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Abstract

Denoting the real numbers and the nonnegative integers, respectively, by R
and N, let S be a subset of Nn for n = 1, 2, . . ., and f be a mapping from
Rn into R. We call f a packing function on S if the restriction f |S is a bijec-
tion onto N. For all positive integers r1, . . . , rn−1, we consider the integer sector
I(r1, . . . , rn−1) = {(x1, . . . , xn) ∈ Nn | xi+1 6 rixi for i = 1, . . . , n − 1}. Recently,
Melvyn B. Nathanson (2014) proved that for n = 2 there exist two quadratic pack-
ing polynomials on the sector I(r). Here, for n > 2 we construct 2n−1 packing
polynomials on multidimensional integer sectors. In particular, for each packing
polynomial on Nn we construct a packing polynomial on the sector I(1, . . . , 1).

Keywords: Packing polynomials; s-diagonal polynomials; multidimensional lat-
tice point enumeration

1 Introduction

In this paper, N and R denote, respectively, nonnegative integers and real numbers,
0 < n ∈ N, and let S be a subset of Nn. A function f from Rn into R is a packing
function on S if the restriction f |S is a bijection onto N. Also s(x) = x1 + · · · + xn
when x = (x1, . . . , xn) ∈ Nn. Given w in N, let H(n,w) = {x ∈ N | s(x) 6 w}. A
packing function f on Nn is called a diagonal mapping if f takes H(n,w) bijectively onto
{0, 1, . . . ,−1+

(
n+w
n

)
} for each w ∈ N, or equivalently, if f(x) < f(y) whenever x,y ∈ Nn

and s(x) < s(y) (see [4, 5]). Packing functions map arbitrarily large n-dimensional arrays
into computer memory cells numbered 0, 1, . . ., and produce no conflicts in such a process
(see [7]).

Let n > 1. For all positive real numbers α1, . . . , αn−1, we define the real sector

S(α1, . . . , αn−1) = {(x1, . . . , xn) ∈ Rn | 0 6 xi+1 6 αixi, i = 1, . . . , n− 1}
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and the integer sector

I(α1, . . . , αn−1) = {(x1, . . . , xn) ∈ Nn | 0 6 xi+1 6 αixi, i = 1, . . . , n− 1}.

We also define, respectively, the real and integer sectors

S(∞, . . . ,∞) = {(x1, . . . , xn) ∈ Rn | xi > 0, i = 1, . . . , n}

and
I(∞, . . . ,∞) = {(x1, . . . , xn) ∈ Nn | xi > 0, i = 1, . . . , n} = Nn.

Given any permutation π on {1, . . . , n} and any n-tuple x = (x1, . . . , xn) ∈ Rn, define
πx = (xπ(1), . . . , xπ(n)). Then, we say that two functions f and g on Rn are equivalent if
there exists a permutation π such that for all x, f(x) = g(πx). Hereafter, we will write
permutations in cycle notation.

It is not hard to see that if (x1, . . . , xn) is a variable vector and k is a positive integer,
then the binomial coefficient

(
k+x1+···+xn

k

)
produces a degree k polynomial in the variables

x1, . . . , xn.
Packing functions were introduced to literature by Cauchy [3]. Later, Cantor [1, 2]

observed that the polynomial function

f(x1, x2) =

(
x1 + x2 + 1

2

)
+ x2 (1)

is a bijection from N2 onto N, hence a packing function on I(∞), in our terms. The
polynomials f and fπ, with π = (1 2), are called the Cantor polynomials.

More generally, Skolem [?, ?] constructed just one inequivalent n-dimensional packing
polynomial on I(∞, . . . ,∞) for each n > 0. Morales and Lew [5] constructed 2n−2 inequiv-
alent packing polynomials of dimension n for each n > 1. Morales [4] produced a family
of packing polynomials, which includes the Morales-Lew polynomials. Finally, Sanchez
[8] obtained a family of (n− 1)! inequivalent packing polynomials on I(∞, . . . ,∞), which
includes the above family. All these polynomials are diagonal functions.

Recently Nathanson [6] proved that for n = 2 there exist two quadratic packing
polynomials on the sector I(r). Also he proved that packing polynomials on I(∞) are in
bijection with packing polynomials on I(1). For n > 1 we now construct 2n−1 packing
polynomials—a generalization of Nathanson’s—on I(r1 . . . , rn−1), such that r1, . . . , rn−1
are positive integers. Also, we prove that these 2n−1 packing polynomials have a kind
of diagonal property. In particular, for each packing polynomial on Nn we construct a
packing polynomial on I(1, . . . , 1).

2 s-Diagonal functions on integer sectors

In this section we construct recursive subsets of multidimensional integer sectors. Using
these sets we define s-diagonal packing functions on multidimensional integer sectors.
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These functions are a generalization of the Nathanson’s functions. Also we calculate the
cardinalities of these sets, which are used to construct s-diagonal packing functions.

Given any nonnegative integer x, we define

E(1, x) = {x}.

For all positive integers r, we define

Er(2, x) = {(x, x2) ∈ N2 | x ∈ E(1, x2), x2 = 0, . . . , rx}.

For n > 2 and all positive integers r1, r2, . . . , rn−1,

Er1,r2,...,rn−1(n, x) = {(x, x2, . . . , xn) ∈ Nn |
(x2, . . . , xn) ∈ Er2,...,rn−1(n− 1, x2), x2 = 0, . . . , r1x}. (2)

It is not difficult to verify that if x 6= x′, then

Er1,r2,...,rn−1(n, x) ∩ Er1,r2,...,rn−1(n, x
′) = ∅. (3)

Note that our set Er(2, x) coincides with the set defined in [6, Theorem 7]. Moreover, if
r1, r2 are positive integers, by direct calculation we get

Er1,r2(3, x) = {(x, 0, 0), (x, 1, 0), . . . , (x, 1, 1, r2), . . . , (x, r1x, 0), . . . , (x, r1x, r1r2x)}.

Given any positive integers r1, r2, . . . , rn−1, and any nonnegative integer x, we define

Dr1,r2,...,rn−1(n, x) =
x⋃
j=0

Er1,r2,...,rn−1(n, j). (4)

It is easy to see that if r1, r2, . . . , rn−1 are positive integers, then

I(r1, . . . , rn−1) =
⋃
x∈N

Er1,r2,...,rn−1(n, x).

Moreover, from (2) and (4) we have

Er1,r2,...,rn−1(n, x) = {(x, x2, . . . , xn) ∈ Nn | (x2, . . . , xn) ∈ Dr2,...,rn−1(n− 1, r1x)} (5)

for any x ∈ N.
For use as the basis of an induction below, we define the 1-dimensional integer sector,

I1, as the set of nonnegative integers.
Let r be a positive integer. Then Nathanson’s [6] packing polynomials on I(r) have

a special property: for each x ∈ N, any Nathanson’s polynomial maps Dr(2, x) (resp.
Er(2, x)) bijectively onto {0, . . . ,−1 + |Dr(2, x)|} (resp. {0, 1, . . . ,−1 + |Er(2, x)|}). In
analogy with the definition of diagonal functions on N2, a packing function f on I(r)
is called an s-diagonal function if f has this property. We generalize this definition for
packing functions on multidimensional integer sectors as follows.
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Let r1, r2, . . . , rn−1 be positive integers. A packing function f on I(r1, . . . , rn−1) is
called a s-diagonal mapping if f maps Dr1,r2,...,rn−1(n, x) bijectively onto {0, . . . ,−1 +
|Dr1,r2,...,rn−1(n, x)|}. Also for each n > 0, we define s-DBr1,...,rn−1(n) and s-DPr1,...,rn−1(n)
to be the sets of s-diagonal functions and s-diagonal polynomials defined on Rn, respec-
tively. (s-DB1(1) and s-DP 1(1) denote the s-diagonal functions and s-diagonal polyno-
mials on I1.)

These definitions clearly imply the following lemma.

Lemma 1. If r1, r2, . . . , rn−1 are positive integers, then

(1) If f ∈ DBr1,...,rn−1(n), then f(0, . . . , 0) = 0.

(2) f ∈ DBr1,...,rn−1(n) if and only if f(x1, x2, . . . , xn) < f(y1, y2, . . . , yn) whenever
(x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ I(r1, . . . , rn−1) and x1 < y1.

(3) If f ∈ DB1(1), then f is the identity map on I1.

Now we calculate the cardinalities of the sets Er1,r2,...,rn−1(n, x) and Dr1,r2,...,rn−1(n, x).
Denote the cardinalities of the sets Er1,r2,...,rn−1(n, x) and Dr1,r2,...,rn−1(n, x) by the func-

tions Tr1,r2,...,rn−1(x) and Qr1,r2,...,rn−1(x), respectively. Also we define Tr1,r2,...,rn−1(−1) =
Qr1,r2,...,rn−1(−1) = 0. The next lemma calculates the cardinality of these sets.

Lemma 2. If r1, r2, . . . , rn−1 are positive integers and x is any nonnegative integer, then

Tr1,r2,...,rn−1(x) =

r1x∑
i2=0

· · ·
rn−1in−1∑
in=0

1, (6)

Qr1,r2,...,rn−1(x) =
x∑

i1=0

r1i1∑
i2=0

· · ·
rn−1in−1∑
in=0

1, (7)

Qr1,r2,...,rn−1(x) = Qr1,r2,...,rn−1(x− 1) +Qr2,...,rn−1(r1x). (8)

Proof. Clearly, |E(1, x)| = 1. For n > 1, relation (3) and the induction hypothesis imply
that

Tr1,r2,...,rn−1(x) =

r1x∑
j=0

Tr2,...,rn−1(j) =

r1x∑
j=0

r2j∑
i3=0

· · ·
rn−1in−1∑
in=0

1.

Thus (6) holds. From (3), (4) and (6) we obtain

Qr1,r2,...,rn−1(x) = |Dr1,r2,...,rn−1(n, x)| =
x∑

i1=0

|Er1,r2,...,rn−1(n, i1)| =
x∑

i1=0

Tr1,r2,...,rn−1(i1)

=
x∑

i1=0

r1i1∑
i2=0

· · ·
rn−1in−1∑
in=0

1.

Thus (7) holds.
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By (7) we have that

Qr1,r2,...,rn−1(x) =
x∑

i1=0

r1i1∑
i2=0

· · ·
rn−1in−1∑
in−1=0

1 =
x−1∑
i1=0

r1i1∑
i2=0

· · ·
rn−2in−2∑
in−1=0

1 +

r1x∑
i2=0

r2i2∑
i3=0

· · ·
rn−1in−1∑
in=0

1

= Qr1,r2,...,rn−1(x− 1) +Qr2,...,rn−1(r1x).

This completes the proof.

Using binomial coefficient identities, we can check that

T1,...,1(x) =

(
n− 1 + x

n− 1

)
,

Q1,...,1(x) =

(
n+ x

n

)
.

3 Polynomial formula

In this section we express the functions Tr1,r2,...,rn−1(x) and Qr1,r2,...,rn−1(x) as polynomials
in the variable x. In order to prove this, for any positive integer r we first construct a
family of polynomials in the variable x,{

Pr,k(x) =
k∑
s=1

crk,s

(
x

s

)
| k = 1, . . . , n

}
,

whose coefficients crk,j satisfy the recurrence relations

crk,j =

k−j+1∑
s=1

(
r

s

)
crk−s,j−1 for k > j > 2 with crk,1 =

(
r + 1

k

)
k > 2 and cr1,1 = r (9)

(when no confusion arises we omit the superscript r). Since c1,1 = r and ck,k = rck−1,k−1
for k > 2, it follows that ck,k = rk for k > 1.

Example. For n = 3, we have

Pr,1(i) = ri, Pr,2(i) = r2
(
i

2

)
+

(
r + 1

2

)
i, Pr,3(i) = r3

(
i

3

)
+ r3

(
i

2

)
+

(
r + 1

3

)
i.

Let r and i be two positive integers and t be any integer such that 0 6 t < r. It is not
hard to check that for every positive integer k,

r∑
j=0

(
j

k

)
=

(
r + 1

k + 1

)
, (10)

ri+t∑
j=0

(
j

k

)
=

ri∑
j=0

(
j

k

)
+

t∑
j=1

(
ir + j

k

)
, (11)

ri∑
j=0

(
j

k

)
=

i−1∑
j=0

r∑
`=1

(
rj + `

k

)
=

i−1∑
j=0

r∑
`=1

rj+`−1∑
s=0

(
s

k − 1

)
. (12)
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These binomial coefficient identities will be used in the proof of the following lemma.

Lemma 3. Let r be a positive integer. Then, for any positive integer i and any integer
0 6 t < r,

ri+t∑
j=0

(
j

k

)
= Pr,k+1(i) +

k∑
h=1

(
t

h

)
Pr,k+1−h(i) +

(
t+ 1

k + 1

)
.

Proof. We give an inductive proof on k. Assume that k = 1. Then by (10)-(12) we obtain

ri+t∑
j=0

(
j

1

)
=

ri∑
j=0

(
j

1

)
+

t∑
j=1

(
ri+ j

1

)
=

i−1∑
j=0

r∑
s=1

[rj + s] +
t∑

j=1

[ri+ j]

=
i−1∑
j=0

[
r2j +

(
r + 1

2

)]
+ tri+

(
t+ 1

2

)
=

(
i

2

)
r2 +

(
r + 1

2

)
i+ tri+

(
t+ 1

2

)
.

Since
(
i
2

)
r2 +

(
r+1
2

)
i = Pr,2(i) and ir = Pr,1(i), the formula holds for k = 1.

Now suppose that the induction hypothesis is true for k− 1. Note that (11) allows us
to divide the proof in two parts:
Part A. Here we prove that

∑ri
j=0

(
j
k

)
= Pr,k+1(i). From (10) and (12) we obtain

ri∑
j=0

(
j

k

)
=

i−1∑
j=0

r∑
`=1

(
rj + `

k

)
=

i−1∑
j=0

r∑
`=1

rj+`−1∑
m=0

(
m

k − 1

)
.

Then, by induction hypothesis

ri∑
j=0

(
j

k

)
=

i−1∑
j=0

r∑
`=1

[
Pr,k(j) +

k−1∑
h=1

(
`− 1

h

)
Pr,k−h(j) +

(
`

k

)]

=
i−1∑
j=0

[
rPr,k(j) +

k−1∑
h=1

(
r

h+ 1

)
Pr,k−h(j) +

(
r + 1

k + 1

)]

=
i−1∑
j=0

[
k∑
s=1

(
r

1

)
ck,s

(
j

s

)
+

k−1∑
h=1

k−h∑
s=1

(
r

h+ 1

)
ck−h,s

(
j

s

)
+

(
r + 1

k + 1

)]

=
i−1∑
j=0

[
k∑

h=1

(
r

h

)
ck+1−h,1

(
j

1

)
+

k−1∑
h=1

(
r

h

)
ck+1−h,2

(
j

2

)
+ · · ·+

(
r

1

)
ck,k

(
j

k

)

+

(
r + 1

k + 1

)]
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=
i−1∑
j=0

[
k∑
s=1

k+1−s∑
h=1

(
r

h

)
ck+1−h,s

(
j

s

)
+

(
r + 1

k + 1

)]

=
k∑
s=1

k+1−s∑
h=1

(
r

h

)
ck+1−h,s

i−1∑
j=0

(
j

s

)
+

i−1∑
j=0

(
r + 1

k + 1

)

=
k∑
s=1

k+1−s∑
h=1

(
r

h

)
ck+1−h,s

(
i

s+ 1

)
+

(
r + 1

k + 1

)
i

=
k+1∑
s=2

k+1−s+1∑
h=1

(
r

h

)
ck+1−h,s−1

(
i

s

)
+

(
r + 1

k + 1

)
i.

However, from (9) we get ck+1,s =
∑k+1−s+1

h=1

(
r
h

)
ck+1−h,s−1 for k + 1 > s > 2. Therefore

ri∑
j=0

(
j

k

)
=

k+1∑
s=2

ck+1,s

(
i

s

)
+

(
r + 1

k + 1

)
i = Pr,k+1(i).

Thus we have proved part A.
Part B. Here we prove that

∑t
j=1

(
ir+j
k

)
=
∑k

h=1

(
t
h

)
Pr,k+1−h(i) +

(
t+1
k+1

)
. By (10) and (12)

we get

t∑
j=1

(
ir + j

k

)
=

t∑
j=1

ir+j−1∑
s=1

(
s

k − 1

)
.

Then, by induction hypothesis

t∑
j=1

(
ir + j

k

)
=

t∑
j=1

[
Pr,k(i) +

k−1∑
h=1

(
j − 1

h

)
Pr,k−h(i) +

(
j

k

)]

= tPr,k(i) +
k−1∑
h=1

(
t

h+ 1

)
Pr,k−h(i) +

(
t+ 1

k + 1

)

=
k∑

h=1

(
t

h

)
Pr,k+1−h(i) +

(
t+ 1

k + 1

)
.

Thus we have proved part B.
Finally, parts A, B and (11) imply the lemma.

In the following theorem we show that the functions Tr1,r2,...,rn−1(x) and Qr1,r2,...,rn−1(x)
can be extended to polynomials in the variable x. For use as the basis of an induction
below, since E(1, x) = {x} and D(1, x) = {0, . . . , x}, we can define T 1(x) = 1 and
Q1(x) = x+ 1.
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Theorem 4. Let r1, r2, . . . , rn−1 be positive integers. Then

Tr1,r2,...,rn−1(x) = c
rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−2+1∑
in−1=1

cr1in−2+1,in−1

(
x

in−1

)
(13)

+Tr1,...,rn−2(x),

Qr1,r2,...,rn−1(x) = c
rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−2+1∑
in−1=1

cr1in−2+1,in−1

(
x+ 1

in−1 + 1

)
(14)

+Qr1,...,rn−2(x).

Moreover, both functions Tr1,r2,...,rn−1(x) and Qr1,r2,...,rn−1(x) are polynomials in x of degree
n− 1 and n, respectively.

Proof. From Lemma 2 we get

Tr1(x) =

r1x∑
i1=0

1 = r1x+ 1 = cr11,1

(
x

1

)
+ T 1(x), Qr1(x) = cr11,1

(
x+ 1

2

)
+ x+ 1.

Thus the lemma holds for n = 2. Now suppose that n > 2. It follows from Lemma 2 and
the induction hypothesis that

Tr1,r2,...,rn−1(x) =

r1x∑
j2=0

r2j2∑
j3=0

· · ·
rn−1jn−1∑
jn=0

1 =

r1x∑
j2=0

Tr2,...,rn−1(j2)

=

r1x∑
j2=0

c
rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−3+1∑
in−2=1

cr2in−3+1,in−2

(
j2
in−2

)

+

r1x∑
j2=0

Tr2,...,rn−2(j2)

= c
rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−3+1∑
in−2=1

cr2in−3+1,in−2

r1x∑
j2=0

(
j2
in−2

)

+

r1x∑
j2=0

Tr2,...,rn−2(j2). (15)

However, from Lemma 3 we get

r1x∑
j2=0

(
j2
in−2

)
= Pr1,in−2+1(x) =

in−2+1∑
in−1=1

cr1in−2+1,in−1

(
x

in−1

)
.

the electronic journal of combinatorics 23(4) (2016), #P4.5 8



Using the above identity in (15) we obtain

c
rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−3+1∑
in−2=1

cr2in−3+1,in−2

r1x∑
j2=0

(
j2
in−2

)

= c
rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−3+1∑
in−2=1

cr2in−3+1,in−2

in−2+1∑
in−1=1

cr1in−2+1,in−1

(
x

in−1

)
. (16)

On the other hand, from (6) we have

r1x∑
j2=0

Tr2,...,rn−2(j2). =

r1x∑
j2=0

r2j2∑
i3=0

· · ·
rn−2in−2∑
in−1=0

1 = Tr1,r2,...,rn−2(x). (17)

Then (15), (16) and (17) imply relation (13). Clearly, Equation (16) gives a polynomial in
x. Moreover, by induction hypothesis Tr1,r2,...,rn−2(x) is also a polynomial in x. Therefore
Tr1,r2,...,rn−2(x) is a polynomial in x. From (13) it is clear that in−1 6 n − 1; hence the
degree of this polynomial is n− 1.

Now we show (14). From (6) and (7) we deduce thatQr1,...,rm−1(x) =
∑x

y=0 Tr1,...,rn−1(y).
Then Using (13), we can see that

Qr1,...,rn−1(x) =
x∑
y=1

crn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−2+1∑
in−1=1

cr1in−2+1,in−1

(
y

in−1

)
+ Tr1,...,rn−2(y)


= c

rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−2+1∑
in−1=1

cr1in−2+1,in−1

x∑
y=1

[(
y

in−1

)
+ Tr1,...,rn−2(y)

]

= c
rn−1

1,1

2∑
i2=1

c
rn−2

2,i2

i2+1∑
i3=1

c
rn−3

i2+1,i3
· · ·

in−2+1∑
in−1=1

cr1in−2+1,in−1

(
x+ 1

in−1 + 1

)
+Qr1,...,rn−2(x).

In a similar way as in the proof of (13), we can show that Qr1,...,rn−1(x) is a polynomial in
x of degree n.

4 s-Diagonal polynomials on integer sectors

Here, for n > 1 we construct recursive 2n−1 s-diagonal packing polynomials on multidi-
mensional integer sectors, using the polynomial formula of the function Qr1,r2,...,rn−1 . The
recursive construction begins with the s-diagonal identity polynomial on the integer sector
I1.

Let r1, r2, . . . , rn−1 be any positive integers and f be a real-valued function on Nn−1.
We define two operators F and G that transform the function f into two functions on
Nn, as follows

Ff(x1, . . . , xn) = Qr1,r2,...,rn−1(x1 − 1) + f(x2, . . . , xn), (18)

Gf(x1, . . . , xn) = Qr1,r2,...,rn−1(x1)− 1− f(x2, . . . , xn). (19)
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Let r be a positive integer. By Lemma 1(3), if I ∈ DB1(1), then I is the identity map
on I1 (=N). Thus by direct calculation, FI and GI are the same Nathanson polynomials
defined in [6, Theorem 7]. Also [6, Theorem 7] yields that FI, GI ∈ DBr(2).

Theorem 5. Let r1, r2, . . . , rn−1 be positive integers. If n > 1 and f ∈ DBr2,...,rn−1(n−1),
then Ff, Gf ∈ DBr1,r2,...,rn−1(n).

Proof. To prove the theorem, we use a double induction on n and x1. For n = 2 and x1 ar-
bitrary the statement follows from the preceding remark. By definition, Er1,...,rn−1(n, 0) =
{(0, . . . , 0)}, so (4) implies that Dr1,...,rn−1(n, 0) = {(0, . . . , 0)}. Then the result is true for
all n > 2 and x1 = 0.

Now assume that n > 2 and x1 > 0. Then by induction hypothesis, Ff and Gf are
bijections from Dr1,...,rn−1(n, x1 − 1) onto {0, 1, . . . ,−1 + Qr1,...,rn−1(x1 − 1)}. However,
by (3) and (4) we have that Dr1,...,rn−1(n, x1) is the disjoint union of Dr1,...,rn−1(n, x1 − 1)
and Er1,r2,...,rn−1(n, x1). Hence to complete the proof of the theorem, we need only show
that Ff and Gf bijectively map Er1,r2,...,rn−1(n, x1) onto {Qr1,r2,...,rn−1(x1 − 1), . . . ,−1 +
Qr1,r2,...,rn−1(x1)}.

On the other, by the hypothesis, f bijectively maps

Dr2,...,rn−1(n− 1, r1x1) onto {0, 1, . . . ,−1 +Qr2,...,rn−1(r1x1)}.

Then it is easy to see that Qr1,r2,...,rn−1(x1− 1) + f and Qr1,r2,...,rn−1(x1)− 1− f bijectively
map Dr2,...,rn−1(n− 1, r1x1) onto

{Qr1,r2,...,rn−1(x1 − 1), . . . ,−1 +Qr1,r2,...,rn−1(x1 − 1) +Qr2,...,rn−1(r1x1)} and (20)

{−Qr2,...,rn−1(r1x1) +Qr1,r2,...,rn−1(x1), . . . ,−1 +Qr1,r2,...,rn−1(x1)}, (21)

respectively. By (8) we get

Qr1,r2,...,rn−1(x1) = Qr1,r2,...,rn−1(x1 − 1) +Qr2,...,rn−1(r1x1), (22)

Qr1,r2,...,rn−1(x1 − 1) = −Qr2,...,rn−1(r1x1) +Qr1,r2,...,rn−1(x1). (23)

Then (20), (21), (22) and (23) imply thatQr1,r2,...,rn−1(x1−1)+f andQr1,r2,...,rn−1(x1)−1−f
are bijections from Dr2,...,rn−1(n− 1, r1x1) onto

{Qr1,r2,...,rn−1(x1 − 1), . . . ,−1 +Qr1,r2,...,rn−1(x1)}. (24)

However, by (5), (18), (19) and (24) we deduce that both Af and Bf bijectively map
Er1,r2,...,rn−1(n, x1) onto {Qr1,r2,...,rn−1(x1 − 1), . . . ,−1 + Qr1,r2,...,rn−1(x1)}. This completes
the proof.

Theorem 6. Let r1, r2, . . . , rn−1 be positive integers. If n > 1 and f ∈ DPr2,...,rn−1(n− 1)
then

Ff(1, 0, . . . , 0) = 1, Gf(1, 0, . . . , 0) = Qr1,...,rn−1(2)− 1. (25)

Moreover, if n > 1 then Ff and Gf are distinct functions.
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Proof. From Theorems 4 and 5 we have that Ff, Gf ∈ DPr1,r2,...,rn−1(n). Lemma
1, (18) and (19) yield relations (25). By definition, if n > 1, then Qr1,r2,...,rn−1(2) =
|Dr1,r2,...,rn−1(n, 1)| > 3. This result and (25) imply the last statement.

Given any positive integers r1, r2, . . . , rn−1 with n > 0, then by Theorems 4 and
5 we can define a family of s-diagonal degree n polynomials, QDr1, r2, . . . , rn−1(n), on
I(r1, . . . , rn−1) such that QD1(1) = DP 1(1), and for n > 1,

QDr1,r2,...,rn−1(n) = {Ff, Gf | f ∈ QDr2,...,rn−1(n− 1) }.

Note that if f and g are two different functions in DPr2,...,rn−1(n − 1), then by (25),
Ff 6= Gf . Therefore, it follows from Theorem 6 that |QDr1,r2,...,rn−1(n)| = 2n−1.

Example. Let r1 and r2 be any nonnegative integers and I ∈ DB1(1). By direct
calculation, the four s-diagonal polynomials of the set QDr1,r2(3) are

FFI(x1, x2, x3) = r2r
2
1

(
x1
3

)
+ r2

(
r1 + 1

2

)(
x1
2

)
+ r1

(
x1
2

)
+ x1 + r2

(
x2
2

)
+ x2 + x3,

FGI(x1, x2, x3) = r2r
2
1

(
x1
3

)
+ r2

(
r1 + 1

2

)(
x1
2

)
+ r1

(
x1
2

)
+ x1 + r2

(
x2 + 1

2

)
+ x2

+1− 1− x3,

GFI(x1, x2, x3) = r2r
2
1

(
x1 + 1

3

)
+ r2

(
r1 + 1

2

)(
x1 + 1

2

)
+ r1

(
x1 + 1

2

)
+ x1 + 1− 1

−
[
r2

(
x2
2

)
+ x2 + x3

]
,

GGI(x1, x2, x3) = r2r
2
1

(
x1 + 1

3

)
+ r2

(
r1 + 1

2

)(
x1 + 1

2

)
+ r1

(
x1 + 1

2

)
+ x1 + 1− 1

−
[
r2

(
x2 + 1

2

)
+ x2 + 1− 1− x3

]
.

5 s-Diagonal polynomials on I(1, . . . , 1)

In this section we study the relation between packing polynomials on I(1, . . . , 1) and on
I(∞, . . . ,∞). Here I denotes the identity map on N.

Let f be a real-valued function on Nn−1. Morales and Lew [5] defined the operators
A and B that transform the function f into two functions on Nn, as follows

Af(x1, . . . , xn) =

(
n− 1 + x1 + · · ·+ xn

n

)
+ f(x2, . . . , xn), (26)

Bf(x1, . . . , xn) =

(
n+ x1 + · · ·+ xn

n

)
− 1− f(xn−1, . . . , x1). (27)

They proved that if f is a diagonal polynomial on Nn−1, then both Af and Bf are
diagonal polynomials on Nn. In particular, they proved that both AI and BI are the same
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Cantor polynomial (1). Thus they constructed 2n−2 inequivalent diagonal polynomials on
I(∞, . . . ,∞).

For any positive n > 1, we define a linear transformation from Rn to Rn whose matrix
with respect to the standard base is

Λn =


1 1 1 . . . 1 1
0 1 1 . . . 1 1
...

...
...

...
...

0 0 0 . . . 1 1
0 0 0 . . . 0 1

 .

It is easy to see that

Λ−1n =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 −1
0 0 0 . . . 0 1

 .

Theorem 7. If f is a diagonal polynomial on I(∞, . . . ,∞) then f ◦Λ−1n is an s-diagonal
polynomial on I(1, . . . , 1). Moreover, if f is an s-diagonal polynomial on I(1, . . . , 1), then
f ◦ Λn is a diagonal polynomial on I(∞, . . . ,∞).

Proof. Clearly Λ−1n is a bijection from I(1, . . . , 1) onto I(∞, . . . ,∞). Let x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ I(∞, . . . ,∞). Then x1 < y1 if and only if s(Λ−1n (x)) < s(Λ−1n (x)).
Therefore, if f is a diagonal polynomial on I(∞, . . . ,∞), then f ◦ Λ−1n is an s-diagonal
polynomial on I(1, . . . , 1). The last statement is proved in a similar way.

Example. The four s-diagonal polynomials on I(1, 1) satisfy

FFI(x1, x2, x3) = AAIΛ−1(x1, x2, x3), FGI(x1, x2, x3) = AAI(1)(23)Λ−1(x1, x2, x3)

GFI(x1, x2, x3) = BAI(13)(2)Λ−1(x1, x2, x3),

GGI(x1, x2, x3) = BAI(132)Λ−1(x1, x2, x3).

These identities are not hard to prove. For example if (x1, x2, x3) ∈ I(1, 1), then

BAI(13)(2)Λ−1(x1, x2, x3) = BAI(13)(2)(x1 − x2, x2 − x3, x3)
= BAI(x3, x2 − x3, x1 − x2)

=

(
3 + x1

3

)
− 1− AI(x2 − x3, x3)

=

(
3 + x1

3

)
− 1−

(
1 + x2

2

)
− x3 = GFI(x1, x2, x3).
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