Induced colorful trees and paths in large chromatic graphs

András Gyárfás*

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, P.O. Box 127 Budapest, Hungary Gábor N. Sárközy*

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, P.O. Box 127
Budapest, Hungary
and
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA, U.S.A.

gsarkozy@cs.wpi.edu

Submitted: Jun 22, 2016; Accepted: Dec 14, 2016; Published: Dec 23, 2016 Mathematics Subject Classifications: 05C15

Abstract

In a proper vertex coloring of a graph a subgraph is colorful if its vertices are colored with different colors. It is well-known (see for example in Gyárfás (1980)) that in every proper coloring of a k-chromatic graph there is a colorful path P_k on k vertices. The first author proved in 1987 that k-chromatic and triangle-free graphs have a path P_k which is an induced subgraph. N.R. Aravind conjectured that these results can be put together: in every proper coloring of a k-chromatic triangle-free graph, there is an induced colorful P_k . Here we prove the following weaker result providing some evidence towards this conjecture: For a suitable function f(k), in any proper coloring of an f(k)-chromatic graph of girth at least five, there is an induced colorful path on k vertices.

Keywords: Induced subgraphs; Graph colorings

1 Introduction

A special case of a result of the first author in [7] says that every triangle-free k-chromatic graph G contains an induced path on k vertices. The following more general conjecture is attributed to N.R. Aravind in [2]. A path (or more generally a subgraph) in a proper coloring of G is called colorful if its vertices are colored with distinct colors.

^{*}Research supported in part by grant (no. K104343) from the National Development Agency of Hungary, based on a source from the Research and Technology Innovation Fund.

Conjecture 1. In any proper coloring of any triangle free k-chromatic graph G there is an induced colorful path on k vertices.

The main result of [2] is the proof of Conjecture 1 for the case when G has girth k. One can easily see that Conjecture 1 cannot be extended from paths to other trees. Indeed, the following example shows that there are graphs of arbitrary large chromatic number with proper colorings that contain no colorful $K_{1,3}$. For other similar problems on colorful paths see [3].

Example 1. ([5, 10]) Let SH_n be the graph whose vertex set is the set of $\binom{n}{3}$ triples of [n] and where for $1 \le i < j < k < \ell \le n$, vertex (i, j, k) is adjacent to (j, k, ℓ) . Coloring (i, j, k) with j, we have a proper coloring containing no colorful $K_{1,3}$ and the chromatic number of SH_n is unbounded.

However, if we drop the colorful condition then (according to a well-known conjecture of the first author and Sumner [6, 12]) the existence of any induced subtree might be guaranteed in triangle-free graphs of sufficiently large chromatic number. If the triangle-free condition is strengthened, considering the family \mathcal{G}_5 of graphs with no cycles of length three and four, then the induced tree conjecture becomes easy, in fact large minimum degree can replace the chromatic bound.

Theorem 1. (Gyárfás, Szemerédi, Tuza [8]). Let T_k be a tree on k vertices. Then every graph in \mathcal{G}_5 with minimum degree at least k-1 contains T_k as an induced subgraph.

Assume we have a proper coloring on G. The color degree $cod_G(v)$ is the number of distinct colors appearing on the neighbors of v and $cod(G) = \min\{cod_G(v) : v \in V(G)\}$. Our first result is the following "colorful" variant of Theorem 1.

Theorem 2. Let T_k be a tree on $k \ge 4$ vertices. Then every proper coloring of $G \in \mathcal{G}_5$ with $cod(G) \ge 2k - 5$ contains T_k as an induced colorful subgraph.

A related subject is to find induced subgraphs in oriented large chromatic triangle-free graphs, for old and new results see [1]. By a result of Chvátal [4], acyclic digraphs with no induced subgraph with edges (1,2), (2,3), (4,3) are perfect. On the other hand, triangle-free digraphs with no induced subgraph with edges (1,2), (3,2), (3,4) exist with an arbitrary large chromatic number (see [9]). In [9] it was asked what happens for the directed $P_4 = (1,2), (2,3), (3,4)$? This was answered by Kierstead and Trotter [10] by constructing arbitrary large chromatic triangle-free oriented graphs without induced directed P_4 . They also proved that if the clique size of a graph is fixed and its chromatic number is large then in every proper coloring and with orienting edges from smaller to larger color, there is either an induced colorful star S_k (a vertex with outdegree k) or an induced colorful directed path P_k . Here we present a result in a similar vein.

Theorem 3. Let k be a positive integer and T_k be a tree on k vertices. There exists a function f(k) such that the following holds. If $G \in \mathcal{G}_5$ with $\chi(G) \geqslant f(k)$ then in any proper coloring of G and in any acyclic orientation of G there is either an induced colorful T_k or an induced directed path P_k .

Note that in Theorem 3 the orientation of T_k is not prescribed (but P_k is the directed path). Also, P_k is induced but not necessarily colorful. However, if G is oriented so that for c(v) < c(w) we have $(v, w) \in E(G)$, P_k must be colorful as well. Selecting this acyclic orientation and $T_k = P_k$, we get from Theorem 3 the following weakened form of Conjecture 1.

Corollary 1. In any proper coloring of an f(k)-chromatic graph $G \in \mathcal{G}_5$, G contains an induced colorful path on k vertices.

To get closer to Conjecture 1 it would be very desirable to forbid only triangles (and allow four-cycles) in Corollary 1. It is worth considering the following problem.

Problem 1. Let k be a positive integer and T_k be a tree on k vertices. Is there a function f(k) such that the following holds? If G is a triangle-free graph with $\chi(G) \geq f(k)$ then in any proper coloring of G with $\chi(G)$ colors, there is an induced colorful T_k .

Problem 1 seems certainly difficult since it contains the Gyárfás - Sumner conjecture. The case when T_k is a path should be easier, it is weaker than Conjecture 1. Note that the condition that the proper coloring of G must use $\chi(G)$ colors, eliminates Example 1. In fact, Problem 1 has an affirmative answer for any k-vertex star with f(k) = k, since a k-chromatic graph must contain a vertex adjacent to all other color classes in any k-coloring and these neighbors form an independent set since G is triangle-free.

2 Proofs

Proof of Theorem 2. We construct an induced colorful T_k by induction. For k = 4 we have two trees to construct from the condition that $cod(G) \ge 3$. For each of the two trees the proof is obvious and we omit the details.

For the inductive step, assume v is a leaf of a tree T_k with neighbor w in T_k . Let T^* be the tree $T_k - v$. By induction we find T^* as an induced colorful subgraph of G so $w \in V(T^*) \subseteq V(G)$. By the condition on the color degree, w is adjacent to a set $S \subset V(G) \setminus V(T^*)$ such that $|S| \geqslant k-3$, S is colorful and $\{c(v) : v \in S\} \cap \{c(v) : v \in T^*\} = \emptyset$. No edge of G goes from S to any vertex of $T^* - \{w\}$ that is at distance one or two from w in T^* since $G \in \mathcal{G}_5$. There are at most k-4 vertices of T^* that are at distance at least three from w in T^* and each of them sends at most one edge to S since G is C_4 -free. Thus at least one vertex in S is nonadjacent to any vertex of $T^* - \{w\}$ and it extends T^* to a tree isomorphic to T_k and it is an induced colorful subgraph of G.

Proof of Theorem 3. Let c be a proper coloring of G, G^* is an orientation of G. Assume that we have an ordering < on V(G), then the forward color degree $fcod_G(v)$ is the number of distinct colors appearing on the neighbors of v that are larger than v, i.e.

$$fcod_G(v) = |\{c(w) : vw \in E(G), v < w\}|.$$

We shall prove that the following function f(k) is suitable.

$$f(k) = \begin{cases} k & \text{if } 1 \leqslant k \leqslant 4\\ g^2(k) & \text{if } k \geqslant 5, \end{cases}$$

where

$$g(k) = \begin{cases} k & \text{if } 1 \le k \le 4 \\ (2k - 6)g(k - 1) + 1 & \text{if } k \ge 5. \end{cases}$$

For $k \leq 3$ the theorem holds with the first alternative: a 1-chromatic graph has a vertex, a 2-chromatic graph has an edge, 3-chromatic graphs without triangles have odd induced cycles of length at least 5 which must contain colorful induced P_3 . Thus we assume $k \geq 4$.

Assume first that G has a subgraph G' such that $cod_{G'}(v) \ge 2k - 5$ for every $v \in G'$. By Theorem 2 we find a colorful induced $T_k = P_k$ in G'.

Now we may assume that G has no subgraph G' such that $cod_{G'}(v) \ge 2k - 5 = d$ for every $v \in G'$. Thus we can define an ordering π on V(G) by repeatedly selecting vertices v_1, \ldots, v_i, \ldots such that $fcod_{G_i}(v_i) < d$ for all $v_i \in V(G)$, where G_i is the subgraph of G induced by the vertices $(V(G) \setminus \{v_1, \ldots, v_{i-1}\})$.

The oriented graph G^* can be written as $G_1 \cup G_2$ where both graphs have vertex set V(G) and G_1 contains the edges of G^* oriented forward with respect to π and G_2 contains the edges of G^* oriented backward with respect to π . By the Gallai - Vitaver - Roy theorem ([11], Ex. 9.9) we can find a directed path P_t in one of the two G_i -s with t = g(k). Indeed, for k = 4, g(4) = f(4) = 4 thus G is 4-chromatic, it contains P_4 which is induced since $G \in \mathcal{G}_5$. For k > 4, we use that $f(k) \leq \chi(G^*) = \chi(G_1 \cup G_2) \leq \chi(G_1)\chi(G_2)$, thus $\chi(G_i) \geq t = \sqrt{f(k)} = g(k)$ for some $i \in \{1, 2\}$. Assume that P_t is oriented forward in the ordering π .

Lemma 1. $P = P_t$ contains an induced P_k starting from the first vertex of P.

The proof of Theorem 3 is now finished, observing that if P_t is oriented backward in the ordering π , Lemma 1 should be used in "backward" version, stating that $P = P_t$ contains an induced P_k ending in the first vertex of P.

References

- P. Aboulker, J. Bang-Jensen, N. Bousquet, P. Charbit, F. Havet, F. Maffray, J. Zemora, χ-bounded families of oriented graphs, arXiv:1605.07411v1.
- [2] J. Babu, M. Basavaraju, L. S. Chandran, M. C. Francis, On induced colorful paths in triangle-free graphs, arXiv:1604.06070v1.
- [3] S. Bessy, N. Bousquet, Colorful paths for 3-chromatic graphs, arXiv:1503.00965.
- [4] V. Chvátal, Perfectly ordered graphs, in: Topics on Perfect Graphs, Ann. Discrete Math. 21 (1984) 63-65.
- [5] P. Erdős, Z. Füredi, A. Hajnal, P. Komjáth, V. Rödl, Á. Seress, Coloring graphs with locally few colors, *Discrete Math.* **39** (1986) 21-34.
- [6] A. Gyárfás, On Ramsey covering numbers, Infinite and Finite Sets, Coll. Math. Soc. János Bolyai 10 (1973) 801-816.
- [7] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastowania Matematyki Applicationes Mathematicae XIX, 3-4 (1987) 413-444.
- [8] A. Gyárfás, E. Szemerédi, Zs. Tuza, Induced subtrees in graphs of large chromatic number, *Discrete Math.* **30** (1980) 235-244.
- [9] A. Gyárfás, Problem 115, Discrete Math. **79** (1989-90) 109-110.
- [10] H.A. Kierstead, W.T. Trotter, Colorful induced subgraphs, *Discrete Math.* **101** (1992) 165-169.
- [11] L. Lovász, Combinatorial Problems and Exercises, North Holland, 1993.
- [12] D. P. Sumner, Subtrees of a graph and chromatic number, in: G. Chartrand, ed., The Theory and Applications of Graphs (Wiley, New York, 1981) 557-576.