii)+(iii)
and 3(ii)+(iii) show that in the Client-Waiter component game a phase transition takes
place when q is between n/2 and 1.6n, and in the path game when q is between n/2 and
n. Moreover, when q = n Waiter can even limit Client’s longest path to be of order ln lnn
which indicates some weakness of Client in comparison to the probabilistic intuition. A
similar Client’s weakness can be observed in Theorem 3(i) where we would expect Client
to be able to achieve a path of length 2k while we prove that he cannot hope to get more
than 2k.

In [9] Bednarska-Bzdȩga, Hefetz, and  Luczak showed that for any tree Tk on k ver-
tices the critical bias for WC(Kn, Tk, q) is Θ(nk/(k−1)) and that the critical bias for
WC(Kn, Kk, q) is Θ(n2/(k−1)) and conjectured that for any graph H the critical bias for
WC(Kn, H, q) is Θ(n1/m(H)). Notice that this is in compliance with the random intuition
as the probability threshold for Gn,p to contain a copy of H is n−1/m(H). On the other
hand, in the Client-Waiter game with bias of order nk/(k−1) Client will not be able to
build a star graph with three vertices (by Proposition 1) and he will not be able to build
a path of length 3 log2 k (by Theorem 3(i)). This shows that in these games Client is also
weak compared to Waiter in the corresponding Waiter-Client game. It is plausible that
the upper bound in Theorem 5 can be improved to Θ(n1/m(H)) as well.

We mention here two results of similar games for the Maker-Breaker variation, though
their bounds are not comparable to ours. The first is by Beck ([2]), it states that Maker
can build a cycle of length at least (1 − e−1/200ε)n when playing on Kn against Breaker
with a bias of εn (while on the other hand Breaker can isolate at least ε

2
e−1/εn vertices in

Maker’s graph).
The second is due to Bednarska and  Luczak ([5]) who proved that the critical bias for

the Maker-Breaker H-game is Θ(n1/m2(H)).

1.2 Preliminaries

For the sake of simplicity and clarity of presentation, we do not make a particular effort
to optimize the constants obtained in some of our proofs. Our graph-theoretic notation
is standard and follows those in [30]. In particular, we use the following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges, respectively,
and let vG = |V (G)| and eG = |E(G)|. For two sets A,B ⊆ V (G), let EG(A) denote
the set of edges of G with both endpoints in A and let eG(A) = |EG(A)|. Let EG(A,B)
denote the set of edges of G with one endpoint in A and the other endpoint in B (formally,
EG(A,B) = {e ∈ E(A ∪ B) : e ∩ A 6= ∅, e ∩ B 6= ∅}), and let eG(A,B) = |EG(A,B)|.
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Notice that if A ⊆ B then EG(A,B) = EG(A) + EG(A,B\A). For a set S ⊆ V (G), let
G[S] denote the subgraph of G induced by the set S, and NG(S) = {v ∈ V (G)\S : ∃u ∈
S such that (uv) ∈ E(G)} denotes the external neighbourhood of S in G. For a vertex
u ∈ V (G) we abbreviate NG({u}) as NG(u) and let dG(u) = |NG(u)| denote the degree
of u in G. Often, when there is no risk of confusion, we omit the subscript G from the
notation above. The maximum degree of a graph G is ∆(G) := max{dG(u) : u ∈ V (G)}
and the minimum degree of a graph G is δ(G) := min{dG(u) : u ∈ V (G)}.

For a family F of subsets of X, we define the transversal family of F to be F∗ = {A ⊆
X : A ∩B 6= ∅ for every B ∈ F}.

Assume that some Client-Waiter game, played on the edge set of a graph G = (V,E),
is in progress. At any given moment during this game, let EC , EW , EF denote the set
of edges that were claimed by Client, resp. Waiter, resp. unclaimed (free) up to that
moment. We denote their respective sizes by eC = |EC |, eW = |EW |, eF = |EF |. If
A,B ⊆ V are two sets then EC(A) is the set of Client’s edges inside A, EC(A,B) is the
set of Client’s edges with one end in A and the other in B, and eC(A) = |EC(A)| and
eC(A,B) = |EC(A,B)|. Similarly we define EW (A), eW (A), EF (A), etc.

The rest of this paper is organized as follows: in Section 2 we quote two useful criteria
for Client’s win in Client-Waiter and Waiter-Client games, and we state and prove a result
of our own which is of independent interest. In Section 3 we discuss games on the complete
graphs and prove Proposition 1, Theorems 2 and 3, and Proposition 6. In Section 4 we
discuss games on Gn,p and give the proofs of Theorem 7 and Proposition 9. Section 5 is
devoted to concluding remarks.

2 Game-Theoretic Tools

In this section we present several general criteria for the existence of a winning strategy
for Client in a Client-Waiter or Waiter-Client game.

Theorem 10 (implicit in [4]). Let q be a positive integer, let X be a finite set, let F be
a family of subsets of X. If ∑

A∈F

(q + 1)−|A| < 1

then Client has a winning strategy in the WC(X,F , q) game.

Theorem 10 gives a criterion for Client to avoid the family F , which can sometimes be
helpful in showing that his claimed subset has some desirable property (see for example
the proofs of Theorems 2(iii) and 3(iii) in Section 3.2.4). However, recall that in the
Client-Waiter game we introduced a monotonicity rule which allows Waiter to offer less
than q + 1 elements in a turn. This difference between the games prevents us from using
Theorem 10. The next theorem provides a workaround.

Theorem 11. Let q be a positive integer, let X be a finite set, let F be a family of subsets
of X and let Φ(F) =

∑
A∈F(q + 1)−|A|. Then, playing a Client-Waiter game on X with

bias q, Client has a strategy to claim a set XC ⊆ X of size |XC | > b|X|/(q + 1)c which
fully contains at most 2Φ(F) sets of F .
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Proof. Denote by Wi the set of elements offered by Waiter at the i-th turn, and let
αi = |Wi|/(q + 1). Suppose Client plays the following random strategy: he picks an
element from Wi uniformly at random, and then with probability αi puts it in XC .
If element x ∈ X is offered in the i-th turn, then Pr[x ∈ XC ] = αi/|Wi| = 1/(q + 1). Fix
some A ∈ F . If, in some turn, Waiter offered at least two elements of A, then surely
Client will not fully claim A. Since any element must be offered at some point we get
that Pr[A ⊆ XC ] 6 (q + 1)−|A|, and thus E(|{A ∈ F : A ⊆ XC}|) 6 Φ(F). It follows by
Markov’s inequality that

Pr[|{A ∈ F : A ⊆ XC}| > 2Φ] < 1/2. (1)

Let m denote the total number of turns played in the game. Note that |XC | =
∑m

i=1 Zi
where Z1, . . . , Zm are independent Bernoulli random variables with Pr[Zi = 1] = αi.
Hence

Pr[|XC | > b|X|/(q + 1)c] > Pr[Bin(|X|, 1/(q + 1)) > b|X|/(q + 1)c] > 1/2, (2)

where the first inequality holds by Theorem 5 from [22]. Combining (1) and (2) we
conclude that with positive probability both |XC | > b|X|/(q + 1)c and |{A ∈ F : A ⊆
XC}| 6 2Φ, and therefore there is a strategy for Client which will ensure a subset with
these properties.

For a set X and a family of subsets F we defined F∗ to be the transversal family of
F . If Client wins the CW (X,F∗, q) game, then he has claimed at least one element from
every set of F . The next theorem is therefore very useful in those situations where we
want to show that Client can prevent Waiter from fully claiming a set of F .

Theorem 12 (implicit in Theorem 3.2 of [20]). Let q be a positive integer, let X be a
finite set and let F be a family of subsets of X. If∑

A∈F

e−|A|/(q+1) < 1,

then Client has a winning strategy for the CW (X,F∗, q) game.

3 Games on Kn

3.1 Star game

Proof of Proposition 1. First notice that the lower bound is trivial since if q + 1 <
(n−1)/(k−1) then at the end of the game eC > n(k−1)/2 which means that the average
degree in Client’s graph will be higher than k − 1. We turn to the upper bound.
Consider the following strategy for Waiter. In the first turn Waiter chooses some vertex
v0 and offers q + 1 edges incident to that vertex. Suppose Client picks (v0, v1). In the
second turn Waiter will offer some q + 1 arbitrary edges incident to v1. In general, if
on the i-th turn Client chose the edge (vi−1, vi), and there are free edges incident to vi,

the electronic journal of combinatorics 23(4) (2016), #P4.38 8



then in the next turn Waiter will offer an arbitrary subset of those edges of size q + 1,
or all of them if there are less then q + 1. If there are no free edges incident to vi then
Waiter will choose some other vertex with free edges incident to it, and offer a subset
of size q + 1 (or all) of those edges. Consider some vertex v. According to the above
strategy, we can pair Client’s edges which are incident to v (with exception, perhaps,
of the last edge) such that each pair was claimed in consecutive turns, and when Client
claimed the later of the two Waiter claimed q edges incident to v (again with exception of
the last edge). This observation leads to the upper bound on Client’s maximum degree:
∆C 6 2d(n− 1)/(q + 2)e. Assuming q > dn/ke − 2 we get

∆C 6 2

⌈
n− 1

q + 2

⌉
6 2

⌈
k(n− 1)

n

⌉
= 2k.

3.2 Large component and long path games

3.2.1 Waiter’s strategies

We start by presenting Waiter’s strategies in these games. These strategies will be
promptly analysed to get the upper bounds of Theorems 2 and 3.

Strategy SC for Waiter in the Component game
Let n, q be integers with q + 1 > n− 1. We describe strategy SC for Waiter in a Client-
Waiter game on E(Kn) with bias q. Waiter will maintain 3 subsets X, Y, U ⊆ V . Initiate
X = Y = ∅; U = V . We describe the strategy in 3 stages.

Stage I
In the i-th turn Waiter picks a maximal set of vertices Ti ⊆ U such that eF (Ti, U) 6 q+1.
Denote ti = |Ti|, to be used later in the proof.
Waiter will offer all edges EF (Ti, U). Suppose Client picks an edge (x, y) with x ∈ Ti,
then we add x to X and y to Y , and remove Ti ∪ {y} from U .
We enumerate the vertices in X = {x1, x2, . . . }, Y = {y1, y2, . . . } by the order of their
addition. It is not hard to verify the following properties right after the i-th turn:

1. Client’s graph is a perfect matching between X and Y . In particular |X| = |Y | = i.

2. For any 1 6 j 6 i, xj has free edges only to (some or all) yk with k < j.
This stage ends when U = ∅. We denote by s the number of turns played in the first
stage.

Stage II
This stage will last for at most s turns. In the i-th turn Waiter will offer all free edges
between yi and all isolated vertices in Client’s graph. By the end of this stage Client’s
graph is made of s components, each of size at most 3. We claim that between any pair
of components there are at most 3 free edges, and those are all the remaining free edges
in the game.
Indeed, let Ci, Cj be two components. We may assume that Ci = {xi, yi, zi}, Cj =
{xj, yj, zj} where (yi, zi) and (yj, zj) are the edges claimed in this stage, and that i < j.
By property (2) of the previous stage, xi does not have a free edge to any vertex in Cj
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and (xj, zi) is not available as well. By Waiter’s play on this stage the edge (yi, zj) is not
free and the edge (zi, zj) was offered sometime during the previous stage, so the free edges
between Ci and Cj satisfy EF (Ci, Cj) ⊆ {(yi, yj), (yi, xj), (zi, yj)}.

Stage III
In the last stage Waiter creates an auxiliary board of Ks and identifies each vertex of
this board with one of Client’s components of the original game. Given Waiter’s strategy
for the Client-Waiter game on E(Ks) with a bias of bq/3c, he can use this strategy to
play in the original game by offering all free edges between two components each time
this strategy requires him to offer the edge between the corresponding vertices on the
auxiliary board, and if Client chooses some edge which connects two of his components
on the original board then Waiter will translate it to the appropriate edge between the
corresponding vertices in the auxiliary board. This gives us the recursion

C(n, q) 6 3 · C(s, bq/3c). (3)

Strategy SP for Waiter in the Path game
We keep all the notations of the previous strategy. This strategy is very similar, we note
only the differences. Waiter plays in 2 stages.

Stage I
In the i-th turn Waiter will pick a maximal set of vertices Ti ⊆ U such that eF (Ti, V ) 6
q + 1. Denote: ti = |Ti|.
Waiter will offer all edges EF (Ti, V ). Suppose Client picks an edge (x, y) with x ∈ Ti,
then we add x to X and y to Y , and remove Ti ∪ {y} from U .
We will have the following properties after the ith turn:

1. Client’s graph is a union of at most i disjoint stars with all the center vertices in Y
and the leaves in X.

2. All the free edges have both endpoints in Y ∪ U .
This stage will end when U = ∅. By the end of this stage the vertices in Y are centers
of disjoint stars in Client’s graph, and the edges with both endpoints in Y are all the
remaining free edges in the game. We denote s = |Y |. Clearly, s is at most the number
of turns played at the first stage.

Stage II
As in the last stage of strategy SC Waiter translates the game to an auxiliary game on
E(Ks), but this time with the same bias q. This leads to the following recursion

P(n, q) 6 P(s, q) + 2. (4)

Strategies SC and SP will be used twice each in the proofs of (i) and (ii) of Theorem 2
and Theorem 3, respectively. The difference between proving (i) and (ii) will be in the
degree of precision required in the analysis of the strategies.
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3.2.2 k-sized component and k-path

The first part of Theorem 2 states that if q > 6n2k/(2k−1) then Waiter can prevent a
component of size 3k.

Proof of Theorem 2(i). When q > n2/2, Client’s graph will be a single edge, so the
theorem is true for k = 1. We assume q < n2/2 and proceed by induction on k.
Let n be arbitrary and set q = 6n2k/(2k−1). Waiter will play strategy SC . Recall that for
each 1 6 i 6 s, ti is the size of a largest subset Ti ⊂ U such that Waiter can offer all edges
EF (Ti, U). Certainly ti > bq/nc for any i. So the number s of turns at the first stage is
at most

s 6

⌈
n

bq/nc

⌉
6

n2

q − n
+ 1 6

n2

q − q/6
+ 1 =

1

5
· n

2

q/6
+ 1 <

17

60
· n

2

q/6
<

1

3

(q
6

)(2k−1−1)/(2k−1)

=⇒
⌊q

3

⌋
> 6s2

k−1/(2k−1−1).

We can therefore use the induction hypothesis with recursion (3) and get that

C(n, q) 6 3 · C(s, bq/3c) < 3k.

The first part of Theorem 3 states that if q > 3n2k/(2k−1) then Waiter can prevent a
path of length 2k.

Proof of Theorem 3(i). The proof is very similar to the above proof of Theorem 2(i).
One easily checks that the claim is true for k = 1. In the induction step we take q =
3n2k/(2k−1), and get

s 6

⌈
n

bq/nc

⌉
6

n2

q − n
+ 1 6

n2

q − q/3
+ 1 =

1

2
· n

2

q/3
+ 1 <

2

3
· n

2

q/3
=

2

3

(q
3

)(2k−1−1)/(2k−1)

=⇒ q > 3s2
k−1/(2k−1−1),

which together with recursion (4) implies

P(n, q) 6 P(s, q) + 2 < 2k.

3.2.3 Polylogarithmic component and polylogarithmic path

In the second part of Theorem 2 we claim that if q > 1.6n then Waiter can prevent a
component of size (lnn)log2 3+ε. To show that, need a finer analysis of Waiter’s strategy.
This is done in the next two lemmas.

Lemma 13. For any γ > log2 3 Waiter can prevent a component of size 2

(
lnn

ln(q/n)

)γ
in

Client’s graph when playing a Client-Waiter game on E(Kn) with bias q > d61/(2−31/γ)en.

Remark 14. notice that when q = 6n2k/(2k−1), then for large n, k this lemma roughly gives
us C(n, q) < 2 · 3k which is only slightly worse than the statement in Theorem 2(i).
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Proof. Fix γ > log2 3 and set q = cn with c = d61/(2−31/γ)e. Notice that c > 7. The claim
is true for n 6 2c + 1 since then if q = cn then q >

(
n
2

)
. We proceed by induction on

n. Waiter will play strategy SC . In each turn i at the first stage we have ti > bq/nc,
therefore the first stage lasts for at most

s 6

⌈
n

bq/nc

⌉
6

n

q/n− 1
+ 1 <

n2 + q

q − n

turns, which is also an upper bound on the number of components in Client’s graph at
the end of the second stage. We have

bq/3c
s

>
(q/3− 1)(q − n)

n2 + q
=
( q
n

)2
· (1/3− 1/q)(1− 1/c)

1 + q/n2

>
( q
n

)2
·
(

1

3
− 1

100

)
· 6

7
· 2

3
> 0.18 ·

( q
n

)2
, (5)

(we used the assumptions that 100 < 2c(c+ 1) 6 q 6 n2/2). We get that

bq/3c
s

> 0.18 ·
( q
n

)2
>
c2−3

1/γ

6
·
( q
n

)31/γ
>
( q
n

)31/γ
.

Using recursion (3) and our induction hypothesis we derive

C(n, q) 6 3 · C(s, bq/3c) < 6

(
lnn

ln(bq/3c/s)

)γ
< 6

(
lnn

31/γ ln(q/n)

)γ
= 2

(
lnn

ln(q/n)

)γ
.

Lemma 15. There is n0 such that for all integers n > n0 and q > 1.6n, C(n, q) 6

3C(n1, q1) with q1 = bq/3c and
q1
n1

> 1.001
q

n
.

Proof. In order to prove this lemma we need to get a better bound on s than that we used
in Lemma 13. Denote by sk the number of moves in the first stage for which ti = k. For
simplicity and clarity of the calculations we make the following sub-optimal assumptions.

• While n > |U | > q/2 we assume ti = 1. During this time U gets decreased by at
least 2 vertices a turn.

• For every 2 6 k 6
√
q, while q/k > |U | > q/(k + 1) we assume ti = k. During this

time U gets decreased by at least k vertices a turn.

• When |U | 6 √q Waiter can take T = U , hence we can assume that sk = 0 for
k >
√
q.

We can therefore bound s1 6 d(n− q/2)/2e and sk 6 d(q/k−q/(k+1))/ke = dq/k2(k+1)e
for 2 6 k 6

√
q, which leads to the following bound on s for n large enough :

s 6

b√qc∑
k=1

sk 6
n− q/2

2
+
∞∑
k=2

q

k2(k + 1)
+
√
q 6

n

2
− q

4
+
q(π2 − 9)

6
+ o(n) < 0.999

n

3
.
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Notice that the necessity to achieve the last inequality is the reason for the constant 1.6
in our upper bound. Set n1 = s, q1 = bq/3c. Then

q1 >
q

3
− 1 >

qn1

0.999n
− 1 > 1.001

q

n
n1,

where the last inequality is for large enough n. By our recursion:

C(n, q) 6 3 · C(n1, q1).

Proof of Theorem 2(ii). Let n be an integer. Due to the monotonicity of the game
it is enough to prove the Theorem for q = 1.6n. Let γ = log2 3 + ε/2 and let c =
c(γ) be such that Waiter can prevent a component of size 2(lnn/ ln c)γ when playing
with bias cn (which we get from Lemma 13). Set m = ln c/ ln 1.001. Let n1, q1 be the
integers guaranteed by Lemma 15. We can recurrently use this lemma to get a sequence

{(ni, qi)}`i=1 of pairs with
qi
ni

> 1.001
qi−1
ni−1

; with ` the first such that q` > cn`. Notice that

necessarily ` 6 m and that since for any i, qi = bqi−1/3c,

n`−1 >
q`−1
c

>
q

c · 4`
=

1.6n

c · 4`
,

and so if n > n04
`c/1.6, where n0 is from Lemma 15, then our use of the lemma was valid.

Finally we get from Lemma 13

C(n, q) 6 3 · C(n1, q1) 6 . . . 6 3` · C(n`, q`) < 2 · 3m
(

lnn`
ln c

)γ
6 (lnn)log2 3+ε,

for n large enough.

We turn to the proof of the second part of Theorem 3 where we claimed that if q > n
and n is large enough then Waiter can prevent a path of length 3 ln lnn.

Proposition 16. For all integers n, q = cn with c > 2, P(n, q) < 2 log2 log2c/3 q + 1.

Proof. Fix c. The claim is true for every 1 6 n 6 2c+ 1 since then q >
(
n
2

)
. We proceed

by induction on n. Playing strategy SP we have that in every turn at the first stage

ti >
⌊ q
n

⌋
.

In each turn Client chooses an edge (xi, yi) with xi ∈ Ti and yi ∈ V . We consider three
cases:

• If yi ∈ V \U then yi ∈ Y and the edge (xi, yi) is just an additional edge to an existing
star in Client’s graph.

• If yi ∈ Ti then yi has no more free edges and Waiter can ignore the edge (xi, yi) in
the next stage of his strategy.
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• If yi ∈ U\Ti then Client has just created a new star and U got decreased by ti + 1
vertices.

Therefore, by the end of the first stage Client’s graph is a union of at most

s 6

⌈
n

bq/nc+ 1

⌉
6

q

c2
+ 1 6

3q

2c2

disjoint stars (we used in the last inequality that n > 2c =⇒ q > 2c2).

Hence q >
2c2

3
· s, and we get from our recursion and the induction hypothesis that

P(n, q) 6 2 + P(s, q) < 3 + 2 log2 log(2c/3)2 q = 2 log2 log2c/3 q + 1.

Proof of Theorem 3(ii). Let n be an integer. Due to monotonicity of the game we
may assume q = n. When Waiter plays strategy SP Client’s graph after the first stage
contains at most s 6 n/2 disjoint stars, hence q > 2s and by the recursion and Proposi-
tion 16

P(n, q) 6 2 + P(s, q) < 3 + 2 log2 log4/3 q 6 3 ln lnn,

for n large enough.

3.2.4 Client’s side: linear-sized component and linear-sized path

Part three of Theorem 2 states that if q 6 (1− ε)n
2

then Client can build a component of

size at least e−5/2ε+3/2n.

Proof of Theorem 2(iii). Set δ =
ε

1− ε
, θ = e−2.5/δ−1 and let

F := {E(H) : H ⊆ Kn, vH 6 θn, eH = (1 + δ)vH}.

Then

Φ(F) :=

bθnc∑
i=4

(
n

i

)( (
i
2

)
(1 + δ)i

)
(q + 1)−(1+δ)i <

bθnc∑
i=4

[
en

i

(
(1− ε)ei

2

)1+δ (
(1− ε)n

2

)−(1+δ)]i

=

bθnc∑
i=4

[
e2+δ

(
i

n

)δ]i
6
bθnc∑
i=4

(
e2+δθδ

)i
<

∞∑
i=4

e−i/2 <
1

2
.

By Theorem 11 Client has a strategy such that by the end of the game his graph contains

a subgraph GC , with e(GC) =
n(n− 1)

2(q + 1)
>

n

1− ε
edges such that every connected compo-

nent U with size at most θn has less than (1 + δ)|U | edges in GC . Suppose that all the
components in GC are of size less than θn. Then

|E(GC)| =
∑

U∈comp(GC)

eGC (U) < (1 + δ)
∑

U∈comp(GC)

|U | 6 (1 + δ)n =
n

1− ε
,

which is a contradiction. Therefore Client has a connected component of size at least
θn.
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Part three of Theorem 3 states that if q 6 (1 − ε)n
2

then Client can build a path of

length at least e−12/εn.

Proof of Theorem 3(iii).

Lemma 17. Let ε, γ > 0 and δ1 > δ2 > 0 be constants. Let G be a graph on n vertices
with the following properties:

1. G has eG > (1 + ε)n edges,

2. every set S of size |S| 6 δ1n spans e(S) < (1 + ε)|S| edges,

3. every set S of size |S| 6 δ2n spans e(S) < (1 + ε/2)|S| edges,

4. for every set S of size |S| 6 γn, we have e(S, V \S) <
εδ2
2
n edges.

Then G contains a path of length at least γn.

Proof. By the first property G must contain some connected component C with e(C) >
(1 + ε)|C|. By the second property |C| > δ1n. Consider the DFS algorithm as defined,
for example, in [24]. As a quick reminder: we take an arbitrary ordering of the vertices
of G and run a DFS exploration on G by maintaining three sets of vertices: S — the
vertices we have finished exploring, U — a LIFO stack with the vertices we are currently
exploring, and T — the unvisited vertices. Consider an execution of the DFS algorithm
on C, starting with S = U = ∅ and T = C, and completing when S = C and U = T = ∅.
We will use the following properties of this algorithm:

• at any given moment there are no edges of G between S and T , and

• at any given moment U spans a path in C.

Set t0 = 0 and tf = d|C|/(δ2n)e. For any 1 6 i 6 tf − 1 let ti be the moment in which
|S| = δ2ni and let Si, 1 6 i 6 tf , be the vertices which were added to S between time
ti−1 and ti. Since |Si| 6 δ2n for all i, we get from the third property that

∑
16i<j6tf

e(Si, Sj) = e(C)−
tf∑
i=1

e(Si) > (1 + ε)|C| − (1 + ε/2)

tf∑
i=1

|Si| =
ε

2
|C|.

Thus there is 1 6 i0 6 tf − 1 such that
∑

i0<j6tf
e(Si0 , Sj) >

ε|C|
2(tf − 1)

>
εδ2n

2
. Since

at time ti0 all these edges are between Si0 and U , we get from property 4 that at that
moment U spans a path of length at least γn.
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We now return to the proof of Theorem 3(iii). Since the game is bias monotone, we

may assume q =
n

2(1 + ε)
> (1− ε)n

2
. Set δ1 = e−3/ε−1, δ2 = δ21, and γ = (εδ2)

2. Define

F1 := {E(H) : H ⊆ Kn, vH 6 δ1n, eH = (1 + ε)vH},
F2 := {E(H) : H ⊆ Kn, vH 6 δ2n, eH = (1 + ε/2)vH},
F3 := {E(H) : H ⊆ Kn, H = (S ∪ (V \S), E), |S| 6 γn, eH = εδ2

2
n}.

The notation (S∪(V \S), E) means a bipartite graph between S and its compliment. Note
that when bounding Φ(F3) it is enough to consider those subsets of F3 with |S| = γn.
This is because γ and εδ2/2 are small and so if there is a subset S such that |S| < γn
and with εδ2

2
n edges to its complement then we can always add to S vertices not in its

neighbourhood until it reaches a size of γn. We calculate

Φ(F1) =

bδ1nc∑
i=4

(
n

i

)( (
i
2

)
(1 + ε)i

)
(q + 1)−(1+ε)i <

bδ1nc∑
i=4

[
en

i

(
ei

2(1 + ε)

)1+ε(
n

2(1 + ε)

)−(1+ε)]i

=

bδ1nc∑
i=4

[
e2+ε

(
i

n

)ε]i
6

∞∑
i=4

(
e2+εδε1

)i
=
∞∑
i=4

e−i < 0.1;

Φ(F2) =

bδ2nc∑
i=4

(
n

i

)( (
i
2

)
(1 + ε/2)i

)
(q + 1)−(1+ε/2)i

<

bδ2nc∑
i=4

[
en

i

(
ei

2(1 + ε/2)

)1+ε/2(
n

2(1 + ε)

)−(1+ε/2)]i

=

bδ2nc∑
i=4

[(
1 + ε

1 + ε/2

)1+ε/2

e2+ε/2
(
i

n

)ε/2]i
6
bδ2nc∑
i=4

[
e2+ε

(
i

n

)ε/2]i
6

∞∑
i=4

(
e2+εδ

ε/2
2

)i
=
∞∑
i=4

e−i < 0.1;

Φ(F3) =

(
n

γn

)(
γ(1− γ)n2

εδ2
2
n

)
(q + 1)−

εδ2
2
n

6

(
e

γ

)γn(
2γ(1− γ)n

εδ2

)εδ2n/2( n

2(1 + ε)

)−εδ2n/2
6

[(
e

ε2δ22

)2εδ2

4(1 + ε)εδ2

]εδ2n/2
= o(1),

where the last equality is for ε small enough. Note that we get that for n large enough

Φ(F1 ∪ F2 ∪ F3) 6 Φ(F1) + Φ(F2) + Φ(F3) < 1/2,

and by Theorem 11 Client has a strategy to claim a subgraph GC which has all the
properties of Lemma 17 and therefore contains a path of length at least γn.
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The purpose of part four of Theorem 3 is to show that when q 6 εn and ε→ 0, then
Client can build a graph which is “almost” Hamiltonian. More precisely, he can build a
path of length at least (1− 8ε ln(1/ε))n.

Proof of Theorem 3(iv). We will use the following lemma.

Lemma 18 (Lemma 4.4 in [11]). Let G be a graph on n vertices. Suppose that for every
two disjoint sets A,B ⊂ V (G) such that |A|, |B| > k, there is at least one edge between A
and B. Then G contains a path of length n− 2k + 1.

Let q = εn, and let δ > 0 to be determined. Define

F := {EKn(A,B) : A ∩B = ∅, |A| = |B| = δn}.

If Client wins the CW (Kn,F∗, q) game then he has an edge between any two disjoint
subsets of size δn, and by Lemma 18 he has a path of length (1 − 2δ)n. So it is enough
to verify the condition of Theorem 12:

∑
A∈F

e−|A|/(q+1) 6

(
n

δn

)2

e−δ
2n2/2q 6

[(e
δ

)2
e−δ/2ε

]δn
.

The last expression will be o(1) when

δ

2ε
> 2(1 + ln(1/δ)),

and this is true for δ = 4ε ln(1/ε) and ε small enough.

3.3 The H-game

Proof of Proposition 6. The idea of the proof (suggested by Bednarska-Bzdȩga) is to
use the following theorem of hypergraph containers.

Theorem 19 (implicit in Theorem 2.3 in [29]). Let H be a graph with at least three
vertices. Then there are n0, δ > 0 such that for every n > n0 there is a collection C of
subgraphs of Kn such that

1. Every H-free subgraph of Kn is contained in some C ∈ C.

2. For every C ∈ C, eC 6 (1− δ)
(
n
2

)
.

3. |C| 6 nn0n2−1/m2(H)
.

The lower bound for the CW (Kn, H, q) game is an easy application of the above
theorem and of the criterion for Client’s win in Theorem 12. Let C be the collection of
subgraphs for the graph H guaranteed by Theorem 19. It is enough to show that Client
can claim at least one edge in the complement of every graph C ∈ C. Since the number
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of edges in any such complement is at least δ
(
n
2

)
, recalling the bound on |C| we can verify

the condition of Theorem 12.∑
A∈F

e−|A|/(q+1) 6 nn0n2−1/m2(H)

e−δ(
n
2)/(q+1) = o(1),

provided q 6 cn1/m2(H)/ lnn for some c = c(H) > 0.

4 The H-Game on Gn,p

We note two well known facts about random graphs which will be used in this section
without reference.

• When n−k/(k−1) � p� n−(k+1)/k w.h.p. Gn,p is a forest with copies of all trees with
at most k vertices, and no tree with more than k vertices.

• Let α, c be positive constants. If p 6 cn−1/α then for any fixed graph G with
m(G) > α w.h.p. G * Gn,p. Put another way, for c, α and p as above and any fixed
k > 0, w.h.p. any subgraph G of Gn,p on at most k vertices has density m(G) 6 α.

4.1 Client’s side

The proof of Maker’s side (the 1-statement) in [28] relayed on hypergraph containers as
an auxiliary tool. That method would have worked here as well. However, we give an
alternative proof using another tool — a variant of the famous K LR conjecture which was
proved in ([13]). We start with a few definitions.

Definition 20. A bipartite graph between sets U and V is (ε, d)-lower-regular if, for
every U ′ ⊆ U and V ′ ⊆ V with |U ′| > ε|U | and |V ′| > ε|V |, the density d(U ′, V ′) of edges
between U ′ and V ′ satisfies d(U ′, V ′) > d.

Given a graph H with vertex set [k], we denote by G(H,n, d, ε) the collection of all
graphs G with vertex set V1 ∪ . . . ∪ Vk, where V1, . . . , Vk are pairwise disjoint sets of size
n each, whose edge sets consist of eH (ε, d)-lower-regular bipartite graphs, one graph
between Vi and Vj for each ij ∈ E(H).
For an arbitrary graph G and p ∈ [0, 1], we denote by Gp the random subgraph of G,
where each edge of G is included with probability p independently of all other edges.

Theorem 21 (implied by Theorem 2.1 in [13]). Let H be an arbitrary graph. For every
d > 0, there exist ε, C > 0 such that if p > Cn−1/m2(H), then the following holds. For
every G ∈ G(H,n, d, ε), w.h.p. the random graph Gp has the following property: Every
subgraph G′ of Gp in G(H,n, dp, ε) contains a copy of H.

We are ready to prove Client’s side in Theorem 7.
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Proof of the 1-statement of Theorem 7. Choose d such that d < 1/(q + 1) and

d

1/2− d
(1 + ln 2− ln d) <

1

q + 1

(this is possible since the LHS goes to 0 when d goes to 0), and let ε = ε(H, d) be
that of Theorem 21. Let k = |V (H)|. At the beginning of the game Client will fix an
equipartition of the vertices of Gn,p to k parts V1, . . . , Vk. He will then follow a strategy
which guarantees that by the end of the game his graph, GC , when restricted to any
pair of parts, is (ε, dp)-lower-regular. To see that this means that w.h.p. he will claim
a copy of H, take G in Theorem 21 to be the complete k-partite graph on V1, . . . , Vk.
Clearly G ∈ G(H,n/k, d, ε) and GC ∩ G ∈ G(H,n/k, dp, ε), and we can consider Gp as
G ∩Gn,p. It remains to show that Client indeed has such a strategy. To this end we will
use Theorem 12, and define

F := {F ⊆ EGn,p(U1, U2) : U1∩U2 = ∅, |U1| = |U2| =
εn

k
, |F | > eGn,p(U1, U2)−dpε2n2/k2}.

Clearly, if Client wins the CW (Gn,p,F∗, q) game then he has achieved his goal. It remains
to verify the condition of Theorem 12. Indeed, since w.h.p. the number of edges between
any two disjoint subsets of size εn/k will satisfy

1
2
pε2n2/k2 6 eGn,p(U1, U2) 6 2pε2n2/k2,

we get

Φ(F) 6

(
n

2εn/k

)(
2εn/k

εn/k

)(
2pε2n2/k2

dpε2n2/k2

)
e−(

1
2
−d)pε2n2/(q+1)k2

6

(
ek

2ε

)2εn/k

22εn/k

(
2e

d

)dpε2n2/k2

e−(
1
2
−d)pε2n2/(q+1)k2

6 Cn
ε,k exp

(
pε2n2

k2
(d(1 + ln 2− ln d)− (1/2− d)/(q + 1))

)
→ 0,

by our assumption on d.

4.2 Waiter’s side

We start with the case of a graph H for which there exists H ′ ⊆ H such that d2(H
′) =

m2(H), H ′ is strictly 2-balanced and it is not a tree or a triangle. Due to the monotonicity
of the Client-Waiter game, it is enough to consider the unbiased (q = 1) case. Moreover,
it is enough to show that Waiter can prevent Client from claiming a copy of H ′, and so
we may assume that H ′ = H. Our proof follows very closely that of Theorem 2 in [28].
We start with a general sufficient condition for Waiter’s win.

Proposition 22. Let H be a strictly 2-balanced graph which is neither a tree nor a
triangle. If G is a graph such that m(G) 6 m2(H), then Waiter has a winning strategy
for the CW (G,H, 1) game.
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Proof. The arboricity of a graph G is defined by

ar(G) = max
G′⊆G

e(G′)

v(G′)− 1
.

The Nash-Williams arboricity theorem ([27]) states that any graph G can be decomposed
into dar(G)e edge-disjoint forests.

Lemma 23. Let G,H be graphs such that⌈
ar(G)

2

⌉
< ar(H),

then Waiter has a winning strategy for the CW (G,H, 1) game.

Proof. Set k =

⌈
ar(G)

2

⌉
, and partition E(G) into 2k edge-disjoint forests. Divide these

forests into pairs. By Theorem 2 in [14] Waiter can force Client’s graph to be a forest
when playing on the edges of a union of two edge-disjoint forests. Thus, when playing on
G Waiter has a strategy to force Client’s graph to be a union of k edge disjoint forests.
For any subset S ⊆ V (G), the number of Client’s edges spanned by S will be at most
k(|S| − 1), which means that Client’s graph has arboricity at most k, hence it cannot
contain H.

Lemma 24. Let G,H be graphs such that⌈
m(G)

2

⌉
< m(H),

then Waiter has a winning strategy for the CW (G,H, 1) game.

Proof. We first orient the edges of G in the following manner. Set k = dm(G)e. Construct
a bipartite graph between E(G) and k copies of V (G) and connect each edge to all the
copies of the vertices which are incident to it. Since any subset of edges A ⊆ E(G) spans
at least |A|/m(G) vertices we get that this graph satisfies Hall’s condition with respect to
E(G). Hence we have a matching which covers E(G). For every v ∈ V orient the edges of
v such that v is the source of e if and only if e is connected to a copy of v in this matching.
Since there are k copies of v, its out-degree will be at most k. Now Waiter can then play
on each vertex at a time, offering only pairs of edges for which the current vertex is a

source. The maximum out-degree in Client’s graph will then be at most

⌈
m(G)

2

⌉
, which

means that its maximal density is lower than m(H), and it certainly does not contain
H.

To prove the proposition we consider several cases of maximal 2-density of H and use
the two lemmas to show that in any case Waiter has a winning strategy. Since this is
practically the same as in Theorem 18 in [28] we omit the details. The inquisitive reader
can find them in Appendix A.
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Consider the game CW (G,H, 1) on the edges of some arbitrary graph G. Certainly,
any edge in G which does not take part in any copy of H is irrelevant to the outcome of
the game. Moreover, if some copy of H in G has two edges neither of which takes part in
another copy of H, then Waiter can offer these two edges in a single turn, thus preventing
Client from claiming this copy of H while not risking any other copy. This leads to the
following definition.

Definition 25. A H-core of G is a maximal subgraph G′ ⊆ G such that

• every edge of G′ is contained in at least one copy of H in G′, and

• every H-copy in G′ has at most one edge which does not take part in another H-copy.

A proof of the existence and uniqueness of the H-core can be found in [28]. By the
discussion above Waiter wins the CW (G,H, 1) game if and only if he wins CW (G′, H, 1)
where G′ is the H-core of G. Furthermore, it is enough to show that Waiter has a winning
strategy for bi-connected (2-connected) components of G′, since these do not share edges
(and in particular they do not share H-copies).

Lemma 26 (Lemma 23 in [28]). Let H be a strictly 2-balanced graph which is not a tree or
a triangle. Then there exist constants c > 0 and L > 0 such that w.h.p. every bi-connected
component of the H-core of Gn,p has size at most L, provided that p 6 cn−1/m2(H).

We can now finish the proof of the 0-statement of Theorem 7 for H 6= K3. Set G = Gn,p

with p = cn−1/m2(H). By the above lemma all the bi-connected components of the H-core
of G will be of size at most L. By a well known property of Gn,p (as was mentioned in
the beginning of this section), w.h.p. all the bi-connected components will have maximal
density at most m2(H) and by Proposition 22 Waiter has a winning strategy while playing
on each bi-connected component, and thus when playing on all of the H-core, and indeed
on all of G.

Next we turn to the case where H = K3 and q > 2. The Client’s side was covered in
the proof of the 1-statement, it remains to show the following:

Proposition 27. There is some constant c > 0 such that Waiter wins the CW (Gn,p, K3, 2)
game w.h.p. when p = cn−1/2.

Proof. We will prove two lemmas — the first will show that Client can only win on graphs
with maximum density higher than 2, and the second will show that when p = cn−1/2, if
Client wins on Gn,p then w.h.p. he wins on some subgraph of bounded order.

Lemma 28. Let G be a graph with m(G) 6 2, then Waiter has a winning strategy in the
CW (G,K3, 2) game.

Proof. Suppose to the contrary that G is a minimal graph such that m(G) 6 2 and
Client wins the game on G. By Theorem 1.3 in [8] Waiter can force Client’s graph to
be acyclic when playing on K6 with bias 2. We may therefore assume that vG > 6. Let
A ⊂ V (G) be a proper subset, and define H = G[A] and Ĥ = G[V \A]. We must have

the electronic journal of combinatorics 23(4) (2016), #P4.38 21



that e(A, V \A) > 4, otherwise Waiter can play on H and then on Ĥ (winning on both by
the minimality of G), and then offer all the edges E(A, V \A) and Client will not claim a
triangle. In particular δ(G) > 4. But since m(G) 6 2, it must be that m(G) = 2 and G
is 4-regular. This leads to

e(A, V \A) = 4vH − 2eH > 4 =⇒ eH 6 2(vH − 1). (*)

Let v0 be an arbitrary vertex, and let N(v0) = {v1, v2, v3, v4}. Denote H = G[{v0}∪N(v0)]
and Ĥ = G[V \({v0} ∪N(v0))]. We claim that G[N(v0)] must be a connected graph, for
otherwise we can partition N(v0) into two parts, A,B, each with size at most 3, and
E(A,B) = ∅. Waiter can then play his winning strategy on G\{v0}, then offer E(v0, A),
and on the last turn he will offer E(v0, B). It is easy to see that in this case Client will not
claim a triangle. From this reasoning together with (*) we deduce that eH ∈ {7, 8}. We
now consider several cases. In each case we show that Waiter, after playing his winning
strategies on H and on Ĥ, has a strategy to offer the remaining free edges such that Client
will not claim a triangle.

1. Suppose eH = 8 and G[N(v0)] is isomorphic to C4 (G[N(v0)] ∼= C4). Then every
vertex in H has at most one edge connecting it to Ĥ. Suppose there is u ∈ Ĥ such
that e(u,H) = 4. Then G[H ∪ {u}] has 12 edges which violates (*). This means
that Waiter (after having played and won on H and Ĥ) can just offer in each turn
all the free edges incident to some vertex in Ĥ. Client will not claim a triangle since
he will not have a vertex with degree higher than one in the cut between H and Ĥ.

2. Suppose eH = 8 and G[N(v0)] ∼= K3 + e. Then there is only one vertex in H with
degree 2, let it be v1. Waiter will offer all free edges incident to v1, and then the
remaining (two) edges. Since the two vertices in H which are connected to v1 have
no neighbours in Ĥ, Client will not be able to claim a triangle.

3. Suppose eH = 7 and G[N(v0)] ∼= P4. Suppose the path is {v1, v2, v3, v4}. As in case
1, there is no u ∈ Ĥ such that e(u,H) = 4. We have 3 sub-cases.

(a) There is u ∈ Ĥ such that u is connected to v1, v2, v3. Then the graph G[{v0, v1,
v2, v3, u}] is isomorphic to H of case 1. The case where u is connected to
v2, v3, v4 is treated similarly.

(b) There is u ∈ Ĥ such that u is connected to v1, v3, v4. Waiter will offer
(u, v3), (u, v4) and the other free edge incident to v4, and in the next turn
he can safely offer the remaining free edges. The case where u is connected to
v1, v2, v4 is treated similarly.

(c) We can assume that for any vertex u ∈ Ĥ, e(u,H) 6 2. If there is u ∈ Ĥ
which is connected to both v1, v2 then Waiter will offer these edges together
with the other free edge of v1, otherwise he will offer only the two free edges
of v1. Likewise if there is u ∈ Ĥ which is connected to both v3, v4 then Waiter
will offer these edges together with the other free edge of v4, otherwise he will
offer only the two free edges of v4. Finally, if there is u ∈ Ĥ which is connected
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to both v2, v3 then Waiter will offer these two edges together. The rest of the
edges (if any) can be offered in arbitrary order.

4. Suppose eH = 7 and G[N(v0)] ∼= S3. Let v1 be the centre vertex. In the last three
turns Waiter can offer in each turn the two free edges of vi for i = 2, 3, 4.

We have shown that in every case Waiter has a winning strategy, hence there is no such
G.

Continuing with the proof of the proposition, the next definition and the lemma that
follows are influenced by the ideas of Nenadov, Steger and Stojaković in [28], but we
need to make some necessary changes, since (as mentioned there) their proof will not go
through for H = K3 as that would be a contradiction to the result of [26].
Let G be a graph. An edge in G is loose if it does not take part in any triangle, it is open
if it takes part in precisely one triangle, and it is half-open if it takes part in precisely two
triangles. Otherwise, it is closed.

Definition 29. A K3-core of G is a maximal subgraph G′ ⊆ G such that

• there are no loose edges in G′,

• every triangle in G′ has at most one open edge, and

• every half-open edge is in at least one triangle which has no open edges.

Consider the following process for generating a K3-core of graph G. We set T to be
the set of all triangles of G, and define the subgraph GT :=

⋃
t∈T t. Iteratively we remove

from T all triangles with more than one open edge in GT , and all pairs of triangles which
share a half-open edge and both have an open edge in GT , updating GT after each step.
When the process ends GT is a K3-core of G.

Claim 30. Let G be a graph, and let G be the family of bi-connected (2-connected) com-
ponents of a K3-core of G. Suppose that for any G′ ∈ G, Waiter has a winning strategy
in the CW (G′, K3, 2) game. Then Waiter has a winning strategy in the CW (G,K3, 2)
game.

Proof. Since the bi-connected components are pairwise edge-disjoint, a winning strategy
for each separate component yields a winning strategy for the K3-core. After winning
on the K3-core Waiter will add the removed triangles in the K3-core generating process
described above, but in reverse order. Each time he adds a triangle which has more than
one open edge he will offer Client two of those open edges, and each time he adds a pair
of triangles which share an half-open edge he will offer this edge and another open edge
from each of those triangles. Finally, when there are no more triangles to add he can just
play arbitrarily. It is not hard to verify that this is a winning strategy for Waiter.

The next Lemma is rather technical. Its proof can be found in the Appendix.

Lemma 31. There are constants c, L > 0 such that w.h.p. every bi-connected component
of any K3-core of Gn,p is of size at most L, when p 6 cn−1/2.
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We can now finish the proof of the proposition. From Lemma 31 we get that when
p = cn−1/2 then w.h.p. Client wins if and only if he wins on some subgraph of Gn,p of
order at most L. On the other hand, w.h.p. every subgraph of order L will have maximum
density at most 2, which by Lemma 28 will be Waiter’s game.

Lastly, we consider the Client-Waiter H-game, where H is a tree. Theorem 7 might
lead us to think that the threshold for this game should be Θ(n−1), but in fact we will
show that it is much lower. We start with a simple threshold for stars.

Claim 32. Let Sk be the star with k edges. Then n−2k/(2k−1) is a threshold function for
Client’s win in CW (Gn,p, Sk, 1).

Proof. When p� n−2k/(2k−1), there will be w.h.p. a vertex v in Gn,p with degree 2k − 1.
Client’s strategy will be to take an edge at v every time such an edge is offered to him,
thus getting Sk with v at the centre.
On the other hand, assume p � n−2k/(2k−1). Then w.h.p. every component of Gn,p is a
tree with at most 2k−2 edges. If Waiter plays every turn in a single component then there
will not be a component in Client’s graph with more than k − 1 edges, and in particular
Client will not claim a copy of Sk.

The next claim shows that Waiter has a winning strategy in CW (Gn,p, Pk+1, 1) pro-

vided p� n−2
k/2/(2k/2−1). Thus trees of the same order might have different thresholds.

Claim 33. Let Pk+1 be the path with k edges. Then Waiter wins CW (Tn, Pk+1, 1), where
Tn is any tree of order n < 2k/2.

Proof. Observe that Tn contains at most
(
n
2

)
copies of Pk+1. Indeed, each path in Tn is

uniquely defined by its two end points. The claim now follows from the next Waiter’s
winning criterion by Bednarska-Bzdȩga.

Lemma 34 (Corollary 1.4 in [7]). For a set X and a family of subsets F , if∑
A∈F

2−|A| <
1

2
,

then Waiter wins the CW (X,F , 1) game.

Though we cannot expect to find a single threshold probability for all trees of size k
which depends only on k, we can still show that at any rate these probabilities must be
much smaller than inverse linear.

Proof of Proposition 9. We may and will assume k > 3. Set m = (k(q + 1))2 and let
T = Tm,k be the complete m-ary tree of height k. For an internal vertex x ∈ V (T ) let Ax
be the set of edges from x towards the leaves of T , and let F be the following family of
edges,

F = {F ⊆ Ax : |F | = m− k + 1, for some internal vertex x}.

the electronic journal of combinatorics 23(4) (2016), #P4.38 24



Since F is (m− k + 1)-uniform, and |F| =
∑k−1

i=0 m
i
(
m
k−1

)
we get that

∑
A∈F

e−|A|/(q+1) 6

(
m

k − 1

)
· mk

m− 1
· e−(m−k+1)/(q+1)

6
m

m− 1
·
(
em2

k − 1

)k−1
e−(m−k+1)/(q+1)

6

(
em2

k − 1

)k−1
e−(m−k)/(q+1).

The last expression will be smaller than 1 when

(k − 1)(q + 1)(1 + 2 lnm− ln(k − 1)) < m− k.

Using our choice for m and rearranging we get that the above condition will be true when
k > 3 and q > 1, thus by Theorem 12 Client has a strategy such that by the end of the
game he claimed at least k out-edges of any internal vertex in T , which means that he
claimed a copy of Tk,k.

Since vT = (mk+1 − 1)/(m − 1), for p = n−(m
k+1+1)/mk+1 � n−vT /(vT−1) w.h.p. Gn,p will

contain T and thus CW (Gn,p, Tk,k, q) will be Client’s win.

5 Final words

We have investigated several Client-Waiter games played on the edges of the complete
graph. We have found that the critical bias for the maximum-degree-k game is asymp-
totically between n/k and 2n/k (Proposition 1). A natural question is whether either of
the bounds can be improved.

Question 35. Can we improve either bound of Proposition 1?

In the giant component game we discussed a phase transition taking place between n/2
and 1.6n (Theorem 2), where Client’s achievement in this game drops from a linear-sized
component to at most logarithmic. A more dramatic drop was observed in the path game:
from linear length when q < n/2 to at most ln lnn when q > n (Theorem 3). For both
games, but particularly in the giant component game, it is interesting to know if the phase
transition can be more accurately located. In [8] Bednarska-Bzdȩga et al. showed that
in the Waiter-Client large component game the phase transition happens around q = n
(which is in accordance with the probabilistic intuition), so it is natural to expect that at
least the 1.6n upper bound of the phase transition in the Client-Waiter large component
game could be brought closer to n, especially since we feel that Client is somewhat weaker
in most games in comparison to Waiter in the corresponding Waiter-Client game.

Question 36. Can we narrow the phase transitions described in Theorem 2(ii)+(iii) and
Theorem 3(ii)+(iii)?
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We have seen an improvement on the lower bound of the H-game played on the
edge set of the complete graph (i.e. Proposition 6). Both the probability intuition and
comparison to partial results for the Waiter-Client game ([9]) lead us to wonder whether
the critical bias should be no higher than O(n1/m(H)). An intermediate challenge could
be the following.

Question 37. Is it true that for any integer k > 3 there is c > 0 such that Waiter wins
CW (Kn, Kk, q) when q > cn2/(k−1)?

We have also studied the Client-Waiter H-game played on the edges of the random
graph. We have seen that essentially there is little difference between this game and the
corresponding Maker-Breaker game, and we extended the result of Nenadov, Steger and
Stojaković ([28]) to include the biased version of the game, and the case of H = K3 with
bias at least 2. We also showed that when H is a tree the picture is more complex and
highly depends on the exact structure of the tree, but nevertheless there is always some
ε > 0 for which Client wins the game w.h.p. when p = n−1−ε.
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Appendix A Two missing proofs from Section 4

The end of the proof of Proposition 22. Set k = bm2(H)c and x = m2(H) − k.
We consider two cases.

a) 0 6 x < 1/2. Let v be a vertex with dH(v) = δ(H). Since H is strictly 2-balanced
we have

m2(H\{v}) =
eH − 1− δ(H)

vH − 3
<
eH − 1

vH − 2
= m2(H),

which leads to δ(H) > m2(H), and so δ(H) > k+ 1. Suppose G is a minimal graph
which contradicts the proposition. If v is a vertex with dG(v) 6 2(δ(H) − 1), then
Waiter can play his winning strategy on G\{v} (which exists by the minimality of
G) and in the last δ(H) − 1 turns offer the edges of v. We have found a winning
strategy for Waiter on G, and that is a contradiction. Assume then that δ(G) >
2δ(H) − 1 > 2k + 1. But then m(G) > k + 1/2 > m2(H) and we have reached a
contradiction again.

b) x > 1/2. We consider further subcases.

i. If k > 3 then⌈
m(G)

2

⌉
6

⌈
m2(H)

2

⌉
6

⌈
k + 1

2

⌉
6 k − 1 6 m2(H)− 3/2

=
eH − 1

vH − 2
− 3/2 =

vH
vH − 2

(m(H)− 1/vH)− 3/2

= m(H) +
2

vH − 2
m(H)− 1

vH − 2
− 3/2

= m(H) +
2eH − vH − 3

2
(v2H − 2vH)

vH(vH − 2)

= m(H) +
2eH − 3

2
v2H + 2vH

vH(vH − 2)
< m(H),

where in the last inequality we used that eH 6
(
vH
2

)
< 3

4
v2H−vH (since vH > 4).

By Lemma 24 Waiter has a winning strategy.
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ii. If eH < v2H/4, then eH
vH

+ 1/2 > eH−1
vH−2

, and we get⌈
m(G)

2

⌉
6

⌈
m2(H)

2

⌉
6

⌈
k + 1

2

⌉
6 k 6 m2(H)− 1/2 < m(H),

and again by Lemma 24 Waiter has a winning strategy.

iii. Suppose that eH > dv2H/4e and k < 3 and vH > 5. Then

m2(H) =
eH − 1

vH − 2
>
dv2H/4e − 1

vH − 2
> 2.

But since we assume x > 1/2 then actually m2(H) > 2.5. For any subgraph
G′ ⊆ G, we have eG′/(vG′ − 1) = eG′/vG′ + eG′/(vG′(vG′ − 1)) 6 eG′/vG′ + 1/2,
which together with m2(H) < 3 leads to

ar(G) 6 m(G) + 1/2 6 m2(H) + 1/2 < 4.

On the other hand, using vH > 5, we derive

ar(H) >
eH

vH − 1
=
m2(H)(vH − 2) + 1

vH − 1
> 2.

We got that dar(G)/2e < ar(H) and by Lemma 23 Waiter wins.

iv. The remaining case is vH = 4. In this case H = C4 or H = K4, as those are
the only strictly 2-balanced graphs on 4 vertices. The latter can be proved by
an adaptation of Lemma 2.1 in [26], while in the former we have ar(C4) = 4/3,
and ar(G) 6 m(G) + 1/2 6 m2(C4) + 1/2 6 2, and again Waiter wins by
Lemma 23.

Proof of Lemma 31. We call a triangle T unproblematic if at least two of its edges are
open or one of its edges is open and it shares a half-open edge with triangle T1 which has
at least one open edge. Otherwise we call T problematic. Fix some K3-core of G = Gn,p

and let G′ be a bi-connected component of this K3-core. We describe a process to con-
struct G′ from the empty graph by repeatedly attaching triangles.

1: Let T0 be a triangle in G′

2: k ← 0; Ĝ← T0
3: while Ĝ 6= G′ do
4: k ← k + 1
5: if Ĝ contains a triangle which is unproblematic in Ĝ then
6: let ` < k be the smallest index such that T` is an unproblematic triangle in Ĝ
7: if there is a triangle T ⊂ G′ such that T contains one of T`’s open edges then
8: Tk = T
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9: else
10: let e ∈ T` be a half-open edge of T`
11: if there is a triangle T ⊂ G′, T /∈ Ĝ and T contains e then
12: Tk = T
13: else
14: let T ′ ⊂ Ĝ be the other triangle which contains e
15: let Tk ⊂ G′ such that Tk contains one of T ′’s open edges
16: end if
17: end if
18: else
19: let Tk be a triangle in G′ that is not contained in Ĝ and intersects Ĝ in at least

one edge
20: end if
21: Ĝ← Ĝ ∪ Tk
22: end while

We need to show that w.h.p. the highest value of k is bounded by some constant. For
i > 1, let Ti be the triangle added to Ĝ at the i-th step, and let Ĝi be the graph Ĝ just
after adding Ti. If Ti intersected Ĝi−1 in exactly one edge we call Ti regular, while if it
intersected Ĝi−1 in three vertices we call it degenerate. Denote by reg(i) and deg(i) the
number of regular, resp. degenerate, triangles in Ĝi. Furthermore, for 1 6 i 6 ` we say
that Ti is fully-open at time ` if Ti has a vertex which is not touched by any other triangle
of Ĝ` (notice that Ti is necessarily regular in this case). Denote by f(`) the number of
fully-open triangles at time `.

Claim 38. For every ` > 1, assuming the process does not stop before the `-th step, we
have

f(`) >
1

2
· reg(`)− 3 · deg(`).

Proof. Denote the right hand side of the above by ϕ(`) := reg(`)/2 − 3deg(`). We will
use induction to show that the following stronger statement holds for any ` > 1

f(`) >

{
ϕ(`), if T` is regular

ϕ(`) + 1, if T` is degenerate.

This is true for ` = 1 since T1 must be regular and f(1) = 1 > 1/2. At ` = 2 triangle
T0 still has two open edges and T2 must share one of them. We have two options: if T2
is regular then it is fully-open and f(2) = 2 > ϕ(2) = 1, and if T2 is degenerate then
f(2) = 0 > ϕ(2) + 1 = −1.5. Suppose now that we are at the `-th step, ` > 3. If T`
is degenerate, then since T` shares edges with at most two fully-open triangles we have
f(`) > f(`−1)−2 > reg(`−1)/2−3deg(`−1)−2 = reg(`)/2−3(deg(`)−1)−2 = ϕ(`)+1.
Otherwise, assume that T` is regular. Consider two cases

• If T` does not connect to a fully-open triangle then since T` is regular and fully-open,
f(`) = f(`− 1) + 1 > ϕ(`− 1) + 1 = ϕ(`) + 1/2.
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• If T` does connect to a fully-open triangle then f(`) = f(`−1). If T`−1 was degenerate
then f(` − 1) > ϕ(` − 1) + 1 = ϕ(`) + 1/2. Assume then that T`−1 is regular and
connected to T ′. If T ′ was not fully open then f(`) = f(`− 2) + 1 > ϕ(`− 2) + 1 >
(reg(`) − 2)/2 − 3deg(`) + 1 = ϕ(`). Assume then that T ′ was fully open. If T`−2
was degenerate then f(`) = f(`− 2) > ϕ(`− 2) + 1 = ϕ(`). Assume that T`−2 was
regular and connected to T ′′. Again if T ′′ was not fully open we are done, otherwise
T ′′ is fully open and T`−2 is connected to one of its open edges, e. At time `− 1, T ′′

is still unproblematic since it has an open edge and e is half-open and T`−2 is fully
open. Then by our algorithm, and since T ′ is fully open, it must be that T ′ = T`−2.
But then at time `, T ′′ is still unproblematic and therefore T` must connect to T`−2.
But T`−2 is no longer fully open, which is a contradiction.

Returning to the proof of the lemma, suppose we are in the i-th step of the process
described above. We first bound the probabilities of finding certain triangles. If there
is an unproblematic triangle then there are at most four edges to which a new regular
triangle can connect, and at most n possibilities for the extra vertex. Thus the probability
of finding a new regular triangle given that we have an unproblematic triangle is at most
Prreg,unprob. 6 4np2 6 4c2 < 1/2, if we choose c < 1/

√
8. Whenever a degenerate triangle

is added we add at least one new edge to the graph, which at the i-th step has at most
3i vertices. Thus the probability of finding a degenerate triangle at the i-th step is at
most Pdeg(i) 6

(
3i
3

)
p 6 (3i)3cn−1/2. Set L = 42 and `0 = 4 log2 n. Let X be the random

variable of the number of different runnings of this process on Gn,p, that contain at least
7 degenerate triangles in the first `0 steps. After the L-th step, and as long as we have
fewer than 7 degenerate triangles, we must have unproblematic triangles, because for any
` > L, by Claim 38 f(`) > (` − 6)/2 − 18 > 0. So the probability for a regular triangle
after the L-th step and before the 7-th degenerate triangle appears is at most 1/2. Denote
by `′ the moment in which the 7-th degenerate triangle appears, then we have

E[X] 6

(
n

3

) ∑
86`′6`0

(
`′ − 1

6

)
(27`30cn

−1/2)7 · 2−(`′−L−6) = o(1).

Now denote by Y the random variable of the number of different runnings of this process
on Gn,p that last more than `0 steps and contain fewer than 7 degenerate triangles in the
first `0 steps. We get

E[Y ] 6

(
n

3

) 6∑
k=0

(
`0
k

)
(27`30cn

−1/2)k · 2−(`0−L−k) = o(1),

by our choice of `0. So w.h.p. X = Y = 0, which means that all the processes last for less
than `0 steps and contain at most 6 degenerate triangles. Denote by `e the length of such
a process. Then it must be that f(`e) = 0, or we would still have fully-open triangles at
step `e. Thus by Claim 38

0 = f(`e) > reg(`e)/2− 3deg(`e) > (`e − 6)/2− 18 =⇒ `e 6 42.
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