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Abstract

Two families A and B of sets are said to be cross-intersecting if each set in A
intersects each set in B. For any two integers n and k with 1 6 k 6 n, let

([n]
6k

)
denote the family of subsets of {1, . . . , n} of size at most k, and let Sn,k denote the

family of sets in
([n]
6k

)
that contain 1. The author recently showed that if A ⊆

(
[m]
6r

)
,

B ⊆
(

[n]
6s

)
, and A and B are cross-intersecting, then |A||B| 6 |Sm,r||Sn,s|. We prove

a version of this result for the more general setting of weighted sets. We show that
if g :

(
[m]
6r

)
→ R+ and h :

(
[n]
6s

)
→ R+ are functions that obey certain conditions,

A ⊆
(

[m]
6r

)
, B ⊆

(
[n]
6s

)
, and A and B are cross-intersecting, then∑

A∈A
g(A)

∑
B∈B

h(B) 6
∑

C∈Sm,r

g(C)
∑

D∈Sn,s

h(D).

The bound is attained by taking A = Sm,r and B = Sn,s. We also show that this
result yields new sharp bounds for the product of sizes of cross-intersecting families
of integer sequences and of cross-intersecting families of multisets.

Keywords: cross-intersecting families, weighted set, integer sequence, multiset

1 Introduction

Unless otherwise stated, we shall use small letters such as x to denote elements of a set or
non-negative integers or functions, capital letters such asX to denote sets, and calligraphic
letters such as F to denote families (i.e. sets whose elements are sets themselves). It is to
be assumed that arbitrary sets and families are finite. We call a set A an r-element set,
or simply an r-set, if its size |A| is r. For a set X, the power set of X (that is, the family
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of all subsets of X) is denoted by 2X , the family of all r-element subsets of X is denoted
by
(
X
r

)
, and the family of all subsets of X that have at most r elements is denoted by(

X
6r

)
. The set of all positive integers is denoted by N. For any m,n ∈ N with m < n, the

set {i ∈ N : m 6 i 6 n} is denoted by [m,n]. We abbreviate [1, n] to [n].
We say that a set A intersects a set B if A and B contain at least one common element.

A family A of sets is said to be intersecting if for every A,B ∈ A, A and B intersect.
Families A1, . . . ,Ak are said to be cross-intersecting if for every i and j in [k] with i 6= j,
each set in Ai intersects each set in Aj.

For x ∈ X and F ⊆ 2X , we denote the family {F ∈ F : x ∈ F} by F(x). If F(x) 6= ∅,
then we call F(x) the star of F with centre x. A star of a family is the simplest example
of an intersecting subfamily.

One of the most popular endeavours in extremal set theory is that of determining
the size of a largest intersecting subfamily of a given family F . This took off with [27],
which features the classical result, known as the Erdős–Ko–Rado (EKR) Theorem, that
says that if r 6 n/2, then the size of a largest intersecting subfamily of

(
[n]
r

)
is the size(

n−1
r−1

)
of every star of

(
[n]
r

)
. There are various proofs of the EKR Theorem, two of which

are particularly short and beautiful: Katona’s [38], introducing the elegant cycle method,
and Daykin’s [23], using the fundamental Kruskal–Katona Theorem [39, 41]. Various
generalizations and analogues have been obtained; of particular note are the results in
[40, 29, 50, 1]. The EKR Theorem inspired a wealth of results that establish how large a
system of sets can be under certain intersection conditions; see [24, 30, 28, 17, 33].

For intersecting subfamilies of a given family F , the natural question to ask is how large
they can be. For cross-intersecting families, two natural parameters arise: the sum and
the product of sizes of the cross-intersecting families. It is therefore natural to consider the
problem of maximizing the sum or the product of sizes of k cross-intersecting subfamilies
(not necessarily distinct or non-empty) of a given family F . In [19], this problem is
analysed in a general way, and it is shown that for k sufficiently large it reduces to the
problem of maximizing the size of an intersecting subfamily of F . Solutions have been
obtained for various families, as outlined in [19, 9]. Wang and Zhang [49] solved the
maximum sum problem for an important class of families that includes

(
[n]
r

)
and many

others, elegantly combining the method in [10, 11, 12, 20, 14] and the no-homomorphism
lemma [3, 21]. The solution for

(
[n]
r

)
had been obtained by Hilton [35] and is the first

result that addressed the cross-intersection problem described above. Pyber [47] solved
the maximum product problem for

(
[n]
r

)
(see also [43, 6]).

The maximum product problem for
(

[n]
6r

)
has been solved in [9], which actually provides

the solution to the more general problem where the cross-intersecting families do not
necessarily come from the same family.

Theorem 1 ([9]). If m,n ∈ N, r ∈ [m], s ∈ [n], A ⊆
(

[m]
6r

)
, B ⊆

(
[n]
6s

)
, and A and B are

cross-intersecting, then

|A||B| 6
r∑

i=1

(
m− 1

i− 1

) s∑
j=1

(
n− 1

j − 1

)
,
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and equality holds if A = {A ∈
(

[m]
6r

)
: 1 ∈ A} and B = {B ∈

(
[n]
6s

)
: 1 ∈ B}.

We consider the more general setting where the sets are assigned weights (positive
real numbers). The weight of a family is the sum of weights of its members, and the
objective is to maximize the product of weights of the cross-intersecting families. Before
stating our main result, we need some additional definitions and notation. We also point
out that, as explained in the next section, a product result such as Theorem 1, where
the product is maximum when the cross-intersecting families are stars with a particular
center, automatically yields an EKR-type result and generalizes to one for k > 2 cross-
intersecting families.

For any i, j ∈ [n], let δi,j : 2[n] → 2[n] be defined by

δi,j(A) =

{
(A\{j}) ∪ {i} if j ∈ A and i /∈ A;
A otherwise,

and let ∆i,j : 22[n] → 22[n]
be the compression operation defined by

∆i,j(A) = {δi,j(A) : A ∈ A} ∪ {A ∈ A : δi,j(A) ∈ A}.

The compression operation was introduced in the seminal paper [27]. The paper [30] pro-
vides a survey on the properties and uses of compression (also called shifting) operations
in extremal set theory. All our new results make use of compression operations.

If i < j, then we call ∆i,j a left-compression. A family F ⊆ 2[n] is said to be compressed
if ∆i,j(F) = F for every i, j ∈ [n] with i < j. In other words, F is compressed if it is
invariant under left-compressions. Note that F is compressed if and only if (F\{j})∪{i} ∈
F whenever i < j, j ∈ F ∈ F and i ∈ [n]\F .

A family H is said to be hereditary if for each H ∈ H, all the subsets of H are in
H. Thus, a family is hereditary if and only if it is a union of power sets. The family(

[n]
6r

)
(which is 2[n] if r = n) is an example of a hereditary family that is compressed. We

mention that one of the central problems in extremal set theory is a conjecture of Chvátal
[22] that claims that at least one of the largest interesting subfamilies of any hereditary
family H is a star of H; a similar conjecture for levels of H is made and partially solved
in [15], and generalizes [37, Conjecture 7].

Let R+ denote the set of positive real numbers. For a non-empty family F , a function
w : F → R+ (a weight function), and a subfamily A of F , the sum

∑
A∈Aw(A) (of weights

of sets in A) is called the w-weight of A. With a slight abuse of notation, the w-weight
of A is denoted by w(A). Note that if A is empty, then w(A) is the empty sum, which is
0 by convention.

The following is our main result, which we will prove in Section 3.

Theorem 2. Let m,n ∈ N, and let u, v ∈ {0}∪R+ such that u+ v > 2. Let ∅ 6= G ⊆ 2[m]

and ∅ 6= H ⊆ 2[n] such that G and H are hereditary and compressed. Let g : G → R+ and
h : H → R+ be functions such that
(a) g(G) > (1 + u)g(G′) for every G,G′ ∈ G with ∅ 6= G ( G′,
(b) h(H) > (1 + v)h(H ′) for every H,H ′ ∈ H with ∅ 6= H ( H ′,
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(c) g(δi,j(G)) > g(G) for every G ∈ G and every i, j ∈ [m] with i < j, and
(d) h(δi,j(H)) > h(H) for every H ∈ H and every i, j ∈ [n] with i < j.
If A ⊆ G and B ⊆ H such that A and B are cross-intersecting, then

g(A)h(B) 6 g(G(1))h(H(1)).

Moreover, if u 6= 0 and v 6= 0, then equality holds if and only if A = G(a) and B = H(a)
for some a ∈ [m] ∩ [n] such that g(G(a)) = g(G(1)) and h(H(a)) = h(H(1)).

In [9], it is proved that the result also holds if g(G) = 1 = h(H) for every G ∈ G and
every H ∈ H; Theorem 1 is the special case where G =

(
[m]
6r

)
and H =

(
[n]
6s

)
.

The proof of Theorem 2 is based on induction, compression, and a subfamily alteration.
The method can be summarized as follows. We use induction on m+ n. We take A and
B to be such that the product of their weights is maximum. The challenging part is the
case m = n. The first problem that arises is that we can have a set A ∈ A and a set
B ∈ B that intersect only in n; in this case, we cannot simply remove n and apply the
induction hypothesis. Thus, we consider two alterations: removing A from A and adding
B\{n} to B, and removing B from B and adding A\{n} to A. This yields two new pairs
of cross-intersecting families. The second problem is that the product of the weights of a
new pair obtained in this way may become smaller. The critical part of the proof is the
observation that if we assume that this happens for both pairs, then we can construct a
new pair of cross-intersecting families for which the product of weights is larger than that
for A and B (unless we have the trivial case m = n = 2), hence contradicting the initial
assumption.

2 Applications of Theorem 2

We will show that Theorem 2 yields cross-intersection results for integer sequences and
for multisets.

We represent a sequence a1, . . . , an by an n-tuple (a1, . . . , an), and we say that it is of
length n. We call a sequence of positive integers a positive sequence. We call (a1, . . . , an)
an r-partial sequence if exactly r of its entries are positive integers and the rest are all
zero. Thus an n-partial sequence of length n is positive. A sequence (c1, . . . , cn) is said
to be increasing if c1 6 . . . 6 cn. We call an increasing positive sequence an IP sequence.

We call {(x1, y1), . . . , (xr, yr)} a labeled set (following [16]) if x1, . . . , xr are distinct.

For any IP sequence c = (c1, . . . , cn) and any r ∈ [n], let L(r)
c be the family of all labeled

sets {(x1, yx1), . . . , (xr, yxr)} such that {x1, . . . , xr} ∈
(

[n]
r

)
and yxj

∈ [cxj
] for each j ∈ [r].

We may abbreviate L(n)
c to Lc. For any sets Y1, . . . , Yn, let Y1 × · · · × Yn denote the

Cartesian product of Y1, . . . , Yn, that is, the set of sequences (y1, . . . , yn) such that yi ∈ Yi
for each i ∈ [n]. Note that Lc = {{(1, y1), . . . , (n, yn)} : yi ∈ [ci] for each i ∈ [n]}, so

Lc is isomorphic to [c1] × · · · × [cn]. Let L
(r)
c denote the set of all r-partial sequences in

({0} ∪ [c1]) × · · · × ({0} ∪ [cn]). By associating (y1, . . . , yn) ∈ L
(r)
c with the labeled set

{(i, yi) : i ∈ [n], yi 6= 0} in L(r)
c , we obtain that L(r)

c and L
(r)
c are isomorphic.

In Section 4, we prove the following result.
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Theorem 3. Let c = (c1, . . . , cm) and d = (d1, . . . , dn) be IP sequences such that c1 > 2,

d1 > 2, and c1 + d1 > 6. Let r ∈ [m] and s ∈ [n]. If A ⊆ L(r)
c and B ⊆ L(s)

d such that A
and B are cross-intersecting, then

|A||B| 6

( ∑
I∈([2,m]

r−1 )

∏
i∈I

ci

)( ∑
J∈([2,n]

s−1)

∏
j∈J

dj

)
.

Moreover, if c1 > 3 and d1 > 3, then equality holds if and only if A = L(r)
c ((p, q)) and

B = L(s)
d ((p, q)) for some p ∈ [m] ∩ [n] with cp = c1 and dp = d1, and some q ∈ [c1] ∩ [d1].

We say that (a1, . . . , am) meets (b1, . . . , bn) if ai = bi 6= 0 for some i ∈ [m] ∩ [n].
Thus, Theorem 3 is equivalent to the following: for c, d, r and s as in Theorem 3, if
A ⊆ L

(r)
c and B ⊆ L

(s)
d such that each member of A meets each member of B, then

|A||B| 6
(∑

I∈([2,m]
r−1 )

∏
i∈I ci

)(∑
J∈([2,n]

s−1)
∏

j∈J dj

)
; moreover, if c1 6= 1 and d1 6= 1, then

equality holds if and only if A = {(a1, . . . , am) ∈ L(r)
c : ap = q} and B = {(b1, . . . , bn) ∈

L
(s)
d : bp = q} for some p ∈ [m] ∩ [n] with cp = c1 and dp = d1, and some q ∈ [c1] ∩ [d1].

It is immediate from Theorem 3 that c and d do not need to be increasing as long
as there exists p ∈ [m] ∩ [n] such that cp = min{c1, . . . , cm} and dp = min{d1, . . . , dn},
in which case the maximum product is |L(r)

c ((p, 1))||L(s)
d ((p, 1))|; it is not clear what

happens if this is not the case. Theorem 3 does not always hold for c1 = d1 = 1; indeed,
if c1 = cm = d1 = dn = 1, m = n and m/2 < r = s < m, then any two sequences in L(r)

c

intersect, and hence we can take A = B = L(r)
c . The case where 3 6 c1 + d1 6 5 seems

to require special treatment and remains a problem to be investigated. However, for the
special case where c = d and r = n, we easily obtain from Theorem 3 the sharp bound
for all values of c1, given by the following.

Theorem 4. If c is an IP sequence, A,B ⊆ Lc, and A and B are cross-intersecting, then

|A||B| 6 |Lc((1, 1))|2.

This result is also proved in Section 4. It was first established in the preliminary version
[13] of this paper. An alternative proof has been obtained by Pach and Tardos [46].

Sum versions of Theorems 3 and 4 are given in [20] and [16], respectively (see also

[49]). The EKR problem for Lc and L(r)
c has been widely studied, and several results

have been obtained. The EKR-type version of Theorem 4 (that is, the solution to the
problem of maximizing the size of an intersecting subfamily of Lc) is given in [4, 42, 16]

(for c1 = cn, this is given in a stronger form in [31, 2, 32]). The EKR problem for L(r)
c has

been solved [24, 36, 5]; see [24, 25, 8, 26, 7] for c1 = cn, [36] for c1 > 2, and [5] for c1 = 1.
The special case c1 = cn of Theorem 4 was treated by Moon [45] (for c1 > 3), Tokushige
[48] (for c1 > 4) and Zhang [51] (for c1 > 4) via an induction argument, an eigenvalue
method and Katona’s cycle method, respectively. Allowing c to be increasing appears to
be a significant relaxation for the product problem. Our approach is based on the idea of
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generalizing the setting enough for induction to work. The setting of Theorem 2 not only
allows us to deal with the more general problem for L(r)

c , but also to obtain Theorem 3,
where the cross-intersecting families can come from different families.

Our second application of Theorem 2 is a cross-intersection result for multisets.
A multiset is a collection A of objects such that each object possibly appears more than

once in A. Thus the difference between a multiset and a set is that a multiset may have
repetitions of its elements. We can uniquely represent a multiset A of positive integers
by an IP sequence (a1, . . . , ar), where a1, . . . , ar form A. Thus we will take multisets to
be IP sequences. For A = (a1, . . . , ar), the support of A is the set {a1, . . . , ar} and will
be denoted by SA; thus, SA is the set of distinct elements of A. For any n, r ∈ N, let
Mn,r denote the set of all multisets (a1, . . . , ar) such that a1, . . . , ar ∈ [n]; thus Mn,r =
{(a1, . . . , ar) : a1 6 . . . 6 ar, a1, . . . , ar ∈ [n]}. An elementary counting result is that

|Mn,r| =
(
n+ r − 1

r

)
.

With a slight abuse of terminology, we say that a multiset A intersects a multiset
B if A and B have at least one common element, that is, if SA intersects SB. A set A
of multisets is said to be intersecting if every two multisets in A intersect, and k sets
A1, . . . ,Ak of multisets are said to be cross-intersecting if for every i, j ∈ [k] with i 6= j,
each multiset in Ai intersects each multiset in Aj.

In Section 5, we prove the following result.

Theorem 5. If r, s ∈ N, u, v ∈ {0} ∪ R+, u + v > 2, m > (2 + u)(r − 1) + s − 1,
n > (2 +v)(s−1) + r−1, A ⊆Mm,r, B ⊆Mn,s, and A and B are cross-intersecting, then

|A||B| 6
(
m+ r − 2

r − 1

)(
n+ s− 2

s− 1

)
.

Moreover, if u 6= 0 and v 6= 0, then the bound is attained if and only if for some a ∈
[m] ∩ [n], A = {A ∈Mm,r : a ∈ SA} and B = {B ∈Mn,s : a ∈ SB}.

EKR-type results for multisets have been obtained in [44, 34]. To the best of the
author’s knowledge, Theorem 5 is the first cross-intersection result for multisets. It is an
analogue of the product version in [47, 43] of the EKR Theorem.

As indicated in Section 1, the results above imply EKR-type theorems. In general,
if I ⊆ F , k > 2, and the sum or the product of sizes of k cross-intersecting subfamilies
A1, . . . ,Ak of F is maximum when A1 = · · · = Ak = I, then I is a largest intersecting
subfamily of F . Indeed, the cross-intersection condition implies that every two sets A and
B in I intersect (as A ∈ A1 and B ∈ A2), and by taking an intersecting subfamily A of F ,
and setting B1 = · · · = Bk = A, we obtain that B1, . . . ,Bk are cross-intersecting, and hence
|A| 6 |I| as k|A| =

∑k
i=1 |Bi| 6

∑k
i=1 |Ai| = k|I| or |A|k =

∏k
i=1 |Bi| 6

∏k
i=1 |Ai| = |I|k.

Similarly, if the sum or the product of weights is maximum when A1 = · · · = Ak = I,
then I is an intersecting subfamily of F of maximum weight.

As also indicated in Section 1, the results above generalize for k > 2 families. For
example, applying the line of argument in the proof of [18, Theorem 1.2] to Theorem 2
yields the following generalization of Theorem 2.
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Theorem 6. Let k > 2, n1, . . . , nk ∈ N, and u1, . . . , uk ∈ {0} ∪R+ such that ui + uj > 2
for every i, j ∈ [k] with i 6= j. For each i ∈ [k], let ∅ 6= Hi ⊆ 2[ni] such that Hi is
hereditary and compressed, and let hi : Hi → R+ be a function such that
(a) hi(H) > (1 + ui)hi(H

′) for every H,H ′ ∈ Hi with H ( H ′, and
(b) hi(δp,q(H)) > hi(H) for every H ∈ Hi and every p, q ∈ [ni] with p < q.
If A1, . . . ,Ak are cross-intersecting families such that Ai ⊆ Hi for each i ∈ [k], then

k∏
i=1

hi(Ai) 6
k∏

i=1

hi(Hi(1)).

Moreover, equality holds if and only if Ai = Hi(a) for some a ∈ [min{n1, . . . , nk}] such
that hi(Hi(a)) = hi(Hi(1)) for each i ∈ [k].

We simply observe that
(∏k

i=1 ai

)k−1

=
∏k−1

i=1

∏
j∈[k]\[i] aiaj and that if A1, . . . ,Ak are

cross-intersecting, then any Ai and Aj with i 6= j are cross-intersecting. Thus, if, for
example, A1, . . . ,Ak are as in Theorem 6, ai = hi(Ai) for each i ∈ [k], and bi = hi(Hi(1))
for each i ∈ [k], then Theorem 2 gives us

∏k−1
i=1

∏
j∈[k]\[i] aiaj 6

∏k−1
i=1

∏
j∈[k]\[i] bibj, and

hence
(∏k

i=1 ai

)k−1

6
(∏k

i=1 bi

)k−1

(giving
∏k

i=1 ai 6
∏k

i=1 bi, as required).

We now start working towards the proofs of Theorems 2, 3, 4 and 5.

3 Proof of the main result

This section is dedicated to the proof of Theorem 2.
For the extremal cases, we shall use the following lemma.

Lemma 7. Let H be a compressed subfamily of 2[n], and let w : H → R+ such that
w(δi,j(H)) > w(H) for every H ∈ H and every i, j ∈ [n] with i < j. Then w(H(a)) 6
w(H(1)) for each a ∈ [n].

Proof. Let a ∈ [n]. Let D = ∆1,a(H(a)). Since H is compressed, D ⊆ H. Thus it is
immediate from the definitions of D and w that w(D) > w(H(a)). The result follows if
we show that D ⊆ H(1). Let D ∈ D. If D /∈ H(a), then D = δ1,a(H) 6= H for some
H ∈ H(a), and hence 1 ∈ D. Suppose D ∈ H(a). If we assume that δ1,a(D) /∈ H(a), then
we obtain D /∈ ∆1,a(H(a)), contradicting D ∈ D. Hence δ1,a(D) ∈ H(a). Thus, since
a ∈ D and a ∈ δ1,a(D), 1 ∈ D.

We need to use the following well-known properties of compressions. It is straightfor-
ward that for i, j ∈ [n] and A ⊆ 2[n],

|∆i,j(A)| = |A|.

Moreover, we have the following.
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Lemma 8. Let A and B be cross-intersecting subfamilies of 2[n].
(i) For any i, j ∈ [n], ∆i,j(A) and ∆i,j(B) are cross-intersecting subfamilies of 2[n].

(ii) If r, s ∈ [n], A ⊆
(

[n]
6r

)
, B ⊆

(
[n]
6s

)
, and A and B are compressed, then

A ∩B ∩ [r + s− 1] 6= ∅

for any A ∈ A and any B ∈ B.
(iii) For some h ∈ N, there exist i1, . . . , ih, j1, . . . , jh ∈ [n] such that i1 < j1, . . . , ih < jh,
and ∆ih,jh ◦· · ·◦∆i1,j1(A) and ∆ih,jh ◦· · ·◦∆i1,j1(B) are cross-intersecting and compressed.

A proof of Lemma 8 is essentially given in [18, Section 2] (see also [30]). The only
difference is that in [18], part (ii) is proved for A ⊆

(
[n]
r

)
and B ⊆

(
[n]
s

)
; however, the

argument carries forward for A ⊆
(

[n]
6r

)
and B ⊆

(
[n]
6s

)
.

Proof of Theorem 2. We use induction on m+n. The basis is m+n = 2 with m = n = 1,
in which case the result is trivial. Now consider m+ n > 2. We may assume that m 6 n.
If m = 1, then the result is trivial too, so we consider m > 2. If at least one of G and
H is {∅}, then we trivially have g(A)h(B) = 0 = g(G(1))h(H(1)). Thus, we will assume
that G 6= {∅} and H 6= {∅}, meaning that each of G and H contain at least one non-
empty set. Since G and H are hereditary and compressed, we clearly have {1} ∈ G and
{1} ∈ H. So g(G(1)) > 0 and h(H(1)) > 0. Let A ⊆ G and B ⊆ H such that g(A)h(B) is
maximum under the condition that A and B are cross-intersecting. Since G(1) and H(1)
are cross-intersecting, it follows that

g(A)h(B) > g(G(1))h(H(1)) > 0. (1)

We will first show that we may assume that A and B are compressed.
By Lemma 8(iii), we can apply left-compressions to A and B simultaneously until

we obtain two compressed cross-intersecting families A∗ and B∗ such that |A∗| = |A|
and |B∗| = |B|. Since G and H are compressed, A∗ ⊆ G and B∗ ⊆ H. From (b) we
obtain g(A) 6 g(A∗) and h(B) 6 h(B∗). By the choice of A and B, we actually have
g(A) = g(A∗) and h(B) = h(B∗).

We now show that we may also work with A∗ and B∗ for the purpose of establishing
the second part of the theorem (that is, the characterization of the extremal structures
for u 6= 0 6= v). Suppose that A∗ = G(c) and B∗ = H(c) for some c ∈ [m] ∩ [n] such
that g(G(c)) = g(G(1)) and h(H(c)) = h(H(1)). Then g(G(c)) > 0 and h(H(c)) > 0. So
G(c) 6= ∅ and H(c) 6= ∅. Thus, since G and H are hereditary, {c} ∈ A∗ and {c} ∈ B∗.
So {a} ∈ A for some a ∈ [m], and {b} ∈ B for some b ∈ [n]. Since A and B are
cross-intersecting, we have a = b, A ⊆ G(a) and B ⊆ H(a). Since G(a) and H(a)
are cross-intersecting, it follows by the choice of A and B that A = G(a), B = H(a),
and g(G(a))h(H(a)) > g(G(1))h(H(1)). Since Lemma 7 gives us g(G(a)) 6 g(G(1)) and
h(H(a)) 6 h(H(1)), it follows that we actually have g(G(a))h(H(a)) = g(G(1))h(H(1)),
g(G(a)) = g(G(1)) and h(H(a)) = h(H(1)).

Therefore, we may (and will) assume that A and B are compressed.
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Define H0 = {H ∈ H : n /∈ H} and H1 = {H\{n} : n ∈ H ∈ H}. Define G0, G1, A0,
A1, B0 and B1 similarly. Since A, B, G and H are compressed, we clearly have that A0,
A1, B0, B1, G0, G1, H0 and H1 are compressed. Since G and H are hereditary, we clearly
have that G0, G1, H0 and H1 are hereditary, G1 ⊆ G0 and H1 ⊆ H0. If G1 = ∅, then
G ⊆ 2[m−1], and hence we obtain the result immediately from the induction hypothesis.
The same occurs if H1 = ∅. So we assume that G1 and H1 are non-empty. Since G1 ⊆ G0

and H1 ⊆ H0, G0 and H0 are non-empty too. Obviously, we have A0 ⊆ G0 ⊆ 2[m−1],
A1 ⊆ G1 ⊆ 2[m−1], B0 ⊆ H0 ⊆ 2[n−1] and B1 ⊆ H1 ⊆ 2[n−1].

Let h0 : H0 → R+ such that h0(H) = h(H) for each H ∈ H0. Let h1 : H1 → R+

such that h1(H) = h(H ∪ {n}) for each H ∈ H1 (note that H ∪ {n} ∈ H(n) by definition
of H1). By (b) and (d), we have the following consequences. For any A,B ∈ H0 with
∅ 6= A ( B,

h0(A) = h(A) > (1 + v)h(B) = (1 + v)h0(B). (2)

For any C ∈ H0 and any i, j ∈ [n− 1] with i < j,

h0(δi,j(C)) = h(δi,j(C)) > h(C) = h0(C). (3)

For any A,B ∈ H1 with ∅ 6= A ( B,

h1(A) = h(A ∪ {n}) > (1 + v)h(B ∪ {n}) = (1 + v)h1(B). (4)

For any C ∈ H1 and any i, j ∈ [n− 1] with i < j,

h1(δi,j(C)) = h(δi,j(C) ∪ {n}) = h(δi,j(C ∪ {n})) > h(C ∪ {n}) = h1(C). (5)

Thus, we have shown that properties (b) and (d) are inherited by h0 and h1.
Since B = B0 ∪ B(n), B0 ∩ B(n) = ∅ and B(n) = {B ∪ {n} : B ∈ B1}, we have

h(B) = h(B0) + h(B(n)) = h0(B0) + h1(B1). (6)

Along the same lines,

h(H(1)) = h(H0(1)) + h({H ∈ H : 1, n ∈ H})
= h0(H0(1)) + h({H ∪ {n} : H ∈ H1(1)})
= h0(H0(1)) + h1(H1(1)). (7)

Suppose m < n. Clearly, A and B0 are cross-intersecting. Since m < n, no set in A
contains n, and hence A and B1 are cross-intersecting. Thus, by the induction hypothesis,

g(A)hj(Bj) 6 g(G(1))hj(Hj(1)) for each j ∈ {0, 1}. (8)

Together with (6) and (7), this gives us

g(A)h(B) = g(A)h0(B0) + g(A)h1(B1)

6 g(G(1))h0(H0(1)) + g(G(1))h1(H1(1))

= g(G(1))h(H(1)). (9)

the electronic journal of combinatorics 23(4) (2014), #P4.45 9



This establishes the first part of the theorem for m < n, and we now verify the second
part for this case. By (1), equality holds throughout in (9). Thus, in (8), we actually have
equality. Suppose u 6= 0 and v 6= 0. Then, by the induction hypothesis, for each j ∈ {0, 1}
we have A = G(aj) and Bj = Hj(aj) for some aj ∈ [m] such that g(G(aj)) = g(G(1))
and hj(Hj(aj)) = hj(Hj(1)). So g(G(a0)) > 0, and hence G(a0) 6= ∅. Thus, since G is
hereditary, {a0} ∈ A. Since A and B are cross-intersecting, B ⊆ H(a0). Since G(a0)
and H(a0) are cross-intersecting, it follows by the choice of A and B that A = G(a0)
and B = H(a0). Thus, since g(A)h(B) = g(G(1))h(H(1)), and since Lemma 7 gives us
g(G(a0)) 6 g(G(1)) and h(H(a0)) 6 h(H(1)), we have g(G(a0)) = g(G(1)) and h(H(a0)) =
h(H(1)).

Now suppose m = n. Similarly to h0 and h1, let g0 : G0 → R+ such that g0(G) = g(G)
for each G ∈ G0, and let g1 : G1 → R+ such that g1(G) = g(G ∪ {n}) for each G ∈ G1

(note that, since m = n, G ∪ {n} ∈ G(n) by definition of G1). Then properties (a) and
(c) are inherited by g0 and g1 in the same way (b) and (d) are inherited by h0 and h1 as
shown above; that is, similarly to (2)–(5), we have the following. For any A,B ∈ G0 with
∅ 6= A ( B,

g0(A) > (1 + u)g0(B). (10)

For any C ∈ G0 and any i, j ∈ [n− 1] with i < j,

g0(δi,j(C)) > g0(C). (11)

For any A,B ∈ G1 with ∅ 6= A ( B,

g1(A) > (1 + u)g1(B). (12)

For any C ∈ G1 and any i, j ∈ [n− 1] with i < j,

g1(δi,j(C)) > g1(C). (13)

Similarly to (6) and (7), we have

g(A) = g0(A0) + g1(A1), (14)

g(G(1)) = g0(G0(1)) + g1(G1(1)). (15)

Clearly, A0 and B0 are cross-intersecting, and, since n = m, so are A0 and B1, and
also A1 and B0.

Let us first assume that A1 and B1 are cross-intersecting too. Then, by the induction
hypothesis,

gi(Ai)hj(Bj) 6 gi(Gi(1))hj(Hj(1)) for any i, j ∈ {0, 1}. (16)

Together with (6), (7), (14) and (15), this gives us

g(A)h(B) = g0(A0)h0(B0) + g0(A0)h1(B1)+

g1(A1)h0(B0) + g1(A1)h1(B1)

6 g0(G0(1))h0(H0(1)) + g0(G0(1))h1(H1(1))+

g1(G1(1))h0(H0(1)) + g1(G1(1))h1(H1(1))

= g(G(1))h(H(1)).
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By (1), equality holds throughout, and hence g(A)h(B) = g(G(1))h(H(1)). So in (16) we
actually have equality. Suppose u 6= 0 6= v. By the induction hypothesis, we particularly
have A0 = G0(a0) and B0 = H0(a0) for some a0 ∈ [n− 1] such that g0(G0(a0)) = g0(G0(1))
and h0(H0(a0)) = h0(H0(1)). Recall that {1} ∈ G. So {1} ∈ G0, and hence g0(G0(1)) > 0.
So g0(G0(a0)) > 0, and hence G0(a0) 6= ∅. Thus, since G is hereditary, {a0} ∈ A. Since
A0 and B are cross-intersecting, B ⊆ H(a0). Similarly, we obtain A ⊆ G(a0). As in
the case m < n, we conclude that A = G(a0), B = H(a0), g(G(a0)) = g(G(1)) and
h(H(a0)) = h(H(1)).

Suppose that A1 and B1 are not cross-intersecting. Then there exists A1 ∈ A1 such
that A1 ∩ B = ∅ for some B ∈ B1. Let B1 = [n− 1]\A1, A′1 = A1 ∪ {n}, B′1 = B1 ∪ {n}.
Since A1 ∈ A1, A′1 ∈ A.

If A1 = [n−1], then B = B1. Suppose A1 6= [n−1] and B 6= B1. Then B ( [n−1]\A1,
and hence [n− 1]\(A1 ∪ B) 6= ∅. Let c ∈ [n− 1]\(A1 ∪ B). Since B ∈ B1, B ∪ {n} ∈ B.
Let C = δc,n(B ∪ {n}). Since c /∈ B ∪ {n}, C = B ∪ {c}. Since B is compressed, C ∈ B.
However, since c /∈ A′1 and A1 ∩ B = ∅, we have A′1 ∩ C = ∅, which is a contradiction as
A and B are cross-intersecting.

We have therefore shown that

B1 is the unique set in B1 that does not intersect A1. (17)

By a similar argument,

A1 is the unique set in A1 that does not intersect B1. (18)

Since B1 ∈ B1, B′1 ∈ B. Since A and B are compressed,

δp,n(A′1) ∈ A and δp,n(B′1) ∈ B for each p ∈ [n− 1]. (19)

Since A1 ∩ B′1 = A1 ∩ B1 = ∅ and B1 ∩ A′1 = B1 ∩ A1 = ∅, we have A1 /∈ A and
B1 /∈ B. Let A′ = A ∪ {A1}, A′′ = A\{A′1}, B′ = B\{B′1}, B′′ = B ∪ {B1}. By (17), A′
and B′ are cross-intersecting. By (18), A′′ and B′′ are cross-intersecting. Since G and H
are hereditary, and since A′1 ∈ A ⊆ G and B′1 ∈ B ⊆ H, we have A1 ∈ G and B1 ∈ H,
and hence A′,A′′ ⊆ G and B′,B′′ ⊆ H.

Let x = g(A) and x1 = g(A′1). Let y = h(B) and y1 = h(B′1). We have

g(A′) = x+ g(A1) > x+ (1 + u)g(A′1) = x+ (1 + u)x1,

g(A′′) = x− g(A′1) = x− x1,

h(B′) = y − h(B′1) = y − y1,

h(B′′) = y + h(B1) > y + (1 + v)h(B′1) = y + (1 + v)y1.

By the choice of A and B,

g(A′)h(B′) 6 g(A)h(B) and g(A′′)h(B′′) 6 g(A)h(B).

So we have
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(x+ (1 + u)x1)(y − y1) 6 xy and (x− x1)(y + (1 + v)y1) 6 xy

⇒ (1 + u)x1y 6 xy1 + (1 + u)x1y1 and (1 + v)xy1 6 x1y + (1 + v)x1y1

⇒ (1 + u)x1y + (1 + v)xy1 6 (xy1 + (1 + u)x1y1) + (x1y + (1 + v)x1y1)

⇒ ux1y + vxy1 6 (2 + u+ v)x1y1. (20)

Suppose A1 6= ∅ and B1 6= ∅. It follows by definition of B1 that [n − 1]\A1 6= ∅
and [n − 1]\B1 6= ∅. Let a ∈ [n − 1]\A1 and b ∈ [n − 1]\B1. Let A′′1 = δa,n(A′1) and
B′′1 = δb,n(B′1). So A′′1 6= A′1 and B′′1 6= B′1. By (19), A′′1 ∈ A and B′′1 ∈ B. By (b),
g(A′′1) > g(A′1) and h(B′′1 ) > h(B′1). We therefore have x > x1 + g(A′′1) > 2x1 and
y > y1 + h(B′′1 ) > 2y1. By (20), we have

(2 + u+ v)x1y1 > ux1y + vxy1 > ux1(2y1) + v(2x1)y1

= (2u+ 2v)x1y1 > (2 + u+ v)x1y1

(since we are given that u+ v > 2), and hence equality holds throughout. Thus x = 2x1

and y = 2y1. Consequently, we have A = {A′1, A′′1}, B = {B′1, B′′1}, g(A′′1) = g(A′1) and
h(B′′1 ) = h(B′1). Let A2 = [|A′1|], B2 = [|B′1|] and I = {1}. Since G is compressed and
A′1 ∈ A ⊆ G, A2 ∈ G and g(A2) > g(A′1). Similarly, B2 ∈ H and h(B2) > h(B′1). Since
A1 6= ∅, we have |A′1| > 2, and hence |A2| > 2. Since G is hereditary and I ( A2 ∈ G,
I ∈ G and g(I) > (1+u)g(A2). Similarly, I ∈ H and h(I) > (1+v)h(B2). Let C = {I, A2}
and D = {I, B2}. So C ⊆ G and D ⊆ H. Also, C and D are cross-intersecting. We have

g(C)h(D) = (g(I) + g(A2))(h(I) + h(B2))

> ((2 + u)g(A2))((2 + v)h(B2)) > (2 + u)(2 + v)g(A′1)h(B′1)

= (2 + u)(2 + v)x1y1 = (2 + u)(2 + v)
x

2

y

2
> xy = g(A)h(B) (since u+ v > 2, u > 0, and v > 0),

which contradicts the choice of A and B.
Therefore, A1 = ∅ or B1 = ∅.
Suppose A1 = ∅. Then A′1 = {n} and B′1 = [n]. By (19), the sets {1}, . . . , {n} are

all in A, and obviously no proper subset of [n] intersects each of these sets. Thus, by the
cross-intersection condition, B′1 is the only set that is in B. So

h(B′′) = h(B′1) + h(B1) > h(B′1) + (1 + v)h(B′1) = (2 + v)h(B′1) = (2 + v)h(B).

Since {1}, . . . , {n} ∈ A and A′1 = {n}, we have

ng(A′1) 6 g(A′1) +
n−1∑
p=1

g(δp,n(A′1)) =
n∑

p=1

g({p}) 6 g(A), (21)

and hence g(A′1) 6 g(A)/n. Since g(A′′) = g(A) − g(A′1), g(A′′) > n−1
n
g(A). Thus

g(A′′)h(B′′) > n−1
n
g(A)(2 + v)h(B) > g(A)h(B). Since g(A′′)h(B′′) 6 g(A)h(B) (by the
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choice of A and B), it follows that g(A′′)h(B′′) = g(A)h(B), v = 0, n = 2, and g(A′′) =
1
2
g(A). Thus g(A) = 2g(A′1) = ng(A′1), and hence, by (21), we obtain A = {{1}, {2}} and
g({1}) = g({2}). We have A′′ = {{1}} ⊆ G(1) and B′′ = {B1, B

′
1} = {{1}, [2]} ⊆ H(1).

Thus g(A)h(B) 6 g(G(1))h(H(1)).
Similarly, if B1 = ∅, then g(A)h(B) = g(A′)h(B′), u = 0, n = 2, A′ = {A1, A

′
1} =

{{1}, [2]} ⊆ G(1) and B′ = {{1}} ⊆ H(1). Thus g(A)h(B) 6 g(G(1))h(H(1)).

4 Proofs of Theorems 3 and 4

In this section, we use Theorem 2 to prove Theorems 3 and 4. Recall that for any IP
sequence c = (c1, . . . , cn) and any r ∈ [n], L(r)

c denotes the family{
{(x1, yx1), . . . , (xr, yxr)} : {x1, . . . , xr} ∈

(
[n]

r

)
, yxj

∈ [cxj
] for each j ∈ [r]

}
.

Let L(6r)
c denote the union

⋃r
i=1 L

(i)
c .

We start by defining a compression operation for labeled sets. For any x, y ∈ N, let

γx,y(A) =

{
(A\{(x, y)}) ∪ {(x, 1)} if (x, y) ∈ A;
A otherwise

for any labeled set A, and let

Γx,y(A) = {γx,y(A) : A ∈ A, γx,y(A) /∈ A} ∪ {A ∈ A : γx,y(A) ∈ A}

for any family A of labeled sets.
Note that |Γx,y(A)| = |A| and that if A ⊆ L(r)

c , then Γx,y(A) ⊆ L(r)
c . It is easy to

check that if A and B are cross-intersecting families of labeled sets, then so are Γx,y(A)
and Γx,y(B). We prove more than this.

Lemma 9. Let c = (c1, . . . , cm) and d = (d1, . . . , dn) be IP sequences. Let x, y ∈ N,

y > 2. Let l = max{m,n} and h = max{cm, dn}. Let V ⊆ [l] × [2, h]. Let A ⊆ L(6m)
c

and B ⊆ L(6n)
d such that (A ∩ B)\V 6= ∅ for every A ∈ A and every B ∈ B. Then

(C ∩D)\(V ∪ {(x, y)}) 6= ∅ for every C ∈ Γx,y(A) and every D ∈ Γx,y(B).

Proof. Let C ∈ Γx,y(A) and D ∈ Γx,y(B). We first show that (C ∩ D)\V 6= ∅. Let
C ′ = (C\{(x, 1)}) ∪ {(x, y)}. If C ∈ A and D ∈ B, then (C ∩D)\V 6= ∅. If C /∈ A and
D /∈ B, then (x, 1) is in both C and D, and hence, since (x, 1) /∈ V , (x, 1) ∈ (C ∩D)\V .
Suppose C /∈ A and D ∈ B. So (x, 1) ∈ C and C ′ ∈ A. If (x, y) /∈ D, then, since C ′ ∈ A
and D ∈ B, 0 < |(C ′ ∩D)\V | 6 |(C ∩D)\V |. If (x, y) ∈ D, then γx,y(D) ∈ B (because
otherwise D /∈ Γx,y(B)), and hence, since C ′ ∈ A, 0 < |(C ′ ∩ γx,y(D))\V | = |(C ∩D)\V |.
Similarly, if C ∈ A and D /∈ B, then (C ∩D)\V 6= ∅.

Now suppose (C ∩D)\(V ∪ {(x, y)}) = ∅. Since (C ∩D)\V 6= ∅, (x, y) ∈ C ∩D. So
C, γx,y(C) ∈ A, D, γx,y(D) ∈ B and |(C ∩ γx,y(D))\V | = |(C ∩D)\(V ∪ {(x, y)})| = 0, a
contradiction.
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Corollary 10. Let c = (c1, . . . , cm),d = (d1, . . . , dn), h and l be as in Lemma 9. Let

A ⊆ L(6m)
c and B ⊆ L(6n)

d such that A and B are cross-intersecting. Let

A∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(A),

B∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(B).

Then A ∩B ∩ ([l]× [1]) 6= ∅ for any A ∈ A∗ and any B ∈ B∗.

Proof. Let Z = [l] × [2, h]. By repeated application of Lemma 9 (starting with V = ∅),
(A ∩ B)\Z 6= ∅ for any A ∈ A∗ and any B ∈ B∗. The result follows since (A ∩ B)\Z =
A ∩B ∩ ([l]× [1]).

The next lemma is needed for the characterization of the extremal structures in The-
orems 3 and 4.

Lemma 11. Let c = (c1, . . . , cm),d = (d1, . . . , dn), h and l be as in Lemma 9. Suppose

c1 > 2, d1 > 2 and c1 + d1 > 5. Let r ∈ [m] and s ∈ [n]. Let A ⊆ L(r)
c and B ⊆ L(s)

d

such that A and B are cross-intersecting. Suppose Γx,y(A) = L(r)
c ((u, v)) and Γx,y(B) =

L(s)
d ((u, v)) for some (x, y), (u, v) ∈ [l]× [h]. Then A = L(r)

c ((w, z)) and B = L(s)
d ((w, z))

for some (w, z) ∈ [l]× [h].

Proof. Since c1 + d1 > 5, we have c1 > 3 or d1 > 3. We may assume that c1 > 3.
Suppose A = Γx,y(A). Then A = L(r)

c ((u, v)). Clearly, for each B ∈ L(s)
d with (u, v) /∈

B, there exists a set in L(r)
c ((u, v)) that does not intersect B. Thus B ⊆ L(s)

d ((u, v)). Since

Γx,y(B) = L(s)
d ((u, v)), it follows that B = L(s)

d ((u, v)).
Now suppose A 6= Γx,y(A). So there exists A1 ∈ A\Γx,y(A) such that γx,y(A1) ∈

Γx,y(A)\A. Let A′1 = γx,y(A1). Thus (x, y) ∈ A1 and (u, v) ∈ A′1 = (A1\{(x, y)}) ∪
{(x, 1)}.

Suppose that (u, v) 6= (x, 1). Then (u, v) ∈ A1. So A1 ∈ L(r)
c ((u, v)), and hence

A1 ∈ Γx,y(A), a contradiction.
Therefore, (u, v) = (x, 1). Since A1 6= A′1, (x, y) 6= (x, 1).

Let A∗ ∈ L(r)
c ((x, y)). Let x1, . . . , xs−1 be distinct elements of [n]\{x}. For each

i ∈ [n], let Di = {i} × [di]. We are given that 3 6 d1 6 . . . 6 dn. By definition of a

labeled set, for each i ∈ [n] we have |A ∩ Di| 6 1 for all A ∈ L(r)
c . Thus, |Di\(A1 ∪

A∗)| > di − 2 > 1 for each i ∈ [n]. For each i ∈ [s − 1], let yi ∈ Di\(A1 ∪ A∗). Let

B∗ = {(x, y), (x1, y1), . . . , (xs−1, ys−1)}. So B∗ ∈ L(s)
d ((x, y)). Since Γx,y(B) = L(s)

d ((x, 1)),
either B∗ ∈ B or γx,y(B

∗) ∈ B. However, γx,y(B
∗) ∩ A1 = ∅. So B∗ ∈ B. Since

Γx,y(A) = L(r)
c ((x, 1)), either A∗ ∈ A or γx,y(A

∗) ∈ A. However, γx,y(A
∗) ∩ B∗ = ∅. So

A∗ ∈ A.
We have therefore shown that L(r)

c ((x, y)) ⊆ A (when A 6= Γx,y(A)). Since |Γx,y(A)| =
|L(r)

c ((x, 1))| = |L(r)
c ((x, y))|, we actually have A = L(r)

c ((x, y)). As above, it follows that

B ⊆ L(s)
d ((x, y)). Since |Γx,y(B)| = |L(s)

d ((x, 1))| = |L(s)
d ((x, y))|, B = L(s)

d ((x, y)).
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Lemma 12. Let c be an IP sequence (c1, . . . , cn) and let r ∈ [n]. Let w :
(

[n]
6r

)
→ N such

that for each A ∈
(

[n]
6r

)
,

w(A) =
∣∣{L ∈ L(r)

c : L ∩ ([n]× [1]) = A× [1]
}∣∣ .

Then:
(i) w(A) > (c1 − 1)w(A′) for any A,A′ ∈

(
[n]
6r

)
with A ( A′.

(ii) w(δi,j(A)) > w(A) for any A ∈
(

[n]
6r

)
and any i, j ∈ [n] with i < j.

Proof. (i) Let A,A′ ∈
(

[n]
6r

)
with A ( A′. Let B = A′\A. So |B| > 1. For each L ∈ L(r)

c ,
let σ(L) = {i ∈ [n] : (i, a) ∈ L for some a ∈ [ci]}. We have

w(A) >
∣∣{L ∈ L(r)

c : L ∩ ([n]× [1]) = A× [1], B ⊂ σ(L)
}∣∣

=
∑

E∈([n]\(A∪B)
r−|A|−|B|)

∏
b∈B

(cb − 1)
∏
e∈E

(ce − 1) =
∏
b∈B

(cb − 1)

 ∑
E∈( [n]\A′

r−|A′|)

∏
e∈E

(ce − 1)


= w(A′)

∏
b∈B

(cb − 1) > (c1 − 1)|B|w(A′) > (c1 − 1)w(A′).

(ii) Let A ∈
(

[n]
6r

)
, and let i, j ∈ [n] with i < j. Suppose δi,j(A) 6= A. Then j ∈

A, i /∈ A and δi,j(A) = (A\{j}) ∪ {i}. Let B = A\{j}, E0 =
(

[n]\(B∪{i,j})
r−|A|

)
, E1 ={

E ∈
(

[n]\(B∪{i})
r−|A|

)
: j ∈ E

}
, E2 =

{
E ∈

(
[n]\(B∪{j})

r−|A|

)
: i ∈ E

}
. We have

w(B ∪ {i}) =
∑

E∈([n]\(B∪{i})
r−|A| )

∏
e∈E

(ce − 1) =
∑
D∈E0

∏
d∈D

(cd − 1) +
∑
F∈E1

∏
f∈F

(cf − 1)

>
∑
D∈E0

∏
d∈D

(cd − 1) +
∑
F∈E1

∏
f∈F

(cf − 1)
ci − 1

cj − 1
(since ci 6 cj)

=
∑
D∈E0

∏
d∈D

(cd − 1) +
∑
F∈E2

∏
f∈F

(cf − 1) =
∑

E∈([n]\(B∪{j})
r−|A| )

∏
e∈E

(ce − 1)

= w(B ∪ {j}),

and hence w(δi,j(A)) > w(A).

We now prove Theorem 3, and then we prove Theorem 4.

Proof of Theorem 3. Let X = {X ∈ L(r)
c : (1, 1) ∈ X} and Y = {Y ∈ L(s)

d : (1, 1) ∈ Y }.
Note that |X | =

∑
I∈([2,m]

r−1 )
∏

i∈I ci and |Y| =
∑

J∈([2,n]
s−1)

∏
j∈J dj, so our first aim is to show

that |A||B| 6 |X ||Y|.
Let G =

(
[m]
6r

)
. Let v : G → N such that for each G ∈ G,

v(G) =
∣∣{L ∈ L(r)

c : L ∩ ([m]× [1]) = G× [1]
}∣∣ .
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Let H =
(

[n]
6s

)
. Let w : H → N such that for each H ∈ H,

w(H) =
∣∣∣{L ∈ L(s)

d : L ∩ ([n]× [1]) = H × [1]
}∣∣∣ .

Let l = max{m,n} and h = max{cm, dn}. Let

A∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(A),

B∗ = Γl,h ◦ · · · ◦ Γl,2 ◦ · · · ◦ Γ2,h ◦ · · · ◦ Γ2,2 ◦ Γ1,h ◦ · · · ◦ Γ1,2(B).

Now let

C = {G ∈ G : E ∩ ([m]× [1]) = G× [1] for some E ∈ A∗} ,
D = {H ∈ H : F ∩ ([n]× [1]) = H × [1] for some F ∈ B∗} .

So C ⊆ G, D ⊆ H, and by Corollary 10, C and D are cross-intersecting. We have
A∗ ⊆

⋃
C∈C{L ∈ L

(r)
c : L∩([m]× [1]) = C× [1]} and B∗ ⊆

⋃
D∈D{L ∈ L

(s)
d : L∩([n]× [1]) =

D × [1]}. So

|A∗| 6
∑
C∈C

v(C) = v(C) and |B∗| 6
∑
D∈D

w(D) = w(D). (22)

Since |A| = |A∗| and |B| = |B∗|, we therefore have

|A| 6 v(C) and |B| 6 w(D). (23)

Let I = {G ∈ G : 1 ∈ G} and J = {H ∈ H : 1 ∈ H}. By Lemma 12 and Theorem 2,

v(C)w(D) 6 v(I)w(J ). (24)

Now

v(I) =
∑
I∈I

v(I) =
∑
I∈I

∣∣{L ∈ L(r)
c : L ∩ ([m]× [1]) = I × [1]

}∣∣
=

∣∣∣∣∣⋃
I∈I

{
L ∈ L(r)

c : L ∩ ([m]× [1]) = I × [1]
}∣∣∣∣∣ = |X |

and similarly w(J ) = |Y|. Together with (23) and (24), this gives us |A||B| 6 |X ||Y|.
Suppose |A||B| = |X ||Y|. Then all the inequalities in (22)–(24) are equalities. The

equalities in (22) imply that A∗ =
⋃

C∈C{L ∈ L
(r)
c : L ∩ ([m] × [1]) = C × [1]} and

B∗ =
⋃

D∈D{L ∈ L
(s)
d : L∩([n]×[1]) = D×[1]}. Suppose c1 > 3 and d1 > 3. By Lemma 12

and Theorem 2, equality in (24) gives us that for some p ∈ [m] ∩ [n], C = G(p) and

D = H(p). It follows that A∗ = {L ∈ L(r)
c : (p, 1) ∈ L} and B∗ = {L ∈ L(s)

d : (p, 1) ∈ L}.
By Lemma 11, A = {L ∈ L(r)

c : (p, q) ∈ L} and B = {L ∈ L(s)
d : (p, q) ∈ L} for some

q ∈ [cp] ∩ [dp]. So A is a star of L(r)
c with centre (p, q), and B is a star of L(s)

d with centre

(p, q). Now clearly X is a star of L(r)
c of maximum size, and Y is a star of L(s)

d of maximum

size. Thus, since |A||B| = |X ||Y|, |A| = |X | and |B| = |Y|. So A is a star of L(r)
c of

maximum size, and hence we must have cp = c1. Similarly, dp = d1.
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Proof of Theorem 4. Since |A| 6 |Lc| and |B| 6 |Lc|, the result is trivial if c1 = 1. If
c1 > 3, then the result is given by Theorem 3.

Finally, suppose c1 = 2. Let mod∗ be the usual modulo operation with the exception
that for any a, b ∈ N, (ba) mod∗ a is a rather than 0. Let θ : Lc → Lc such that
θ(E) = {(i, (j + 1) mod∗ ci) : (i, j) ∈ E} for each E ∈ Lc. Clearly, θ is a bijection, and
θ(E) ∩ E = ∅ for each E ∈ Lc. Thus, since A and B are cross-intersecting, θ(C) /∈ B for

each C ∈ A, and hence |B| 6 |Lc|−|A|. Since 0 6
(
|A| − 1

2
|Lc|

)2
= |A|2−|A||Lc|+ 1

4
|Lc|2,

we have |A|(|Lc| − |A|) 6
(

1
2
|Lc|

)2
, and hence |A||B| 6

(
1
c1
|Lc|

)2

= |Lc((1, 1))|2.

5 Proof of Theorem 5

In this section, we use Theorem 2 to prove Theorem 5. Recall that for any n, r ∈ N, Mn,r

denotes the set {(a1, . . . , ar) : a1 6 . . . 6 ar, a1, . . . , ar ∈ [n]}.
For any family F of sets, let F (r) denote the family {F ∈ F : |F | = r}, and let Mn,r,F

denote the set {A ∈Mn,r : SA ∈ F}.

Lemma 13. If n, r ∈ N, i, j ∈ [n], and F ⊆ 2[n], then |Mn,r,∆i,j(F)| = |Mn,r,F |.

Proof. Let I = ∆i,j(F). Clearly, |I(p)| = |F (p)| for each p ∈ [n]. We have

|Mn,r,I | =
∑
I∈I

|Mn,r,{I}| =
n∑

p=1

∑
I∈I(p)

|Mn,r,{I}| =
n∑

p=1

|I(p)||Mn,r,{[p]}|

=
n∑

p=1

|F (p)||Mn,r,{[p]}| =
n∑

p=1

∑
F∈F(p)

|Mn,r,{F}| =
∑
F∈F

|Mn,r,{F}| = |Mn,r,F |,

as required.

Proof of Theorem 5. Let A and B be as in the statement of the theorem. Let C =
{SA : A ∈ A} and D = {SB : B ∈ B}. Clearly, A ⊆ Mm,r,C and B ⊆ Mn,s,D. Since
A and B are cross-intersecting, C and D are cross-intersecting.

By Lemma 8(iii), we can apply left-compressions to C and D simultaneously until we
obtain two compressed cross-intersecting families C∗ and D∗, respectively. Since C ⊆

(
[m]
6r

)
and D ⊆

(
[n]
6s

)
, we have C∗ ⊆

(
[m]
6r

)
and D∗ ⊆

(
[n]
6s

)
. By Lemma 8(ii),

C ∩D ∩ [r + s− 1] 6= ∅ for any C ∈ C∗ and any D ∈ D∗. (25)

Let p = r + s − 1. Let G =
(

[p]
6r

)
and H =

(
[p]
6s

)
. Let g : G → N such that g(G) =(

m+r−p−1
r−|G|

)
for each G ∈ G. Let h : H → N such that h(H) =

(
n+s−p−1
s−|H|

)
for each H ∈ H.

For every F,G ∈ G with ∅ 6= F ( G and |F | = |G| − 1, we have
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g(F )− (1 + u)g(G)(
m+r−p−1

r−|F |

) = 1−
(1 + u)

(
m+r−p−1
r−|F |−1

)(
m+r−p−1

r−|F |

) = 1− (1 + u)(r − |F |)
m− p+ |F |

=
m− p+ |F | − (1 + u)(r − |F |)

m− p+ |F |
>
m− p+ 1− (1 + u)(r − 1)

m− p+ |F |

=
m− (2 + u)(r − 1)− s+ 1

m− p+ |F |
> 0,

and hence g(F ) > (1 + u)g(G). It follows that g(F ) > (1 + u)g(G) for every F,G ∈ G
with ∅ 6= F ( G. Similarly, h(F ) > (1 + v)g(H) for every F,H ∈ H with ∅ 6= F ( H.

We have g(δi,j(G)) = g(G) for every G ∈ G and every i, j ∈ [p]. Similarly, h(δi,j(H)) =
h(H) for every H ∈ H and every i, j ∈ [p].

Let E = {C ∩ [p] : C ∈ C∗} and F = {D ∩ [p] : D ∈ D∗}. Then E ⊆ G, F ⊆ H, and,
by (25), E and F are cross-intersecting. By Theorem 2,

g(E)h(F) 6 g(G(1))h(H(1)), (26)

and if u 6= 0 6= v, then equality holds only if E = G(a) and F = H(a) for some a ∈ [p].
Let M = {A ∈ Mm,r : SA ∩ [p] = E for some E ∈ E}. Note that Mm,r,C∗ ⊆ M. By

Lemma 13, |Mm,r,C| = |Mm,r,C∗ |. Since A ⊆Mm,r,C, we have

|A| 6 |Mm,r,C∗| 6 |M| =
∑
E∈E

|{A ∈Mm,r : SA ∩ [p] = E}|

=
∑
E∈E

|{(a1, . . . , ar−|E|) : a1 6 . . . 6 ar−|E|, a1, . . . , ar−|E| ∈ E ∪ [p+ 1,m]}|

=
∑
E∈E

|M|E|+m−p,r−|E|| =
∑
E∈E

(
m+ r − p− 1

r − |E|

)
= g(E). (27)

Similarly,
|B| 6 h(F). (28)

By (26)–(28),
|A||B| 6 g(G(1))h(H(1)). (29)

Now, similarly to (27),

g(G(1)) = |{A ∈Mm,r : SA ∩ [p] = E for some E ∈ G(1)}|

= |{A ∈Mm,r : 1 ∈ SA}| =
(
m+ r − 2

r − 1

)
.

Similarly, h(H(1)) =
(
n+s−2
s−1

)
. By (29), it follows that

|A||B| 6
(
m+ r − 2

r − 1

)(
n+ s− 2

s− 1

)
,
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as required.
Suppose |A||B| =

(
m+r−2
r−t

)(
n+s−2
s−t

)
and u 6= 0 6= v. Then equality holds throughout in

each of (26)–(29), and hence E = G(a) and F = H(a) for some a ∈ [p]. Having equality
throughout in (27) implies that Mm,r,C∗ = M = {A ∈ Mm,r : a ∈ SA}. Thus {a} ∈ C∗,
and hence there exists a1 ∈ [m] such that {a1} ∈ C. Similarly, there exists a2 ∈ [n]
such that {a2} ∈ D. Since C and D are cross-intersecting, we have a1 = a2, C ⊆ {C ∈(

[m]
6r

)
: a1 ∈ C}, and D ⊆ {D ∈

(
[n]
6s

)
: a1 ∈ D}. Consequently, A ⊆ {A ∈Mm,r : a1 ∈ SA}

and B ⊆ {B ∈Mn,s : a1 ∈ SB}. Since |A||B| =
(
m+r−2
r−1

)(
n+s−2
s−1

)
, both inclusion relations

are actually equalities.
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[27] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart.
J. Math. Oxford (2), 12:313–320, 1961.

[28] P. Frankl. Extremal set systems. In R.L. Graham, M. Grötschel, and L. Lovász (Eds.),
Handbook of Combinatorics, volume 2, pages 1293–1329. Elsevier, Amsterdam, 1995.
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