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Abstract

We present several equinumerous results between generalized oscillating tableaux
and semistandard tableaux and give a representation-theoretic proof to them. As
one of the key ingredients of the proof, we provide Pieri rules for the symplectic and
orthogonal groups.
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1 Introduction

Various types of tableaux are studied in combinatorics and representation theory. Rep-
resentation theory provides powerful tools to prove theorems concerning tableaux and
helpful clues to generalize them. The aim of this article is to give a representation-
theoretic proof of generalizations and variants of refined Burrill conjecture for oscillating
tableaux. These generalizations and variants are equinumerous results between general-
ized oscillating tableaux and semistandard tableaux.

A standard tableau of shape A\ can be viewed as an increasing sequence ) = A(©)
A oo AED AR = X of partitions such that the diagram of A®) is obtained
from that of A~V by adding one cell for each i. The notion of oscillating tableaux is a
generalization of standard tableaux. For a nonnegative integer k and a partition A, an
oscillating tableau of length k and shape A is a sequence (AM)E_ = (AO XD A®) of
partitions satisfying the following two conditions:
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(i) MO = and \® = X

(i) The diagram of A® is obtained from that of A=Y by adding or removing one cell
for each 1.

Krattenthaler [7] and Burrill-Courtiel-Fusy—Melczer-Mishna [2] gave bijective proofs of
the following theorem, which is a refinement of Burrill’s conjecture [1, Conjecture 6.2.1].

Theorem 1.1. ([7, Theorem 3], [2, Theorem 1]) For nonnegative integers k, n and m,
the following two sets are equinumerous:

(a) The set of oscillating tableauz (\D)E_ of length k and shape \*) = (m) such that
I(AD) < n for each i.

(b) The set of standard tableaur whose shape X satisfies |A| =k, [(A) < 2n and c¢(\) =
m.

Here () is the length of a partition X, and c(\) is the number of columns of odd length
in the diagram of .

In this paper, we present generalizations and variants of Theorem 1.1 from the view
point of representation theory of classical groups. Our main results in the symplectic
group case can be stated as follows. If @« = (1,...,1), then Theorem 1.2 reduces to
Theorem 1.1. (See Theorem 5.3 for similar results in the orthogonal group case.) We
remark that Krattenthaler [7, Theorem 4] gave a bijective proof to part (1) of the following
theorem.

Theorem 1.2. (Theorem 5.3 (1) and (2) below) Let o = (ov, ..., ax) be a sequence of
nonnegative integers of length k, and let m and n be nonnegative integers. Then we have

(1) The following two sets are equinumerous:
(a) The set of sequences
0 =A0 5 XU XO 5 \E) c AW 5o N2 5 \CED  \CR) — ()

of partitions with [(A\D) < n such that \®=2 /\Z=D gnd A /NZ=D gre hor-
izontal strips and that |N*=2) /\E=1] 4 |\ /\@=D| = o,

(b) The set of column-strict tableauz (a.k.a. semistandard tableauz) of weight «
whose shape X satisfies [(\) < 2n and c(\) = m.

(2) The following two sets are equinumerous:
(a) The set of sequences
@ = )\(0) C )\(1) D) )\(2) C )\(3) D) )\(4) GEEEED) )\(Zk_Q) C )\(Qk_l) D) )\(Qk) — (m)

of partitions with [(A®D) < n such that X*=1 /AZ=2) gnd XD /X gre per-
tical strips and that |N*~Y /\Z=2)| 1 |]\@=D /A2 = o,
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(b) The set of row-strict tableauz of weight o whose shape \ satisfies [(\) < 2n
and c(\) = m.

See Sections 2 and 5 for undefined terminologies.

Here we give an outline of our proof of Theorem 1.2. Let V = C?" be the defining
representation of the general linear group GLa, = GLy,(C), which is also the defining
representation of the symplectic group Sp,,, = Sps,,(C). We consider the tensor products

SV)=8S1(V)®@---@8%(V) and A“(V)=A"V)®@- - A (V)

of the symmetric and exterior powers of V. We compute in two ways the multiplicities of
the irreducible Sp,,-module V), corresponding to the one-row partition (m) in S*(V)
and A\*(V).

One of the key ingredients of the proof are the Pieri rules for classical groups, which are
another contribution of this paper. The Pieri rule (resp. dual Pieri rule) for Sp,, describes
the irreducible decomposition of the tensor product of an irreducible representation with
S™(V) (resp. A"(V)). By iteratively applying the Pieri rule given in Theorem 3.2 (1)
(resp. the dual Pieri rule in Theorem 4.1 (1)), we see that the multiplicity of V() in
S(V) (resp. A*(V)) is equal to the number of the sequences of partitions described in
(a) of Theorem 1.2 (1) (resp. (2)).

On the other hand, by using the classical Pieri rule for GL,,, we obtain the GLy,-
module decompositions

o ~ CSTab(\,« o ~ RSTab(\,a
(V)= @ VR Ay = P O, (1.1)
I(N)<2n I(AN)<2n

where A runs over all partitions of length < 2n, V) is the irreducible representation of GLy,
corresponding to A, and CSTab(\, ) (resp. RSTab(\, «)) denotes the set of column-strict
(resp. row-strict) tableaux of shape A and weight . Another key ingredient of the proof
is the following restriction multiplicity formula (see Theorem 5.4):

1 if ¢(N) =m,

[Resg;;’i” Vi V<(m)>] B {O oth(er\)zvise. (1.2)
It follows from (1.1) and (1.2) that the multiplicity of Vi, in S*(V) (resp. A“(V)) is
equal to the number of tableaux described in (b) of Theorem 1.2 (1) (resp. (2)). In this
way, we prove Theorem 1.2.

The remainder of this paper is organized as follows. In Section 2 we review the
representation theory of classical groups. In Sections 3 and 4, we prove the Pieri rules
and the dual Pieri rules for the symplectic and orthogonal groups. In Section 5, we present
variants/generalizations of Theorem 1.1 and give a representation-theoretic proof to them.
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2 Preliminaries

In this section, first we recall some definitions on partitions. Then we review the rep-
resentation theory of classical groups and collect several facts which will be used in the
remaining of the paper. See [3], [4] and [9] for the representation theory of classical groups.

2.1 Combinatorics of partitions

A partition is a weakly decreasing sequence A = (A1, Ag, ... ) of nonnegative integers such
that .., A is finite. The length of A, denoted by [()A), is the number of nonzero entries
of A, and the size of A\, denoted by |A|, is the sum of entries of A\. A partition A is often
identified with its diagram, which is a left-justified array of |A| cells with A; cells in the
ith row. The conjugate partition A of a partition A is the partition whose diagram is
obtained by reflecting the diagram of A\ along the main diagonal. We denote by P the set
of all partitions.

For two partitions A and pu, we write p C A if p; < A; for all ¢. Then the skew diagram
A/p is defined to be the set-theoretical difference of the diagrams of A and p. The size of
the skew diagram is defined by |A/u| = |\| — |u]. We say that the skew diagram A\/u is a
horizontal r-strip if it contains at most one cell in each column and |A/u| = r. Dually, we
say that the skew diagram \/p is a vertical r-strip if it contains at most one cell in each row
and |\/pu| = r. Note that A/p is a horizontal strip if and only if \y > g > Ao Z e > .. ..

2.2 Representation theory of GLy

It is well-known that the irreducible polynomial representations of the general linear group
GLy = GLy(C) are parametrized by partitions of length < N. We denote by V) and Sy
the irreducible representation and its character corresponding to a partition A respectively.
If X is a one-row partition (r) (resp. a one-column partition (1)), then we write H, = S
(resp. E, = Sur)). Note that H, (resp. FE,) is the characters of the symmetric power
S™(V') (resp. the exterior power A"(V)) of the defining representation V' = CV of GLy.
We also use the notations V) gL, SxcrLy: HrerLy and E, gL, to avoid confusions. Let
R(GLy) be the representation ring of GLy. Then R(GLy) is a free Z-module with basis
{Sy: AeP, I(\) <N}

Let A be the ring of symmetric functions. Let s) € A be the Schur function associated
with a partition A and h, = s;) € A the complete symmetric function of degree r. If
T = 7mgLy : A = R(GLy) is the ring homomorphism defined by w(h,) = H, for r > 1,
then we have
Sy if l(A) < N,

0  otherwise.

TaLy (S2) = {

For partitions A\, p and v, we denote by LRZ\W the Littlewood-Richardson coefficient,
which is defined by the relation

_ A
S8y = E LR}, , sx.
AEP
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It is known that LRf‘W = 0 unless |A| = |u|+ |v|, A D pand A D v.
The following is the classical Pieri rule for GLy.

Proposition 2.1. Let V' be the defining representation of GLy. For a partition p of
length < N and a nonnegative integer v, we have

VosW) =@, o NV) =@, (2.1)

where A (resp. p) runs over all partitions of length < N such that A\/u is a horizontal
r-strip (resp. p/u is a vertical r-strip). In other words, for partitions A and p and a
nonnegative integer r, we have

LRﬁ "= 1 if A .is a horizontal r-strip, (2.2)
’ 0 otherwise,
LR;) = L if N u ?'3 a vertical r-strip, (2.3)
’ 0 otherwise.

2.3 Representation theory of Sp,,,

Next we consider the symplectic group Sp,, = Sp,,(C). The finite-dimensional irre-
ducible representations of Sp,, are indexed by partitions of length < n. Let P(Sp,,) be
the set of all partitions of length < n. We denote by Viny = Vi sp, and Sy = Si sp,,
the irreducible representation and its character of Sp,, corresponding to a partition A
with [(A\) < n. Let V = C?" be the defining representation of Sp,,, and denote by H,
(resp. E,) the character of Sp,, on S™(V) (resp. A"(V)). Then S"(V) is the irreducible
representation corresponding to the one-row partition (r), while A"(V) is not irreducible
if > 2 and the quotient A\"(V)/A""*(V) is the irreducible representation corresponding
to the one-column partition (17). Let R(Sp,,) be the representation ring of Sp,,

For an arbitrary partition A, we define the corresponding symplectic Schur function
sy € A by putting

1

S =5 det (hx,—ivj + hai—imjr2) 1< i) - (2.4)

Let msp, : A — R(Sp,,) be the ring homomorphism defined by wsp, (h,) = H, for
r > 1. The image of a symplectic Schur function under 7g,, can be expressed as a linear
combination of irreducible characters (in fact, it is 0 or an irreducible character up to
sign), by using the following algorithm (see [5] and [6]).

Proposition 2.2. Let \ be a partition.
(1) If X € P(Spy,), then we have

Tsp,, (S00) = Spy-
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(2) In general, the image Tsp, (s(ny) is computed as follows. We put r = Ay and
a=ALN—1,... N —(r—1)).
(a) If a has an entry larger than or equal to 2n 41+ 2, then msp, (spy) = 0.
(b) If o; + oy = 2n 42 for some i and j, then mgp, (s(ny) = 0.

c) Otherwise, suppose that ay > -+ > o, = n+ 2 > a,yq and define a sequence
P P
B by putting

B=02n+2—0a1,....2n4+2 — 0p, Qpi1, ..., Qp).

Let v be the rearrangement of B in decreasing order and o € &, a permutation

satisfying o(B) = ~. If u is the partition given by v = (py, uy—1,...,pul — (r—
1)), then p € P(Sp,,) and

Tsp,, (s() = (=1)" sgn(0) S
(3) In particular, if (X)) =n+ 1, then msp, (s()) = 0.

We have the following relations in the ring A of symmetric functions, from which we
can derive identities involving irreducible characters of Sp,, by applying 7sp,, .

Proposition 2.3. (1) (Newell, Littlewood) For any partitions p and v, we have

S - Sy = Z( > LRELRY, LRgn> 500 (2.5)

AEP \T1,&,nEP

(2) (Littlewood) For any partition X, we have

S\ — Z (Z LR271L> S(u)s (26)

peP \keé’
where £ is the set of all partitions whose column lengths are all even.
Let {f(x)} be the sequence of Laurent polynomials defined by

ot — 7t ifr >0,
fo(x) = .
0 if r <O.

For a sequence o = (v, . .., ;) of integers and a sequence = (xy, ..., x,) of indetermi-
nates, we put

AS (@) = (£ umyar))

Then the ratio det AS(x)/ det A (x), where § = (0,...,0), is a Laurent polynomial in

1<i,5<n

x1,...,%,. Then the Weyl character formula is rephrased as follows:
Proposition 2.4. If X € Sp,, has the eigenvalues x4, ..., Ty, 1, . .. .z}, then we have
_ det A§ ()
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2.4 Representation theory of Oy

The finite-dimensional irreducible representations of the orthogonal group Oy = Oy (C)
are parametrized by partitions such that the sum of the lengths of the first two columns
is at most N. Let P(Oy) be the set of partitions A satisfying \| + A, < N. We denote
by Vixy = Vin,oy and Spy = Spy,0, the irreducible representation and its character of Oy
corresponding to a partition A € P(Oy). Let V = C¥ be the defining representation
of Oy, and denote by H, (resp. E,) the character of Oy on S™(V) (resp. A"(V)).
Then A"(V) is the irreducible representation corresponding to the one-column partition
(17), while S™(V') is not irreducible if r > 2 and the quotient S"™(V)/S"72(V) is the
irreducible representation corresponding to the one-row partition (). Let R(Oy) be the
representation ring of Oy
For an arbitrary partition A, we define the corresponding orthogonal Schur function
sp € A by putting
spy = det (ha,—ivj = haimicj)ic ey - (2.8)

Let mo, : A — R(Oy) be the ring homomorphism defined by mo, (h,) = H, for r >
1. The image of an orthogonal Schur function under 7o, can be expressed as a linear
combination of irreducible characters (in fact, it is 0 or an irreducible character up to
sign), by using the following algorithm (see [5] and [6]).

Proposition 2.5. Let \ be a partition.

(1) If A € P(Oy), then we have
Tox (s09) = S

(2) In general, the image wo, (3[,\]) can be computed as follows. We put r = A\ and
a=A\, N —1,.... N —(r—1)).
(a) If a has an entry larger than or equal to N + r, then mo, (s[,\]) = 0.

(b) If a; + a; = N for some i and j, then mo, (s[,\]) =0.
(¢) Otherwise, suppose that ay > -+ > a, > N/2 > a4 and define a sequence [3

by putting
5
(N—ag,....N —ap,0pi1,...,0;) if p is even,
= (N—ay,....N —pi1,0p12,...,0,) ifpis odd and o, + apry = N + 1,

Z
(N—aq,....N—ap_1,0p,...,0,) if p is odd and o, + apyg <N — 1.
Let ~ be the rearrangement of B in decreasing order and o € &, a permutation
satisfying o(B) = . If u is the partition given by v = (py, uy—1,.. ., pul — (r—
1)), then p € P(Oy) and
oy (sp) = sgn (o) Sp-
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(3) In particular, if Ay +N = N+1 or Ay + A3 = N + 2, then we have wo, (spy) = 0.

We have the following relations in the ring of symmetric functions, from which we can
derive identities involving irreducible characters of Oy by applying 7o, .

Proposition 2.6. (1) (Newell, Littlewood) For any partitions p and v, we have

S S = ( > LRYLRY, LRgT> SIAl- (2.9)

AeEP \1,&,neEP

(2) (Littlewood) For any partition A\, we have

Sn= (Z LRQM> 81l (2.10)

HEP \kEE
where £ 1is the set of all partitions whose row lengths are all even.

Finally we review the representation theory of the special orthogonal group SOy. We
associate to a partition A € P(Oy) another partition \* € P(Oy) obtained by replacing
the first column (of length A\}) by the column of length N — A}. Then we have

Vin.ow ® Caet = Vinon,  Resgd, Vinon = Resgd, Vingon

where Cge is the one-dimensional representation of Oy given by the determinant. For a
partition A of length < N/2, we denote by Viyso, and Spyso, the restriction of Viy 0,
and Sjy,0, respectively. If N = 2n + 1 is odd, then the restriction Vi so,,,, remains
irreducible and {Vixs0,..; : A € P, [(A) < n} forms a complete set of representatives
of isomorphism classes of irreducible representations of SOy, ;. The even orthogonal
group case is more subtle. It is known that the irreducible representations of SO,
are parametrized by sequences w = (wy,...,wp_1,w,) of integers satisfying w; > ... >
Wn—1 = |wp|. We denote the corresponding irreducible representation by L, so,,- If A is
a partition of length < n, then the restriction V|5 so,, is the irreducible representation
L[(,\I,MAZ(A),07”,70)]750%. If X is a partition of length n, then V| so,, is not irreducible and
decomposes into the direct sum of two distinct irreducible representations Ljy+)so,, and
Lix-180,, corresponding to AT = (A, ..., Ao1, Ay) and A7 = (Mg, ..., Mg, = A).

Let {f2(z)} and {fP(x)} be the sequences of Laurent polynomials defined by

x4z ifr >0,

r+1/2 _ ,.—r—1/2 ifr>0
B x T if r >0, D .
) {0 SN itr=0,
0 if r < 0.
For a sequence a = (ay, . .., a,) of integers and a sequence & = (x1, ..., x,) of indetermi-
nates, we put
Biy _ (B , Diy— (D (.
AZ@) = (D) o AD@) = (D 0)
Then the ratios det A% (x)/ det AJ () and det AD(x)/ det A (x) are Laurent polynomials
in x1,...,2,. Then the Weyl character formula is rephrased as follows:
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Proposition 2.7. Let \ be a partition of length < n.

-1

- and 1, then we have

(1) if X € SOq,11 has the eigenvalues x1,...,2,, 27", ...,

det A% (x)
S X)=—"2"2 2.11
N80z (X) = AP (z) (2.11)
(2) If X € SOy, has the eigenvalues x1,...,x,, 27", ..., 0, then we have
AD
det AV (x) (2.12)

S[ALSO%(X) = W-

3 Pieri rules for the classical groups

In this section, we give the Pieri rules for Sp,, and Oy, which describe the irreducible
decomposition of the tensor product of an irreducible representation with the symmetric
power of the defining representation. The proof uses the symplectic and orthogonal Schur
functions and their specialization algorithms.

At the level of symplectic and orthogonal Schur functions, we have the following
“universal” Pieri rule.

Proposition 3.1. For a partition p and a nonnegative integer r, we have

Sy sy = Y #MLso, (3.1)
AEP
A
Slu] * S[(r)] = Z H#M, 500, (3.2)
AeP

where M? s given by

T

My ={E € P :p/& and N/ are both horizontal strips and |pu/&| + [N/€| =1}, (3.3)

Proof. We use Newell-Littlewood formulas (2.5) and (2.9) with v = (r). Since LR(TZ)7 =
unless 7 = (s) and n = (r — s) for some 0 < s < r, the claim follows from the Pieri rule
(2.2). O

By applying the homomorphisms 7gp, to (3.1) and 7o, to (3.2), and then by using
the algorithms given in Propositions 2.2 and 2.5, we can prove the following “actual” Pieri
rules. Part (1) of the following theorem was obtained by Sundaram [10, Theorem 4.1],
where she used the Berele insertion algorithm to give a combinatorial proof.

Theorem 3.2. (1) Let A\, u € P(Spy,) and r a nonnegative integer. Then the mul-
tiplicity of the irreducible Spy,-module Vi in the tensor product Vi, @ Vi) =
Vi ®@S"(V), where V' is the defining representation of Spy,,, is equal to the number
of partitions & satisfying the following two conditions:
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(i) /& and \/& are both horizontal strips.
(i) /&l + N/E] = r.

(2) Let A, u € P(Oy) and r a nonnegative integer. Then the multiplicity of the irre-
ducible On-module V}y in the tensor product Vi) @ V) is equal to the number of
partitions £ satisfying the following three conditions:

(i) /& and N/& are both horizontal strips.

(i) /€l + [A/E] =r.

(111) If py + phy = N, Xy = iy and Xy = 1y, then one of the following holds:
(11i-1) (&) = U(p) and & € {, N}, where L =1(p) =1(§) = 1(N).
(iii-2) 1(§) <U(n) and & < ps.

For example, if ﬂjw(zv ) denotes the set of partitions ¢ satisfying the conditions in
Theorem 3.2, then we have

4,3,2)} if N =6,
4,3,2),(4,4,1)} ifN>7,

{(
{(
{(2,1,1,1)} if N =6,
{(2,1,1,1),(2,2,1)} if N >T7.

——(4,4,2)
M(4,4,3),3(N) {

{

Proof. (1) By applying msp, to (3.1) and using Proposition 2.2 (1), we have

—(2,2,1,1)
M(3,2,1,1),3(N) =

Suy Sy = D #FM S+ Y #Mp msp, (siy)
I(A)<n

I(A)=n+1

If M/i,r # (), then \ is obtained from a subdiagram of u by adding a horizontal strip, so
we have [(A) <I(p) +1<n+1. IfI(\) =n+1, then mgp, (51) = 0 by Proposition 2.2
(3). Hence we see that

Su - Swy = Y #M), S,

I(N)<n

where A runs over all partitions of length < n.
(2) By applying 7o, to (3.2) and using Proposition 2.5 (1) and (3), we have

S[#] ) S[T] = Z #Mi:,rs[)\] + Z 3‘%&./\/{;1#7T0N(S[p])7

AEP(On) Py +ph>N+2

where p runs over all partitions satisfying p} + p), > N + 2.
Suppose that a partition p satisfies py +pf > N +2 and M/, # (). Then p is obtained
from a subdiagram of ;1 € P(Oy) by adding a horizontal strip, so we have

py+ps =N, ph=pi+1, ph=py+1
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and
M= py, 1=y forallpe My

If phy = pf, then 7o, (sp,)) = 0 by Proposition 2.5 (3). Also it follows from Proposition 2.5
(2) that, if 7o, (s[y) # 0, then we have

Toy (5) = =Sl

where the partition o € P(Oy) is given by

/

o = (pll - 1’p,2_ Lpgv"')'
Therefore we have

Si - Swl = Y #MLSN — SN > #M, S0,

AEP(ON) o€P (O )0 =4} o=

where the second summation is taken over all o € P(Oy) satisfying o] = p} and o = pi,
and & is given by (5) = (o} + 1,05+ 1,0%,...).
We fix two partitions A and p such that p) + py = N, N| = @) and N, =y, and put

M (N) = {¢ € M, : € satisfies the condition (iii) in Theorem 3.2 (2)}.

T

Then we shall show that
X —A
#M/);,r - #Mﬁ,r = #Mu,T(N)'
Let ¢ : M,XM — /\/lf;,r be the map defined by

¢(n) = (7717 s M) =1, M) — 1) for n e Mi;’r.

Since ¢ is injective, it is enough to show that
— A\ g
M), =M (N) U6 (M, ).

First we consider the case where p) > pj. If n € /\/lz’,, and £ = ¢(n), then & <y = 1}

and & = nh) = pb, so & & M;\L,,,(N). If £ € M, satisfies & =y, then it follows from

£ C pthat & =1 =pj = N, Hence, if { € M, \M;\M(N), then we have & < pf and
& = phso € € 0 (M},

Next we consider the case where pj = pb. In this case, N = 2n is even and pu, > 2,
A =2 Ifn € M and € = o(n), then n, > 2 (since 9} = n)) and 1, < min{u,, A},

l’l‘7r

so 0 < &, < min{u,,\,} and & ¢ M;\”(N) If & e M, \M;VT(N), then we have

& =wpy=nand &, & {tn, \n}, 80 0 < &, < min{u,, \,} and £ € ¢ (MIX”)
This completes the proof of (2). O
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In the orthogonal group case, the symmetric power S” (V) of the defining representation
V of Oy is decomposed as follows:

[r/2]
S"(V) = B Vip—as.
s=0

where |r/2] is the largest integer not exceeding /2. Hence we have

Corollary 3.3. Let A\, u € P(Oy) and r a nonnegative integer. Then the multiplicity of
Viy in the tensor product Vi, @ S™(V'), where V' is the defining representation of Oy, is
equal to the number of partitions & satisfying the following three conditions:

(i) /& and \/& are both horizontal strips.
(i1) /&l + |INE| =1 — 2s for some integer 0 < s < r/2.
(1i1) If py + phy = N, Ny = py and Ny = iy, then one of the following holds:

(11i-1) 1(§) = U(p) and & € {, N}, where I =1(p) =1(§) = 1(N).
(iii-2) 1(§) < U(p) and & < 5.

Also we have the following Pieri rules for the special orthogonal groups. Part (1) of
the following corollary was given in [11, Theorem 5.3].

Corollary 3.4. (1) Let A and u be partitions of length < n and r a nonnegative integer.
Then the multiplicity of the irreducible SOg,11-module Vix in V], 804, @V[(1)],802041
1s equal to the number of partitions £ satisfying the following three conditions:

(i) /& and \/& are both horizontal strips.
(i) |p/Sl+A/El=r orr—1.
(iii) If \p/&] + (A€l =7 =1, then I(§) = l(n) = n.

(2) For two partitions A and p of length < n and a nonnegative integer r, we denote by

M (N) the set of partitions & satisfying the conditions in Theorem 3.2 (2). Then

u,r
we have

—
S1.800,  Si80 = > M\, n)H#M, ,(2n)S[x 50,

I(AN)<n

where m(\, u,n) is given by

2 ifl(u) =n and l(N) < n,

_ (3.4)
1 otherwise.

m(A, u,n) = {

Note that, if [(u) < n or I(\) < n, then M27T(2n) = M

;. Where M;\M is defined by
(3.3).
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Proof. (1) If (1) < n, then p) + ph < 2n < 2n + 1, so it follows from Theorem 3.2 (2)
that
S Oonir SN Omir = D, F#M SN 000
AEP(O2n41)
If p € P(Og,41) satisfies [(p) > n and M~ # 0, then we have I(u) =n, I(p) = n+1 and
pni1 = 1. In this case, p* = (p1, ..., p,) and the map

#
My Sn—=ne M,

is injective and ¢ (M) = {€ € ./\/lﬁjj,,_l :1(€) = n}. Hence we see that, if I[(u) = 1(\) =
n, then the coefficient of S\ s0,,.; 10 S[1,80241 * S[r],80s.4: 18 equal to #./\/lf;ﬂ, + #{¢ €
M;\L,r—l : l(g) = n}

(2) If p € P(Oy,) satisfies I(p) > n and MZ’T # (), then we have I(1) =n, l(p) =n+1
and p, = p,11 = 1. In this case p* = (py,..., pn_1) and the map

_ t
ot M, (20) = MG, 30> (- 1amr) € MEL, = M, (2n)
is bijective. The proof follows from this observation. ]

Remark 3.5. For the connected classical groups Sp,, and SOy, the Pieri rules given in
Theorem 3.2 (2) and Corollary 3.4 can be derived by applying the generalized Littlewood—
Richardson rule [8], which is obtained from the theory of crystal bases. By using the
generalized Littlewood—Richardson rule, we can show that, for given two integer sequences
A=A, ) and = (pg, ..., ) Wwith Ay > ... 2 Ay Z A\ and g =000 > g >
|tn], the multiplicity of the irreducible SOg,-module L),80,, 1 Ly s0,, @ Li(ro,...,0),802,
is equal to the number of integer sequences ¢ satisfying the following four conditions:

) &G =2&=.. 2861 =G

) m=2&G2wp=2b>2. . 2602w =26 ,and 262028226 >
An = &p.

(111) Z?:l (Mz - 51) + Z:L:1<>\z - fz) =T.
(iv) &, € {tn, Ant

In Theorem 3.2 and Corollary 3.4, we specialize r = 1 to obtain the following decom-
position of the tensor product with the defining representation.

Corollary 3.6. (1) If A\ € P(Sp,,) and V' is the defining representation of Sp,,,, then
we have

W“)vsp2n ® V g @ ‘/v<)‘>7sp2n’
A

where the direct sum is taken over all A\ € P(Spy,) such that the diagram of X is
obtained from that of p by adding or removing one cell.
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(2) If x € P(Oy) and V is the defining representation of Oy, then we have

‘/[,LL],ON ® V g @ ‘/vp‘]vON7
A

where the direct sum is taken over all A\ € P(Ox) such that the diagram of X\ is
obtained from that of p by adding or removing one cell.

(8) If X is a partition of length < n and V' is the defining representation of SOagpy1,
then we have

Vii:802011 @V = @D Vi 02011
A

where X\ runs over all partitions of length < n satisfying one of the following three
conditions:

(i) XD p and |\ = |p] + 1.
(1)) A C p and [N = |p| — 1.
(1ii) N = p and l(p) =

(4) If X is a partition of length < n and V is the defining representation of SOy, then
we have

Dm(A, n
Vi 805, @V = @VN son™,

where X\ runs over all partitions of length < n and m(\, u,n) is given by (3.4).

4 Dual Pieri rules for classical groups

In this section, we give the dual Pieri rules for the classical groups, which describe the
irreducible decomposition of the tensor product of an irreducible representation with the
exterior power of the defining representation. We use the Weyl character formulas to
obtain the following dual Pieri rules.

Theorem 4.1. (1) Let u, \ be partitions of length < n and r an integer with 0 <
r < 2n. The multiplicity of the irreducible Sp,,-module V5 in the tensor product
Vi .sp,, @ N'(V), where V is the defining representation of Sps,, is equal to the
number of partitions & satisfying the following three conditions:

(1) 1(§) <n
(i) &/ and £/ are both vertical strips.
(1) €/l +[€/Al = 7.

(2) Let pu, A be partitions of length < n and r an integer with 0 < r < 2n. The multiplic-
ity of the irreducible SOs,41-module Viy s0,,., in the tensor product Vi, 0., @
N (V), where V is the defining representation of SOq,. 1, is equal to the number of
partitions £ satisfying the following four conditions:
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(i) I(§) <n

(ii) &/ and £/ are both vertical strips.

(iii) |/ |+ |E/N =1 orr— 1.

(v) if l(p) < n, then one of the following holds:
(i-1) 1§/ pl + 1§/ Al = r and () = 1(§) > 1(A).
(10-2) [&/p] +[&/M = and 1(§) = I(}).

(i-3) 1§/ pl + |&/Al = r =1 and [(£) =

(3) For two partitions p and X\ of length < n and an integer r with 0 < r
ICIA”(n) be the set of partitions £ satisfying the following four conditions:

(1) I(§) <n
(i) £/p and £/ are both vertical strips.

(ii) |&/pl+18/Al = 7.
(i) 1(&) € {n, (), L(A)}-

Then we have

S804, * Ers0,, = Zm)\u, J#K, (1) S1x,804,»

< 2n, let

where E, g0, s the character of the exterior power \" (V') of the defining represen-
tation V' of SOq,, A runs over all partitions of length < n and m(\, p,n) is given

by (5.4).

For example, if N 2T(n) denotes the set of partitions ¢ satisfying the conditions in

Theorem 4.1 (2), then we have
{(2,2),(3,1)} ifn=2,
2,1) _
Ninsn)=q{(2,1,1)} if n =3,
0 ifn > 4.

And, concerning the set K (n) introduced in Theorem 4.1 (3), we have

(3.2)} —

(2,1) . {(27 2 1) (3’ 17 1)7 (37 2)} if n = 37
Lo =V 111,62} ifn=d
{( ) )} if n 2 5.

Remark 4.2. Part (1) of Theorem 4.1 was given in [10, Theorem 4.4].

For the special

orthogonal groups, Sundaram [11, Theorem 5.4] and Weyman [12, Theorems B,, and D,,]
gave similar dual Pieri formulas. It is also possible to apply the generalized Littlewood—
Richardson rule [8] to obtain dual Pieri rules, but the resulting formulas look more com-

plicated than the formulas presented in Theorem 4.1.
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Proof of Theorem 4.1. For two partitions g and A and nonnegative integers r and n, we
put

A _ . . . .
N (n) =#{E € P 1(€) <n, §/p and £/ X are vertical strips and [§/u| + [£/A] = r}.
(1) Suppose that X € Sp,, has the eigenvalues 21, ..., z,, 27 ",..., 2, . We shall show

that
X)) E(X) =) (Z#/W tr> n(X).

I(AN)<n \r=0

Since the generating function of E,(X), 0 < r < 2n, is given by

n

Zn: E. (X" = [+ i) (1 + a;7't),

=1

it follows from the Weyl character formula (2.7) that

N
1
X)- ErXtr:—dt<1 )1 ¢ Z)
) ; ( ) detAg(ZB) € ( +x )( +ZE )y+n ](x) 1
By using the relation

L+ at)1+ a7t f7 () = tf2 (@) + L+ ) 7 (2) + tfo (@),
we see that
. C [el+10],
X)) E.(X)t = AC > det AT, s(a)t
r=0 g,6€{0,1}n

where |e] = > & and 6] = D7, 6;. We divide the summation into three parts. We
put

A={(g,0) € {0,1}" x {0,1}" : p+ ¢ and p + & — § are partitions},
B={(e0) € {0,1}" x {0,1}" : u + ¢ is a partition but p + & — ¢ is not a partition},
C={(,0) €{0,1}" x {0,1}" : u+ € — J is not a partition}.

If (¢,0) e Band £ = u+¢€, p= pu+ e — 9, then there exists an index j such that
§ =58+, 0;=1, 0,1 =0.

In this case, p; +1 = p;+1 and the jth and (j + 1)st columns of the matrix Aw8 s(x) are
identical, so we have det AS,__;(x) = 0.

It remains to show that

S det A, ()t = 0,

(g,0)eC
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If 11+ € is not a partition, then there exists an index j such that pu; = pj1, €5 = 0 and
gjp1=1. Fory=1,...,n—1, we put

C; ={(e,6) € C: jis the smallest index such that p; = pj41, €, =0 and ;41 = 1}

and
Cix={(e, (5) €Cj:60;=20;41}, Cia={(c,0)€C;:6; # 041}
Then we have C = | i~} C;1 UI;Z; Cj2. 1f (e,0) € Cj1 and p = p+ & — 4, then we have
pj +1=pji1, so det AH+€_5( x) = O In order to show the summation over C;» vanishes,
we introduce an involution on C; 5. To a pair (g, d) € C, 2, we associate another pair (g, §*),
where §* is given by
0" =(01,...,6j-1,0541,0;, 0512, ...,0,).

It p=p+e—0dand p* =p+e—0% then we have p; = p; — 1, pjp1 = p; + 1, pj = p;

and pf,; = p;, so we see that det A% () = — det AT(x). Hence we have
T det AC, (@) =0,
(E 5)€CJ 2

This completes the proof of (1).
(2) Let X € SOy, have the eigenvalues 1, ..., 7, 27", . ..
Weyl character formula (2.11) and

! and 1. By using the

Y n Y

2n+1 n
Z E. (Xt = (1+6) [J(1 + 2it) (1 + 277'),
=1
we have
2n+1
) ) Z ET(

r=0
B 1 —1,\ (B
= (1 + t) Wg(w) det ((1 + Ilt)(l + x,; t) wjtn— ](xl)>1<i,jgn .

We note that

(1 —t+t)fB(x) +tfE(x) if r=0,

(1+at)(1+ 271 fP(z) = {tffl( )+ (L+ ) fB(x) + tfB(z) ifr> 1.

First we consider the case where [(1) = n. In this case, by the same argument as in
the proof of (1), we have

S[u](X)-H(lerit)(ler Z (Z# )S[)\]< ),

()\)<n r=0
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where A runs over all partitions of length < n. Hence we have
S (X) - Ef(X) = Y (#N(n) + #N0,_1(n) Spy(X).
I(A)<n

Next we consider the case where [ = [(;1) < n. Let v, and w, be the column vectors
given by

Up = (frB(xi))lgignu Wy =

(1+ t3)vg + (t + 20y if r=0,
tv,_1 + (1 + v, +tv,y ifr > 1.

Then we have

2n+1

Sw(X) - Y E(X)

S det (Wyy4n-1 *** Wytnt Wpi—1 -+ Wi Wp).
det AJ(x) - H
The transition matrix 7" from (v,_y, ..., v1,v0) t0 (Wy_y_1, ..., w1, wp) is given by
t 0 0 0 0 0
1+ ¢t 0 0 0 0
t 1+t ¢ 0 0 0
T — ; : ; : : ;
0 0 0 t 0 0
0 0 0 1+ ¢ t 0
0 0 0 A e
0 0 0 0 t 1+t

By computing the determinants of (n — ) x (n — [) submatrices of T', we see that

Wp—j—1 N Wp—g—2 N\ -+ ANwip A w

—

e
=) (") v A Avggr Avsor A A

S

I
o

By the same argument as in the proof of (1), we have
2n+1
Wyyn—1 N N Wy = Z (Z #N;f,r(l)tr> Uprn—1 N+ ANUppn—i,
l(p)<t \r=0

where p runs over all partitions of length < [. Also we note that, if [(p) < [ and s # I,
then we have

Vpran—1 AN ANUpgn g NUpg A+ NUgp1 ANUs_1 A+ Ny = 0.
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Hence we have

2n+1

S (X ZE
- Z (1_|_t2n I)+1 (Z# >S[,\](X)

(N)<l
n—I 2n+1

D GRRES L Y (Z# )s[pu(lnls)](x*), (4.1)
s=0 I(p)=l

where pU (1"7'7*) = (p1,...,p,1,...,1). Note that I(n) = I for all n € N}},.(I) or N ().

n—Il—s

If [(A\) < 1, then tha maps
w N (D) 3 — € N, (n),
Py QL) 32— U (1) € N omn(n)
are injective and
U1 V(D) ={¢ €N ( ) () = 1(§) > 1A},
e (N (D) = {€ € Ny amon(n) 1 () = n}.
If l(p) =1 and 0 < s < n — [, then the maps

n— s 1nls

Y3 T N2L(1) 30— nUA"7%) e NOUUT ) (),
nls

Yyt N2(1) 3 nU (17 e N (n)

are injective and

Uy (NZ,(D) = {€ e NS ) (n) £ 16) = L)),
Ys (N2,() = (€ e NP ) (n) 1 1) = m).

Combining these observations with (4.1) completes the proof of (2).
(3) Let X € SOy, have the eigenvalues xy,...,2,, 27", ..., 2; . By using the Weyl
character formula (2.12) and

2n+1 n
S B =[]+ zit)(1+ 27 't),
r=0 =1

Sp(X) - Y B(X) = detA;é)(ac) det (1 4+ ) (1 + 27 0) £y (50))

1<i,j<n
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And we have
1+t fP(x) +tfP(2) if r =0,
(T4+at) A+ ') fP(x) = 2tfP(x) + A+ ) fP(x) +tfP(x) ifr =1,
tfP (x) + (1 + ) fP(x) +tfP(x) ifr > 2.

First we consider the case where p,, > 2. In this case, by the same argument as in the
proof of (1), we have

St (X) Z # S (X)),
I(N)<n

where A runs over all partitions of length < n
Next we consider the case where u,, = 1. Then we have

S (X ZE = D 2EOERIS, (X)),

€,6€{0,1}n

where

(&, 0) 1 ife,=0andd, =1,
c(e,0) = )
0 otherwise.

Now, by the argument similar to that in the proof of (1), we obtain the desired result.
In what follows we consider the case where [() < n. If [(u) = n—1, then by the same
argument as in the proof of (1), we have

Sty (X) Z# (X).

So we may assume [(u) < n—2,i.e., i1 = i, = 0. Let v, and w, be the column vectors
given by
Ur = (f?“D(xi>)1<i<n’ w, = top_1 + (14 t2>vr + 41,

where v_; = 0. Then we have

det (Wyygn-1 ++ Wy py2 w1+ tvg (14 12)vg + tvy)
=det (Wyygn-1 -+ Wpp_py2 w1 (1+EH)vg + tvy)
+det (Wyyqn-1 0 Wu_py2 tvg (1 +%)vg +tvy)
= det (wm+n_1 Ce Wy, a2 W wo)
— t?det (wm+n_1 Cee Wy, o2 U1 vo) )

By using the same argument as in the proof of (1), we see that

S[M(X)ET(X) = Z #N/j\r(n) Z #N, wr—2 (n—2)8 A

(A)<n I(A)<n—2
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Let ¢ : N}, _5(n —2) = N},(n) be the map given by

() =nU )= (m, - me),1) forneN, o(n—2).

Since v is injective, it is enough to show that
A A A
Nu,’r’(n) = Ku,r(”) U be ( u,r—2(n - 2)) :

If n € Ny, _,(n—2) and £ = 9(n), then I(§) = I(n) +1 and it follows from I(n) < n—2
and g C € D X that max{l(u),l(A)} < I(§) < n, so we have £ € K .(n). Conversely, if
e ./\/;;\r(n) \ ICI’)J(n), then we see that &) =1 and £ = ¥(n) with n = (&,...,&§e)-1) €
N 5(n —2). Hence we have #N ), (n) — #N}, ,(n —2) = #K; . (n), which completes
the proof. n

5 Applications to combinatorics of oscillating tableaux

In this section, we apply the Pieri rules obtained in the previous sections to derive several
equinumeration results between down-up/up-down tableaux (generalization of oscillating
tableaux) and column-strict /row-strict tableaux (generalization of standard tableaux).

Definition 5.1. A filling of the diagram of a partition A with positive integers is called
a column-strict (resp. row-strict) tableau if it satisfies the following two conditions:

(i) Every row is weakly increasing (resp. strictly increasing).
(ii) Every columns is strictly increasing (resp. weakly increasing).

Given a column-strict or row-strict tableau T, the weight of T' is defined to be the sequence
(v, g, ... ), where «; is the number of occurrences of i in T'. We denote by CSTab(\, «)
(resp. RSTab(\, ) the set of all column-strict (resp. row-strict) tableaux of shape A and
weight a.

A column-strict (resp. row-strict) tableau of shape A and weight o = (av, ..., ) is
identified with a sequence

of partitions such that A®/\¢=1 is a horizontal (resp. vertical) a;-strip for each i.

Definition 5.2. (1) A sequence (A?)2: of partitions is called a down-up tableau of
shape A if it satisfies the following two conditions:

(i) AO = and A\®F) = ).

(ii) A2 5 \@=D < A2 and A2=2) /A1 and A2D /A2~ are both horizontal
strip.
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(2) Dually, a sequence (A)28, of partitions is called a up-down tableau of shape X if it
satisfies the following two conditions:

(i) A® =0 and A®P) = ).

(i) A@=2 c A@=D 5 \@)and A\Z=1 /A2 and \Z=D /XD are both vertical
strip.

We should remark that the terminologies “down-up tableau” and “up-down tableau” are
used for different meanings in [10], [11] and other literatures.
Now we are ready to state our main results.

Theorem 5.3. Let a = (aq,...,ax) be a sequence of nonnegative integers.

(1) For nonnegative integers n and m, the following two sets are equinumerous:
(a) The set of down-up tableauz (A\)*, of shape (m) such that (AD) < n for
0 < i <2k and |AF=2 /NED| 4|\ NE=D| = o for 1 <i < k.
(b) The set of column-strict tableaux of weight o whose shape \ satisfies [((\) < 2n
and c(\) = m.

(2) For nonnegative integers n and m, the following two sets are equinumerous:

(a) The set of up-down tableaux ()\(i))?iq of shape (m) such that IAD) < n for
0 <i < 2k and ANV /AE=2| 4 ]NE-D /)| = o for 1 < i < k.

(b) The set of row-strict tableaux of weight o whose shape \ satisfies [(\) < 2n
and c¢(\) = m.

(8) For nonnegative integers N and m, the following two sets are equinumerous:

(a) The set of down-up tableauz (X2, of shape (1™) such that A\ € P(Oy)
(i.e., MDY + (AD), < N) for 0 < i < 2k, |ANED/NE=D] 4 | \@) /)\@-D) ¢
{ag,0;—2,05—4,...} for 0 <i < k and each triple (p, &, \) = (A2 \@=1),
2D satisfies the condition (iii) in Theorem 3.2 (2).

(b) The set of column-strict tableaux of weight o whose shape X\ satisfies [(A\) < N
and r(\) =m.

(4) For nonnegative integers n and m, the following two sets are equinumerous:

(a) The set of up-down tableaus (/\(i))?io of shape (1™) such that I(\Y) < n for
0 < i < 2k, |ANED/NE=2| 4 | NE=D/AC)| ¢ Lo, 0 — 1} for 1 < i < k,
and each triple (p, &, \) = (ANZ=2 \C=D \CDY satisfies the condition (iv) in

Theorem 4.1 (2).

(b) The set of row-strict tableaux of weight o whose shape A satisfies [(A) < 2n+1
and r(A) =m or2n+1—m.
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(5) For nonnegative integers n and m, the following two numbers coincide:

Z od(U)
U

over over all up-down tableaur U = (AD)?k of shape (1™) such that (AD) < n
for 0 < i < 2k, [NFD/NE=2)| 1 NGV /AR = o for 1 < i < k and
each triple (p,&,\) = (AF=2 X\@=D X)) satisfies the condition (i) in The-
orem 4.1 (8). Here the statistic d(U) is defined by

(a) The summation

d(U) = #{i - INZ2D) = n, I(A®)) < n).

(b) The number of row-strict tableaux of weight o whose shape X satisfies [(\) < 2n
and r(A) =m or 2n —m.

Here c¢(X\) (resp. r(\)) is the numbers of columns (resp. rows) of odd length.

Proof. We consider the classical group GG and its representations 7" and W listed in the
following table:

G T 1%
(1) | Spy, | S“V) | Viem
(2) | Span | A"(V) | Viemy
(3)| Onx [ S“V) | Viamy
(4) [ SO2up1 | A"(V) | Viamy,
(5) | SOz | A"(V) | Viamy

Here S*(V) and A®(V) is defined by
SV)=8"(V)@- - @5™V), A" (V)=A"(V)® - A" (V),

where V' is the defining representation of G. We compute the “multiplicity” [T : W] of
W in T in two ways. Except for the case where G = SOy, and W = V|, s0,,, W is
an irreducible representation of GG, and the multiplicity [W : T is defined as usual. If
G = S0y, and W = V|, s0,,, then the character of T = A"(V) can be expressed as a
linear combination of Sy s0,,, [(A) < n, and the multiplicity [T : W] is defined to be the
coefficient of Sp,) s0,, in the character of T'.

On the one hand, by iteratively using the Pieri rules in Theorems 3.2 and 4.1, we see
that the multiplicity [T : W] is equal to the number of combinatorial objects given in part
(a) in each case.

On the other hand, the defining representation of G is the restriction of the defining
representation of GLy. Hence, by using the Pieri rule (2.1) for GLy, we have the following
decomposition as GLy-modules:

Sa(v) i~ @ V)\EB# CSTab()\,a)’ /\a(v) o @ V)\EB# RSTab()\,a)’

1NN I(A)<N
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where CSTab(\, «) (resp. RSTab(\, o)) denotes the set of column-strict (resp. row-strict)
tableaux of shape A and weight a.

Now by using the following restriction multiplicity formulas (Theorem 5.4) and the
relation ResggN Vi) = ResggN Vian-m)), we can complete the proof of Theorem 5.3 [

Theorem 5.4. (1) If X is a partition of length < 2n, then the multiplicity of Viim) sp,,

. ., GLs . .
in the restriction Ressp%” VA.GL,, @ given by

1 ife(\)=m
ResS™m Vi : Vi } = ’
S, WA+ THm) 0 otherwise.
(2) If X is a partition of length < N, then the multiplicity of Viamy .0, i the restriction
Resg]I;N VigLy 15 given by

L ifr(A) =m
GL 7
[Resg ¥ Vit Vigmy] = {() otherwise.

Proof. (1) It follows from (2.6) that the restriction of the character S\ gr,, to Sp,, can

be expressed as
Resgn" Sy = (Z LRQM) Tsp,. (1)), (5.1)

I3 KEE!

where p runs over all partitions of length < 2n.

Here we use Proposition 2.2 to show that p = (m) is the only partition of length
< 2n satisfying WSP%(‘S(M)) = :tS<(m)>. Suppose that 7Tsp2n(8(u>> = :tS<(m)>. Let a =
(i, pmy — 1, 4. —r+1), where r = py. If o has an entry equal to n + 1, then have
TSp,, (S(y) = 0. We consider the case where a has an entry greater than n + 1. In this
case, suppose that oy > --- > a, >n+landput f = 2n+2 —ay,...,2n + 2 —
Qp, Api1s - - -, ). Since Tgp, (S(uy) = £S(am)), the rearrangement of § in decreasing order
is equal to (1,0,—1,...,—m+2,—m, ..., —r+1). However, since a; = pj < 2n, we have
b1 =2n+ 2 — oy > 2 and this leads a contradiction. Hence we conclude that I(x) < n.
If I(p) < n, then msp, (s(uy) = S(u. Since the irreducible characters Sy, [(v) < n, are
linearly independent, we have p = (m).

Now it follows from (5.1) that

[Res§az Vi Vigy | = 30 LR .

re&’!

By the Pieri rule (2.2) for GLy,, we see that, if k € £ and LRQ(m) # 0, then ¢(\) = m,
and that, if ¢(\) = m, then there is exactly one xk € £ such that A is obtained by adding
a horizontal m-strip to k. This concludes the proof of (1).

(2) The proof is similar to that of (1). We need to prove that u = (1) is the only

partition of length < IV satisfying 7o (s},) = £S[amy]-
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It is enough to show that 7o, (s)) = £Sjam) implies p) + p5 < N. Assume that
W@y + ph > N to the contrary. Let o = (uj, ph — 1,...,u. —r + 1), where r = py. If
a; + oj = N for some i and j, then mo, (sy)) = 0. Hence we have a; + as > N and
a; > N/2. Suppose that a3 > -+ > a, > N/2 > a,41 and let § be the sequence defined
by

(N—ay,....N —ap,0p11,...,0;) if p is even,
B=(N—-ai,....,N—ap1,0p42,...,0.) if pisodd and o, + ap41 = N + 1,
(N—ay,....N—ap_1,0p,...,0;) if p is odd and o, + o1 < N — 1.

Since a; = p) < N, we see that § has at least two nonnegative entries. However, if
Toy (8[) = £5[1m)), the rearrangement of 3 in decreasing order is equal to (m, —1, =2,
...,—7 + 1), which has only one nonnegative entry. This is a contradiction, so we have

py + py < N O

By considering the tensor power of the defining representation and using Corollary 3.6,
we can prove the following corollary, which is the special case a = (1,...,1) of Theo-
rem 5.3.

Corollary 5.5. (1) For nonnegative integers k, n and m, the following two sets are
EqUINUMETOUS!

(a) The set of oscillating tableaus (AD)E_ of length k and shape (m) such that
I(AD) < n for each i.

(b) The set of standard tableaux whose shape A satisfies |A\| = k, [(\) < 2n and
c(A) =m.

(2) For nonnegative integers k, N and m, the following two sets are equinumerous:

(a) The set of oscillating tableauz (\D)E_ of length k and shape (1™) such that
A € P(Oy) for each i.

(b) The set of standard tableaur whose shape \ satisfies |A\| = k, I(A\) < N and
r(A\) = m.

(8) For nonnegative integers k, N and m, the following two sets are equinumerous:

(a) the set of sequences (\D)E_ of partitions satisfying the following conditions:
(i) A0 =, \F) = (1m).
(ii) 1(AD) < n for each i.
(111) One of the following holds:
(m'_]) A=D = \D gnd ’)\(z‘)’ _ ‘)\(i—l)‘ 1.
(iii-1) A0=D 5 AD gnd [XO| = NED| -1
(iii-1) A\0=D = XD and [(\C-D) = n,
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(b) The set of standard tableaux whose shape A satisfies |\ =k, I(A) < 2n+1 and
r(A)=m or2n+1—m.

(4) For nonnegative integers k, n and m, the following two number coincide:

(a) the summation

Z 9d(0)
o

over all oscillating tableaur O = (AXD)E_ of shape (1™) such that I(AV) < n
for each i. Here the statistic d(O) is given by

d(0) = #{i : INY) =n, 1(AD) < n).

(b) the number of standard tableaux whose shape X satisfies [(\) < 2n and r(A) =m
or 2n —m.

It would be interesting to find bijective proofs of Theorem 5.3 and Corollary 5.5 by

generalizing the arguments in [2] and [7].
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