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Abstract

For a family F of geometric objects in the plane, define χ(F) as the least integer
` such that the elements of F can be colored with ` colors, in such a way that
any two intersecting objects have distinct colors. When F is a set of pseudo-disks
that may only intersect on their boundaries, and such that any point of the plane
is contained in at most k pseudo-disks, it can be proved that χ(F) 6 3k/2 + o(k)
since the problem is equivalent to cyclic coloring of plane graphs. In this paper, we
study the same problem when pseudo-disks are replaced by a family F of pseudo-
segments (a.k.a. strings) that do not cross. In other words, any two strings of F
are only allowed to “touch” each other. Such a family is said to be k-touching if no
point of the plane is contained in more than k elements of F . We give bounds on
χ(F) as a function of k, and in particular we show that k-touching segments can be
colored with k + 5 colors. This partially answers a question of Hliněný (1998) on
the chromatic number of contact systems of strings.
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1 Introduction

For a family F = {S1, . . . , Sn} of subsets of a set Ω, the intersection graph G(F) of F is
defined as the graph with vertex-set F , in which two vertices are adjacent if and only if
the corresponding sets have non-empty intersection.

For a graph G, the chromatic number of G, denoted χ(G), is the least number of
colors needed in a proper coloring of G (a coloring such that any two adjacent vertices
have distinct colors). When talking about a proper coloring of a family F of subsets of a
given set, we implicitly refer to a proper coloring of the intersection graph of F , thus the
chromatic number χ(F) is defined in a natural way.

The chromatic number of families of geometric objects in the plane have been exten-
sively studied since the sixties [2, 13, 18, 19, 20]. Since it is possible to construct sets of
pairwise intersecting (straight-line) segments of any size, the chromatic number of sets of
segments in the plane is unbounded in general. However, Erdős conjectured that triangle-
free intersection graphs of segments in the plane have bounded chromatic number (see
[12]). This was recently disproved [23]. The conjecture of Erdős initiated the study of
the chromatic number of families of geometric objects in the plane as a function of their
clique number, the maximum size of subsets of the family that pairwise intersect [8]. In
this paper, we consider families of geometric objects in the plane for which the chromatic
number only depends on local properties of the families, such as the maximum number
of objects containing a given point of the plane.

Consider a set F = {R1, . . . ,Rn} of pseudo-disks (subsets of the plane which are
homeomorphic to a closed disk) such that the intersection of the interiors of any two
pseudo-disks is empty. Let HF be the planar hypergraph with vertex set F , in which
the hyperedges are the maximal sets of pseudo-disks whose intersection is non-empty. A
proper coloring of F is equivalent to a coloring of HF in which all the vertices of each
hyperedge have distinct colors. If every point is contained in at most k pseudo-disks,
Borodin conjectured that there exists such a coloring of HF with at most 3

2
k colors [3]. It

was recently proved that this conjecture holds asymptotically [1] (not only in the plane,
but also on any fixed surface). As a consequence, F can be properly colored with 3

2
k+o(k)

colors.
It seems natural to investigate the same problem when pseudo-disks are replaced by

pseudo-segments. These are continuous injective functions from [0, 1] to R2 and are usually
referred to as strings. Consider a set S = {C1, . . . , Cn} of such strings. We will always
assume that any two strings intersect in a finite number of points. We say that S is
touching if no pair of strings of S cross, and that it is k-touching if furthermore at most
k strings can “touch” in any point of the plane, i.e., any point of the plane is contained
in at most k strings (see Figure 1(a) for an example).

Note that the family of all touching sets of strings contains all contact systems of
strings, defined as sets of strings such that the interior of any two strings have empty
intersection. In other words, if c is a contact point in the interior of a string s, all the
strings containing c distinct from s end at c. In [15], Hliněný studied contact system
of strings such that all the strings ending at c leave from the same side of s. Such a
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(a) (b)

Figure 1: (a) A 3-touching set of strings S1 with G(S1) ∼= K5. (b) A one-sided 3-contact
representation of curves S2 with G(S2) ∼= K4.

representation is said to be one-sided (see Figure 1(b) for an example). It was proved
in [15] that if a contact system of strings is k-touching and every contact point is one-sided,
then the strings can be colored with 2k colors.

In this paper, our aim is to study k-touching sets of strings in their full generality.
Observe that if S is k-touching, k might be much smaller than the maximum degree of
G(S). However, based on the cases of pseudo-disks and contact system of strings, we
conjectured the following in the conference version of this paper [5]:

Conjecture 1.1. For some constant c > 0, any k-touching set of strings can be colored
with ck colors.

This conjecture was subsequently proved by Fox and Pach [9], who showed that any k-
touching set of strings can be colored with 6ek+1 colors (where e is the base of the natural
logarithm). In Section 2, we show how to slightly improve their bound for small values of
k. We also show that for any odd k, the clique on 9

2
(k− 1) vertices can be represented as

a set of k-touching strings, so the best possible constant c in Conjecture 1.1 is between
4.5 and 6e ≈ 16.3.

In Section 3, we give improved bounds when any two strings can intersect a bounded
number of times. In Section 4, we restrict ourselves to contact systems of strings where any
two strings intersect at most once (called 1-intersecting), which were previouly studied
by Hliněný [15]. He asked whether there is a constant c such that every one-sided 1-
intersecting k-touching contact system of strings is (k+ c)-colorable. We prove that they
are (4k

3
+ 6)-colorable, and that every k-touching contact system of straight-line segments

is (k + 5)-colorable. Note that we do not need our contact systems to be one-sided.

Before giving general bounds, let us first mention two classical families of touching
strings for which coloring problems are well understood.

If a k-touching set of strings has the property that the interior of each string is disjoint
from all the other strings, then each string can be thought of as an edge of some (planar)
graph with maximum degree k. By a classical theorem of Shannon, the strings can then
be colored with 3k/2 colors. If moreover, any two strings intersect at most once, then
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they can be colored with k+1 colors by a theorem of Vizing (even with k colors whenever
k > 7, using a more recent result of Sanders and Zhao [24]). In this sense, all the problems
considered in this article can be seen as a extension of edge-coloring of planar graphs.

An x-monotone string is a string such that every vertical line intersects it in at most
one point. Alternatively, it can be defined as the curve of a continuous function from an
interval of R to R. Sets of k-touching x-monotone strings are closely related to bar k-
visibility graphs. A bar k-visibility graph is a graph whose vertex-set consists of horizontal
segments in the plane (bars), and two vertices are adjacent if and only if there is a
vertical segment connecting the two corresponding bars, and intersecting no more than k
other bars. It is not difficult to see that the graph of any set of k-touching x-monotone
strings is a spanning subgraph of some bar (k− 2)-visibility graph, while any bar (k− 2)-
visibility graph can be represented as a set of k-touching x-monotone strings. Using
this correspondence, it directly follows from [4] that k-touching x-monotone strings are
(6k − 6)-colorable, and that the complete graph on 4k − 4 vertices can be represented as
a set of k-touching x-monotone strings. If the left-most point of each x-monotone string
intersects the vertical line x = 0, then it directly follows from [7] that the strings can be
colored with 2k− 1 colors (and the complete graph on 2k− 1 vertices can be represented
by k-touching x-monotone strings in this specific way).

2 General bounds

Before proving our first results on the structure of sets of k-touching strings in general,
we make two important observations:

Observation 2.1. The family of intersection graphs of 2-touching strings is exactly the
class of planar graphs.

The class of planar graphs being exactly the class of intersection graphs of 2-touching
pseudo-disks (see [17]) it is clear that planar graphs are intersection graphs of 2-touching
strings (by taking a connected subset of the boundaries of each pseudo-disk). Furthermore,
every intersection graph of 2-touching strings is contained in an intersection graph of 2-
touching pseudo-disks, and is thus planar. Indeed, it is easy given a set of 2-touching
strings S = {C1, . . . , Cn} to draw a set of 2-touching pseudo-disks F = {R1, . . . ,Rn} such
that Ci ⊂ Ri for every i ∈ [1, n].

Observation 2.2. We can assume without loss of generality that the strings in any set
of k-touching strings are polygonal lines (i.e. each string is the union of finitely many
straight-line segments) and that no endpoint of a string of S coincides with an intersection
between strings of S.

To see this, take a set S of k-touching strings and consider the following graph G:
the vertices are the contact points and the endpoints of the strings of S, and the edges
connect two points if they are consecutive in some string of S. The resulting graph is
planar, but might contain multiple edges. Subdivide each edge once, and observe that
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the resulting graph H is a simple planar (finite) graph, and each string of S is the union
of some edges of H. Since H is a simple planar graph, by Fáry’s theorem [6] it has an
equivalent drawing in which all the edges are (straight-line) segments. If some endpoint
of a string of S coincides with an intersection x between strings of S, one can prolong
each string ending at x with a small enough segment, and Observation 2.2 follows.

The following result was proved by Fox and Pach [9] (this shows Conjecture 1.1). In
the following, e is the base of the natural logarithm.

Theorem 2.3 ([9]). Any k-touching set of strings is (6ek + 1)-colorable.

Their theorem is a direct consequence of the following bound on the number of edges
in a graph represented by a set of k-touching strings. Their proof is inspired by the
probabilistic proof of the Crossing Lemma.

Lemma 2.4 ([9]). Any graph represented by a set of n k-touching strings has less than
3ekn edges.

When k = 3, their proof can easily be optimized to show that the number of edges
is less than 12n. Hence, every such graph has a vertex with degree less than 24. These
graphs are thus 23-degenerate and have chromatic number at most 24. We now show how
to modify their proof to slightly improve this bound.

Theorem 2.5. Any 3-touching set of strings is 19-colorable.

This is a direct consequence of the following lemma.

Lemma 2.6. Any graph represented by a set of n 3-touching strings has at most 6
7
(6 +√

22)n ≈ 9.16n edges.

Proof. Let S be a set of n 3-touching strings, and let m be the number of edges in the
corresponding intersection graph G. By Observation 2.2, we can assume that each string
of S is a polygonal line (a union of finitely many segments) and that no endpoint of
a string of S coincides with an intersection between strings of S. Consider a point p
contained in three different strings s0, s1, s2. Then there is a small disk D centered in p
that only intersects the strings s0, s1, s2, and is such that the boundary C of D intersects
each si (for i = 0, 1, 2) in exactly two points, say pi, p

′
i. Assume that walking around C

in clockwise order, we see p0, p
′
0, p1, p

′
1, p2, p

′
2. Then for i = 0, 1, 2, we replace si ∩ D by

a new string s′i between pi and p′i as follows. For each i = 0, 1, 2, let qi be a point of D
that is after p′i and before pi+1 in clockwise order (with indices modulo 3). For two points
x, y, let S(x, y) denote the (straight-line) segment between x and y. Then we replace
si ∩D (the portion of si between p′i and pi) by the concatenation of S(p′i, qi), S(qi, qi−1),
and S(qi−1, pi) (see Figure 2). Note that the resulting set of strings is still 3-touching,
and the intersection graph remains unchanged. Repeating this operation if necessary, we
can assume without loss of generality that for any three strings s0, s1, s2 as above, we see
p0, p

′
0, p
′
1, p
′
2, p2, p1 when walking around C in clockwise order. In this case we say that s1

is “sandwiched” between s0 and s2 at p (see Figure 3, left).
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s0

s2

s1

p0 p′0

p′2
p2

p1

p′1

s0

s2

s1

p0 p′0

p′2
p2

p1

p′1

q2 q0

q1

Figure 2: A local modification turning one 3-touching point into three 2-touching points,
without changing the intersection graph.

We now define two spanning subgraphs G1 and G0 of G as follows. Two strings a and
c are adjacent in G1 if they intersect and for every intersection point p of a and c, there
exists a third string b that is sandwiched between a and c at p. For every pair of strings
a and c adjacent in G1, let P1(a, c) be an arbitrarily chosen intersection point between
a and c. By definition, there is a unique string that is sandwiched between a and c at
P1(a, c).

Two strings a and c are adjacent in G0 if they are adjacent in G but not in G1,
i.e., if there exists an intersection point P0(a, c) of a and c such that either P0(a, c) is
not contained in another string or P0(a, c) is contained in a third string b that is not
sandwiched between a and c. For i = 0, 1, the edge-set of Gi is denoted by Ei, and the
cardinality of Ei is denoted by mi.

Claim 2.7. 7m0 > m+ 6n

For each edge ab ∈ E1, assume that ab gives a charge of 1 to the unique string c
sandwiched between a and b at P1(a, b). Let N0(c) be the set of neighbors of c in G0. The
total charge ρ(c) received by c is at most the number of pairs of vertices x, y ∈ N0(c) such
that in S \ {c}, P0(x, y) is a 2-contact point. If we modify the set of strings intersecting
c so as to only preserve those 2-touching points (all the other pairs of strings are made
disjoint), we obtain a planar graph with vertex-set N0(c) and with at least ρ(c) edges.
It follows that ρ(c) 6 3|N0(c)| − 6. Summing for all strings c, we obtain that the total
charge

∑
c∈S ρ(c) = m1 6 6m0 − 6n. Since m0 + m1 = m, we have 7m0 > m + 6n, as

claimed.

s1

s2

s0 p0 p′0

p1 p′1

p2 p′2

s1

s2

s0 p0 p′0

p1 p′1

p2 p′2

Figure 3: A local modification preserving adjacency in the graph G0.

We are now ready to prove the lemma. We select each string of S uniformly at random
with probability p (to be chosen later). In the subset of chosen strings, we slightly modify
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each 3-touching point x as follows. There is a small disk D with boundary C centered in
x that only intersects the three strings s0, s1, s2 containing x, and (with the same notation
as before), we can assume without loss of generality that we see p0, p

′
0, p
′
1, p
′
2, p2, p1 when

walking around C in clockwise order. Then for some point q on s1, close to x, we replace
s0∩D by the concatenation of the segments S(p0, q) and S(q, p′0) (see Figure 3). Note that
this preserves all edges in G0. Let S ′ be the new set of strings. For each edge ab ∈ E0,
the probability that ab appears as an edge in S ′ is p2, and for each edge ab ∈ E1, the
probability that ab appears as an edge in S ′ is at least the probability that a and b were
both selected and the string c sandwiched between a and b at P1(a, b) was not selected,
which is p2(1 − p). The expected number of vertices of the graph represented by S ′ is
then pn and its expected number of edges is at least

m0p
2 +m1p

2(1− p) = p2 (m0 +m1(1− p))
= p2 (m0p+m(1− p))
> p2

7
((m+ 6n)p+ 7m(1− p))

> p2

7
(m(7− 6p) + 6pn)

By Observation 2.1, the graph is planar and therefore, p
2

7
(m(7−6p)+6pn) 6 3pn. This

can be rewritten as m 6 n 21−6p2
p(7−6p) . Taking p = 3−

√
11/2, we obtain m 6 6

7
(6+
√

22)n.

The ideas of Lemma 2.6 can be used to slightly improve the multiplicative constant in
Theorem 2.3 for all k. Since our improvement is minor (we obtain a bound of 6k × 2.686
instead of 6k × 2.718), we omit the details.

2ℓ

2ℓ

2ℓ

(a)

3ℓ

3ℓ 3ℓ

(b)

Figure 4: (a) The construction of a 2`-sun. (b) A set S of k-touching strings requiring⌈
9k
2

⌉
− 5 distinct colors (each dashed circle represents a 2`-sun).

We now show that the constant c in Conjecture 1.1 is at least 9
2
.
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Theorem 2.8. For every odd k > 1, k = 2` + 1, there exists a set of k-touching strings
Sk such that the strings of Sk pairwise touch and such that |Sk| = 9` = 9(k − 1)/2. Thus
χ(Sk) = 9` =

⌈
9k
2

⌉
− 5.

Proof. Consider n touching strings s1, . . . , sn that all intersect n points c1, . . . , cn in the
same order (see the set of bold strings in Figure 4(a) for an example when n = 4), and
call this set of strings an n-braid. For some ` > 0, take three 2`-braids S1, S2, S3, and
for i = 1, 2, 3, connect each of the strings of Si to a different intersection point of Si+1

(with indices taken modulo 3), while keeping the set of strings touching (see Figure 4(a)).
We call this set of touching strings a 2`-sun. Observe that a 2`-sun contains 6` strings
that pairwise intersect, and that each intersection point contains at most 2` + 1 strings.
Moreover, each of the 6` strings has an end that is incident to the infinite face.

We now consider three 2`-suns R1,R2,R3. Each of them has 6` strings with an end
incident to the outerface. For each i = 1, 2, 3, we arbitrarily divide the strings leaving Ri

into two sets of 3` consecutive strings, say Ri,i+1 and Ri,i−1. For each i = 1, 2, 3, we now
take the strings of Ri,i+1 and Ri+1,i by pairs (one string in Ri,i+1, one string in Ri+1,i),
and identify these two strings into a single string. This can be made in such a way that
the resulting set of (6×3`)/2 = 9` strings is still (2`+1)-touching (see Figure 4(b), where
the three 2`-suns are represented by dashed circles, and only the portion of the strings
leaving the suns is displayed for the sake of clarity). Hence we obtain a k-touching set of⌈
9k
2

⌉
− 5 strings that pairwise intersect, as desired.

3 µ-intersecting strings

Let S be a k-touching set of strings. The set S is said to be µ-intersecting if any two
strings intersect in at most µ points. We denote by H(S) the multigraph associated to S:
the vertices of H(S) are the strings of S, and two strings with t common points correspond
to two vertices connected by t edges in H(S). Note that the intersection graph G(S) of
S is the simple graph underlying H(S).

We prove the following result (which only supersedes Theorem 2.3 for µ 6 5).

Theorem 3.1. Any k-touching set S of µ-intersecting strings can be properly colored with
3µk colors.

Again, the proof is based on an upper bound on the number of edges of such graphs.

Lemma 3.2. If S is a k-touching set of n µ-intersecting strings, then H(S) (and so,
G(S)) has less than 3

2
µkn edges.

Proof. Let n denote the number of strings of S, and let N denote the number of intersec-
tion points of S. Let us denote by d(c) the number of strings containing an intersection
point c (for any c, 2 6 d(c) 6 k by definition).

By Observation 2.2, we can assume that each string of S is a polygonal line (a union of
finitely many segments) and that no endpoint of a string of S coincides with an intersection
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between strings of S. Let us slightly modify S in order to obtain a set S ′ of 2-touching
and µ-intersecting strings. For that, repeat the following operation while there exists an
intersection point c with d(c) > 2. There is a small disk D centered in c such that D only
intersects the strings containing c, and for any such string s, s ∩ D is the union of two
segments. Pick a string s1 containing c such that the angle between its two segments at
c is minimal, and let s2 be a string containing c, distinct from s1, such that a face f of
D−S is bounded by s1, s2 and the boundary of C. Let p1, p

′
1 be the intersection of s1 and

the boundary of D, and let q be a point of s2∩f distinct from c (and close to c). Then we
replace D∩s1 by the concatenation of the straight-line segments S(p1, q) and S(q, p′1) (see
Figure 5). This is similar to the second modification used in Theorem 2.5 and illustrated
in Figure 3, which was restricted to the case where c is contained in exactly three strings.

s2

s1
p1

p′1
f

s2

s1
p1

p′1

q

Figure 5: A local modification reducing the number of strings containing a given point.

Each intersection point c in S corresponds to a set Xc of intersection points in S ′.
Let N ′ be the number of intersection points in S ′. Since S ′ is 2-touching, N ′ is also
the number of edges of the multigraph H(S ′). By construction, each Xc has size exactly
d(c)−1, hence N ′ =

∑
c |Xc| =

∑
c(d(c)−1). By Observation 2.1, the graph G(S ′) and the

multigraph H(S ′) are planar, and since S ′ is µ-intersecting, H(S ′) is a planar multigraph
in which each edge has multiplicity at most µ, therefore it contains N ′ 6 (3n− 6)µ edges.
As d(c) 6 k for any intersection point c in S, we have∑

c

d(c)(d(c)− 1) 6 kN ′ 6 (3n− 6)µk < 3µkn.

Finally, since the number of edges of H(S) is precisely 1
2

∑
c d(c)(d(c) − 1), we have

that H(S) has less than 3
2
µkn edges, as desired.

In particular, if a k-touching set S of strings is such that any two strings intersect in
at most one point, Theorem 3.1 yields a bound of 3k for the chromatic number of S. We
suspect that it is far from tight:

Conjecture 3.3. There is a constant c > 0, such that every k-touching set of 1-intersecting
strings can be colored with k + c colors.

In the next section, we show that this conjecture holds for k-touching (straight-line)
segments, a special case of 1-intersecting strings. It is interesting to note that even though
the bound for k-touching µ-intersecting graphs in Conjecture 1.1 and Theorem 2.3 does
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not depend on µ, the chromatic number of these graphs has some connection with µ: sets
of strings with µ = 1 have chromatic number at most 3k, whereas there exists sets of
strings with large µ and chromatic number at least 9

2
(k − 1).

3

2

4

5

6

7

1

(a)

k strings

(b)

Figure 6: (a) A 3-touching set of 1-intersecting strings requiring 7 colors (b) A k-touching
set of 1-intersecting strings requiring k + 2 colors (here k = 4).

Note that the constant c in Conjecture 3.3 is at least 4. Figure 6(a) depicts a 3-
touching set of seven 1-intersecting strings, in which any two strings intersect. Hence,
this set requires seven colors. However this construction does not extend to k-touching
sets with k > 4, it might be that the constant is smaller for higher k. In Figure 6(b), the
k-touching set Sk contains k + 2 non-crossing strings, and is such that any two strings
intersect. Hence, k + 2 colors are required in any proper coloring.

4 1-Intersecting contact system of strings

In this section, all the sets of strings we consider are 1-intersecting (any two strings
intersect in at most one point). An interesting example of 1-intersecting set of strings
is any family of non-crossing (straight-line) segments in the plane. Such a family is also
known as a contact system of segments, and has been studied in [10], where the authors
proved that any bipartite planar graph has a contact representation with horizontal and
vertical segments.

More generally, a contact system of strings is a family of strings such that the interiors
of the strings are pairwise non-intersecting. In other words, if c is a contact point in the
interior of a string s, all the strings containing c and distinct from s end at c. A contact
point p is a peak if every string containing p has an end at p. Otherwise, that is if p is an
interior point of a string s and an end for all the other strings containing p, p is flat. A
flat contact point p is one-sided if all the strings ending at p are on the same side of the
unique string whose interior contains p. A contact system of strings in which every flat
contact point is one-sided is also said to be one-sided.

It was proved by Hliněný [16] that the intersection graph of any one-sided 2- or 3-
touching set of segments is planar. Note that as a 2-touching set of segments is always

the electronic journal of combinatorics 23(4) (2016), #P4.4 10



one-sided, it is also 4-colorable. In [22], Ossona de Mendez proved that it is NP-complete
to determine whether a 2-touching set of segments is 3-colorable.

In [15], Hliněný studied the clique and chromatic numbers of one-sided k-touching
contact systems of strings. He proved that the maximal clique in this class is Kk+1 and
that the graphs in this class are 2k-colorable. He also asked the following: is there a
constant c such that if a contact system of strings is k-touching, 1-intersecting, and one-
sided, then it is (k+c)-colorable? Note that Conjecture 3.3 would imply a positive answer
to this question.

In the first part of this section, we prove that 1-intersecting and k-touching contact
systems of strings are

(⌈
4
3
k
⌉

+ 6
)
-colorable. In the second part, we show that any k-

touching contact system of segments is (k+ 5)-colorable. Note that we do not assume the
contact systems to be one-sided (but we also show that adding this assumption slightly
improves the additive constants in our results).

Theorem 4.1. For any k > 3, any 1-intersecting k-touching contact system of strings
can be colored with

⌈
4
3
k
⌉

+ 6 colors.

As in Theorem 2.3, the result is a consequence of a bound on the degeneracy of these
graphs:

Lemma 4.2. For any k > 3, if S is a 1-intersecting k-touching contact system of strings,
then G(S) contains a vertex of degree at most

⌈
4
3
k
⌉

+ 5.

Proof. Assume that there is a counterexample, i.e. a 1-intersecting k-touching contact
system S of n strings such that G(S) has minimum degree at least

⌈
4
3
k
⌉

+6. In particular,
G(S) has m > n(2

3
k + 3) edges. We take a counterexample for which n is minimal, and

with respect to this, m is maximal. Observe that G(S) is connected, since otherwise
by minimality of n, some connected component would have a vertex of degree at most⌈
4
3
k
⌉

+ 5, a contradiction. Observe also that if some string of S has at most one contact
point, then the corresponding vertex of G(S) has degree at most k − 1 6

⌈
4
3
k
⌉

+ 5, a
contradiction. This implies that every string of S has at least two contact points. As a
consequence, we can also assume that the two ends of each string of S are contact points
(if not, delete the portion of a string between a free end and its first contact point).

Let H(S) be the plane graph whose vertices are the contact points of S, whose edges
link two contact points if and only if they are consecutive on a string of S, and whose
faces are the connected regions of R2 \ S.

Let pi and fi be the number of contact points of exactly i strings of S that are
respectively peaks and flat. Let us denote by c the total number of contact points, and
note that c =

∑k
i=2(pi + fi). By counting the number of ends of a string of S in two

different ways, we obtain that:

2n =
k∑
i=2

ipi +
k∑
i=2

(i− 1)fi (1)
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Consider a one-sided flat contact point p and let s be the unique string such that p is
an interior point of s. If we draw a small open disk D containing p, a unique face f of
H(S) has the property that f ∩ D is incident to s, and to no other string containing p.
We denote this face f of H(S) by F (p). Remark that since S is 1-intersecting, any face f
of H(S) contains at least |F−1(f)|+ 3 vertices, thus at least |F−1(f)| edges can be added
to H(S) (inside f) with the property that H(S) remains planar. Hence in total, one can
add as many edges to H(S) as the number of one-sided contact points, while keeping
H(S) planar. Since every flat 2-contact point is one-sided, and every planar graph on c
vertices has at most 3c− 6 edges, it follows that H(S) has at most 3c− 6− f2 edges. As
a consequence, the sum of the degrees of the vertices of H(S) is:

k∑
i=2

ipi +
k∑
i=2

(i+ 1)fi 6 2 · (3c− 6− f2).

By the definition of c, this is equivalent to:

k∑
i=2

(i− 6)pi +
k∑
i=2

(i− 5)fi 6 −12− 2f2 (2)

Since any pair of strings in S intersects at most once, the number of edges in G(S) satisfies
the following equation.

m =
k∑
i=2

(
i

2

)
(pi + fi) (3)

Our goal is to use (1), (2), and (3) to prove that m is less than n(2
3
k + 3), which is

a contradiction. To prove this, we will see that in order to maximize m, we have to set
all the values of fi and pi to zero, except for p2, f3, pk, fk (in other words, the weight has
to be concentrated on the extremal variables). Once this is proved, bounding m will be
significantly simpler.

Let us consider the linear program (LP1) defined on variables pi and fi with values
in R+ such that the equation (1) and the inequality (2) are satisfied, and such that the
value m defined by (3) is maximized. Here n is considered to be a constant (it is not a
variable of the linear program). Note that the solution m∗ of this problem is clearly an
upper bound of the number of edges of G(S).

Claim 4.3. The optimal solutions of (LP1) are such that f2 = 0.

If f2 6= 0, take a small ε > 0 and replace f2 by f2 − ε and f3 by f3 + ε/2. Then
(1) remains valid, inequality (2) still holds (both sides are increased by 2ε), while (3) is
increased by ε/2. This concludes the proof of the claim.

Claim 4.4. The optimal solutions of (LP1) are such that fi = 0, for every 4 6 i 6 k− 1.

If for some 4 6 i 6 k − 1, fi 6= 0, choose a small ε > 0 and replace (i) f3 by

f3 + ε (k−i)
k−3 ; (ii) fi by fi − ε; and (iii) fk by fk + ε i−3

k−3 . Then (1) remains valid, inequality
(2) still holds (the left-hand side and the right-hand side remain unchanged), while the
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value of m in (3) is increased by ε
k−3(3(k − i) −

(
i
2

)
(k − 3) +

(
k
2

)
(i − 3)). The function

g : i 7→ 3(k−i)−
(
i
2

)
(k−3)+

(
k
2

)
(i−3) is a (concave) parabola with g(4) =

(
k
2

)
−3k+6 > 0

(recall that 4 6 i 6 k−1, so k > 5) and g(k) = 0, so it is positive in the interval [4, k−1].
This concludes the proof of the claim.

Claim 4.5. The optimal solutions of (LP1) are such that pi = 0, for every 3 6 i 6 k− 1.

If for some 3 6 i 6 k − 1, pi 6= 0, choose a small ε > 0 and replace (i) p2 by

p2 + ε (k−i)
k−2 ; (ii) pi by pi − ε; and (iii) pk by pk + ε i−2

k−2 . Then (1) remains valid, inequality
(2) still holds (the left-hand side and the right-hand side remain unchanged), while the
value of m in (3) is increased by ε

k−2((k − i) −
(
i
2

)
(k − 2) +

(
k
2

)
(i − 2)). The function

g : i 7→ (k− i)−
(
i
2

)
(k−2)+

(
k
2

)
(i−2) is a (concave) parabola with g(3) =

(
k
2

)
−2k+3 > 0

(recall that 3 6 i 6 k−1, so k > 4) and g(k) = 0, so it is positive in the interval [3, k−1].
This concludes the proof of the claim.

It follows from the previous claims that c = p2 + f3 + pk + fk, so (2) gives −4p2 + (k−
6)pk − 2f3 + (k − 5)fk < 0. Therefore,

(k − 6)(pk + fk) < 4p2 + 2f3.

By equation (1) and the previous claims, we have 2n = 2p2 +kpk+2f3 +(k−1)fk. Hence,

2p2 + f3 6 2p2 + 2f3 = 2n− kpk − (k − 1)fk 6 2n− (k − 1)(pk + fk),

which implies (k − 6)(pk + fk) < 4n− 2(k − 1)(pk + fk). This can be rewritten as

(3k − 8)(pk + fk) < 4n.

Now, by equation (3),

m = p2 + 3f3 +

(
k

2

)
(pk + fk) 6

3

2
(2n− (k − 1)(pk + fk)) +

(
k

2

)
(pk + fk)

6 3n+ (pk + fk)(−
3

2
(k − 1) +

(
k

2

)
)

< 3n+
4n

3k − 8
(3k − 8)

k

6
(since k > 3)

< n (2
3
k + 3).

We obtain that the graph G(S) has less than n(2
3
k+3) edges, which is a contradiction.

If the contact system we consider is one-sided, the argument we used for flat 2-
intersection points while establishing (2) in the previous proof works for all flat points,
and it follows that H(S) has at most 3c− 6−

∑k
i=2 fi edges. Consequently, inequality (2)

can be replaced by the following stronger inequality:

k∑
i=2

(i− 6)pi +
k∑
i=2

(i− 3)fi 6 −12 (4)
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Let (LP2) be the new linear program. It is not difficult to check that Claims 4.3 and 4.4
remain satisfied. Moreover, it can be proved that in some optimal solution of (LP2), we
also have f3 = 0. Similar computations give that in this case the graph G(S) contains a
vertex of degree at most

⌈
4
3
k
⌉

+ 1. As a consequence:

Theorem 4.6. For any k > 3, any 1-intersecting one-sided k-touching contact system of
strings can be colored with

⌈
4
3
k
⌉

+ 2 colors.

We now show how to modify the proof of Theorem 4.1 to prove that k-touching contact
systems of segments are (k + 5)-colorable. For technical reasons, we will consider instead
the case of extendible contact system of strings, which we define next.

A pseudo-line is the homeomorphic image of a straight line in the plane. An arrange-
ment of pseudo-lines is a set of pseudo-lines such that any two of them intersect at most
once, and when they do they cross each other. We say that a contact system of strings is
extendible if there is an arrangement of pseudo-lines, such that each string s of the con-
tact system is contained in a distinct pseudo-line of the arrangement (this pseudo-line is
called the support of s). Observe that a contact system of segments is clearly extendible.
On the other hand, it was proved by de Fraysseix and Ossona de Mendez [11] that any
extendible contact system of strings can be “stretched”, i.e. continuously changed to a
contact system of segments, while keeping the same underlying intersection graph.

We start with two observations about extendible contact systems of strings (the first
one is similar to the first part of Observation 2.2).

Observation 4.7. Let S be an extendible contact system of strings, and let L be a cor-
responding arrangement of pseudo-lines. We can assume without loss of generality that
each string of S is the union of finitely many segments, and each pseudo-line of L is the
union of two rays (affine images of {0} × [0,+∞) in R2) and finitely many segments.

The proof is similar to that of Observation 2.2. We consider the plane graph G whose
vertices are the endpoints of the strings of S and the intersection points of S∪L, and whose
edges connect two points if they are consecutive in some string of S or some pseudo-line
of L. Since any two pseudo-lines intersect at most once, the resulting graph H is a simple
planar (finite) graph, and by Fáry’s theorem [6] it has an equivalent drawing in which all
the edges are (straight-line) segments. We can then replace each end of a pseudo-line by
finitely many segments and a ray, without changing G(S), and Observation 4.7 follows.

Observation 4.8. Let S be an extendible contact system of strings, and let L be a cor-
responding arrangement of pseudo-lines. We can assume without loss of generality that
for any strings s1, s2, s3 ∈ S, if their supporting pseudo-lines intersect in a point p, then
s1, s2, s3 also intersect in p.

Consider a point p contained in `1, `2, `3 ∈ L, and such that the string s1 ∈ S supported
by `1 does not contain p. We now show how to modify `1 so that it avoids p, without
changing the other elements of L and the elements of S. By Observation 4.7, we can
assume that a small disk D centered in p only intersects the elements of S ∪L containing
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p, and the intersection of each of these elements with D consists of the union of at most two
segments. By the definition of a pseudo-line arrangement, the pseudo-lines intersecting p
pairwise cross. Note that `1 cuts the boundary of D in two arcs, say a, a′. We then modify
`1 by replacing D∩ `1 by a. The set S is not modified, and the pseudo-lines intersecting p
still pairwise cross, so we obtain a new pseudo-line arrangement. Repeating this operation
if necessary, we finally obtain a pseudo-line arrangement satisfying Observation 4.8.

We can now prove the main result of this section.

Theorem 4.9. For any k > 3, any k-touching extendible contact system of strings can
be properly colored with k + 5 colors.

As before, the result is a consequence of a bound on the degeneracy of the correspond-
ing intersection graphs:

Lemma 4.10. For any k > 3, if S is a k-touching extendible contact system of strings,
then G(S) contains a vertex of degree at most k + 4.

Proof. The proof is similar to that of Theorem 4.1. We consider a counterexample S
consisting of n k-touching extendible strings. Since G(S) has minimum degree at least
k + 5, G(S) has m > 1

2
(k + 5)n edges. Again, we take n minimal, and with respect to

this, m maximal. As before, we can assume that G(S) is connected and that the two ends
of each string are contact points.

We again consider the plane graph H(S) whose vertices are the contact points of S,
whose edges link two contact points if and only if they are consecutive on a string of S,
and whose faces are the connected regions of R2\S. Let pi and fi be the number of contact
points of exactly i strings of S that are respectively peaks and flat. Let p =

∑k
i=2 pi and

c =
∑k

i=2(pi + fi).
Recall that any face f of H(S) contains at least |F−1(f)|+ 3 vertices (where F−1(f),

defined in the proof of Lemma 4.2, is the number of flat contact points “incident” to
f), thus at least |F−1(f)| edges can be added to H(S) (inside f) with the property
that H(S) remains planar. We now show that, moreover, the vertices corresponding to
the peaks of S all lie on the outerface of H(S). This directly implies that we can add
f2 +p−3 edges to H(S), while keeping H(S) planar (as a consequence, H(S) has at most
3c− 6− (f2 + p− 3) = 3c− 3− f2 − p edges).

Indeed, if some peak x of S is not incident to the outerface, we choose a string s
containing x and prolong s after x (following the pseudo-line supporting s) until it hits
some other segment s′ (note that since S is extendible, the pseudo-lines supporting s
and s′ intersect at most once, and thus s and s′ did not intersect previously). Let S ′ be
the new contact system of strings. It is still extendible, and by Observation 4.8 we can
assume that s ∩ s′ is only contained in s and s′, so the new contact point is 2-touching.
Consequently, this new contact system is extendible and k-touching, which contradicts
the maximality of m.

It follows that inequality (2) in the proof of Theorem 4.1 can be replaced by:

k∑
i=2

(i− 4)pi +
k∑
i=2

(i− 5)fi 6 −6− 2f2 (5)
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We consider the linear program (LP3) defined on variables pi and fi with values in R+

such that the equation (1) and the inequality (5) are satisfied, and such that the value m
defined by (3) is maximized.

The coefficients of the variables fi being the same in (2) and (5), Claim 4.3 (the
optimal solutions of (LP3) are such that f2 = 0) and Claim 4.4 (the optimal solutions of
(LP3) are such that fi = 0, for every 4 6 i 6 k − 1) are still satisfied. Claim 4.5 is now
replaced by the following stronger claim:

Claim 4.11. The optimal solutions of (LP3) are such that pi = 0, for every 2 6 i 6 k.

If for some 2 6 i 6 k, pi 6= 0, choose a small ε > 0 and replace pi by pi − ε, and
fi by fi + ε i

i−1 . Then (1) remains valid, inequality (5) still holds (the left-hand side is

decreased by 4ε
i−1 and the right-hand side remains unchanged), while the value of m in (3)

is increased by εi
2
. This concludes the proof of the claim.

It follows from Claims 4.3, 4.4, and 4.11 that c = f3 + fk, so (5) gives (k− 5)fk < 2f3.
By equation (1), 2f3 = 2n − (k − 1)fk, which implies (k − 5)fk < 2n − (k − 1)fk. This
can be rewritten as

(k − 3)fk < n.

Now, by equation (3),

m = 3f3 +

(
k

2

)
fk 6

3

2
(2n− (k − 1)fk) +

(
k

2

)
fk

6 3n+ fk
(k−1)(k−3)

2

< n(k−1
2

+ 3).

We obtain that the graph G(S) has less than n
2
(k+5) edges, which is a contradiction.

It follows that intersection graphs of k-touching segments are (k + 4)-degenerate and
then (k + 5)-colorable. Note that the (k + 4)-degeneracy may not be tight for every k.
Indeed, we only know graphs that are not (k + 3)-degenerate for k 6 6. Those graphs
are obtained in the following way for k = 6: First consider the segments in a straight-
line drawing of a planar triangulation with minimum degree 5 and maximum degree 6,
such that any degree five vertex is at distance at least two from the outerface, and such
that any two vertices of degree five are at distance at least three apart. Such a graph
can be obtained from the icosahedron by applying several times the following operation:
subdivide every edge once, and inside each face, add 3 edges connecting the 3 (newly
created) vertices of degree 2. It follows from Euler’s formula that there are precisely
12 vertices of degree 5 in the triangulation, and therefore precisely 60 segments whose
ends respectively touch a 5- and a 6-contact points. Let s1, . . . , s60 be these segments.
Those are the only segments that touch less than 10 other segments (they only touch
9 of them). To make each of them touch one more segment, prolong successively the
segments s1, s2, . . . , s60 by their end that is at the 6-contact point, until reaching another
segment (we can assume that the drawing of the triangulation is such that no line contains
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two edges incident to the same vertex, therefore each of the segments s1, . . . , s60 hits an
interior point of another segment).

(a) (b)

k

(c)

Figure 7: (a) A 2-touching set of segments requiring 4 colors (b) A 3-touching set of
segments requiring 5 colors (c) A k-touching set of segments requiring k + 1 colors.

Figure 7 depicts k-touching sets of segments requiring k + 2 colors, for k = 2, 3.
However it does not appear to be trivial to extend this construction for any k > 4. Note
that Figure 7(b) also shows that there are intersection graphs of 3-contact representations
of segments (with two-sided contact points) that are not planar (this remark also appears
in [14]).

Acknowledgments

The authors would like to thank the reviewers for their suggestions and remarks (in
particular for finding an error in a previous version of our manuscript).

References

[1] O. Amini, L. Esperet, and J. van den Heuvel. A unified approach to distance-two
colouring of graphs on surfaces. Combinatorica 33(3) (2013), 253–296.
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[13] A. Gyárfás and J. Lehel. Covering and coloring problems for relatives of intervals.
Discrete Math. 55 (1985), 167–180.
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