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Abstract

Denoting the real numbers and the nonnegative integers, respectively, by R
and N, let S be a subset of N" for n = 1,2,..., and f be a mapping from
R"™ into R. We call f a packing function on S if the restriction f|g is a bijec-
tion onto N. For all positive integers r1,...,7,—1, we consider the integer sector
I(ry,...,rpe1) = {(z1,...,2n) € N" | 2j31 < mjm; for i = 1,...,n — 1}. Recently,
Melvyn B. Nathanson (2014) proved that for n = 2 there exist two quadratic pack-
ing polynomials on the sector I(r). Here, for n > 2 we construct 2"~! packing
polynomials on multidimensional integer sectors. In particular, for each packing
polynomial on N™ we construct a packing polynomial on the sector I(1,...,1).

Keywords: Packing polynomials; s-diagonal polynomials; multidimensional lat-
tice point enumeration

1 Introduction

In this paper, N and R denote, respectively, nonnegative integers and real numbers,
0 < n € N, and let S be a subset of N”. A function f from R”" into R is a packing
function on S if the restriction f|g is a bijection onto N. Also s(x) = z1 + -+ + z,
when x = (z1,...,2,) € N". Given w in N, let H(n,w) = {x € N | s(x) < w}. A
packing function f on N™ is called a diagonal mapping if f takes H(n,w) bijectively onto
{0,1,..., =1+ ("T")} for each w € N, or equivalently, if f(x) < f(y) whenever x,y € N"
and s(x) < s(y) (see [4, 5]). Packing functions map arbitrarily large n-dimensional arrays
into computer memory cells numbered 0, 1, .. ., and produce no conflicts in such a process
(see [7]).

Let n > 1. For all positive real numbers aq, ..., a,_1, we define the real sector

S(ag, ... an1) ={(x1,...,2,) ER"|0< 201 Sy, i1=1,...,n—1}
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and the integer sector
Iag,...;on-1) ={(z1,...,2,) e N |0 < 2y Sy, i =1,...,n— 1}
We also define, respectively, the real and integer sectors

S(oco,...,00) ={(z1,...,2,) ER" |2; 20, 1=1,...,n}

and
I(co,...,00) ={(z1,...,2,) E N" |2; 20, i=1,...,n} =N".
Given any permutation 7 on {1,...,n} and any n-tuple x = (z1,...,2,) € R", define
X = (Tr(1),---,%x(n)). Then, we say that two functions f and g on R"™ are equivalent if

there exists a permutation 7 such that for all x, f(x) = g(nx). Hereafter, we will write
permutations in cycle notation.

It is not hard to see that if (x1,...,x,) is a variable vector and k is a positive integer,
then the binomial coefficient (k”l?'””) produces a degree k polynomial in the variables
T1yeny Tpe

Packing functions were introduced to literature by Cauchy [3]. Later, Cantor [1, 2]
observed that the polynomial function

f(x1,29) = (Il - ;Uz " 1) + z2 (1)

is a bijection from N? onto N, hence a packing function on I(00), in our terms. The
polynomials f and fm, with 7 = (1 2), are called the Cantor polynomials.

More generally, Skolem [?, ?] constructed just one inequivalent n-dimensional packing
polynomial on I(o0, ..., 00) for each n > 0. Morales and Lew [5] constructed 2"~2 inequiv-
alent packing polynomials of dimension n for each n > 1. Morales [4] produced a family
of packing polynomials, which includes the Morales-Lew polynomials. Finally, Sanchez
[8] obtained a family of (n —1)! inequivalent packing polynomials on I(oo, ..., 00), which
includes the above family. All these polynomials are diagonal functions.

Recently Nathanson [6] proved that for n = 2 there exist two quadratic packing
polynomials on the sector I(r). Also he proved that packing polynomials on /(oc0) are in
bijection with packing polynomials on I(1). For n > 1 we now construct 2"~! packing
polynomials—a generalization of Nathanson’s—on I(r;y...,r, 1), such that rq,...,r,;
are positive integers. Also, we prove that these 2" ! packing polynomials have a kind
of diagonal property. In particular, for each packing polynomial on N” we construct a
packing polynomial on I(1,...,1).

2 s-Diagonal functions on integer sectors

In this section we construct recursive subsets of multidimensional integer sectors. Using
these sets we define s-diagonal packing functions on multidimensional integer sectors.
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These functions are a generalization of the Nathanson’s functions. Also we calculate the
cardinalities of these sets, which are used to construct s-diagonal packing functions.
Given any nonnegative integer x, we define

E(1,z) ={z}.
For all positive integers r, we define
E.(2,7) = {(w,73) € N* |z € E(1,23), 75 =0,...,77}.
For n > 2 and all positive integers r1,7o,...,7,_1,

Errgvn(nyz) = {(v,22,...,2,) € N"|
(x9,...,xn) € Ery v (n—1,29), 29 =0,...,mz}. (2)

It is not difficult to verify that if x # 2/, then
Erirairna (0,2) N By (1 ') = 0. (3)

Note that our set E,(2,z) coincides with the set defined in [6, Theorem 7]. Moreover, if
r1,T9 are positive integers, by direct calculation we get

E. .3,2) ={(x,0,0),(z,1,0),...,(x,1,1,79),...,(x,r12,0),..., (z,mz,rm7)}.

Given any positive integers 1,79, ...,7,_1, and any nonnegative integer x, we define
xr
DT17T27~--a7‘n 1 U T1,725..s"n—1 n -]) (4>
It is easy to see that if 71,79, ...,7,_1 are positive integers, then
[(Tla cee 771n71) = U Erl,rg,.,.,rn_1<n7 iL‘)
zeN

Moreover, from (2) and (4) we have

Ervgn(nyx) ={(z,22,...,2,) € N" | (x2,...,2,) € Dy, (n—1,r12)} (5)

for any z € N.

For use as the basis of an induction below, we define the 1-dimensional integer sector,
I', as the set of nonnegative integers.

Let r be a positive integer. Then Nathanson’s [6] packing polynomials on I(r) have
a special property: for each € N, any Nathanson’s polynomial maps D, (2, x) (resp.
E,(2,z)) bijectively onto {0,...,—1+ |D,(2,z)|} (resp. {0,1,...,—1+4 |E.(2,2)]}). In
analogy with the definition of diagonal functions on N2 a packing function f on I(r)
is called an s-diagonal function if f has this property. We generalize this definition for
packing functions on multidimensional integer sectors as follows.
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Let ry,79,...,7,—1 be positive integers. A packing function f on I(rqy,...,7,_1) is
called a s-diagonal mapping if f maps D,, ,, . ,(n,z) bijectively onto {0,...,—1 +
| Dy g1 (n, )|}, Also for each n > 0, we define s-DB,, . ,(n) and s-DP,, . (n)
to be the sets of s-diagonal functions and s-diagonal polynomials defined on R", respec-
tively. (s-DB'(1) and s-DP'(1) denote the s-diagonal functions and s-diagonal polyno-
mials on 1))

These definitions clearly imply the following lemma.

Lemma 1. Ifry,rs,...,r,_1 are positive integers, then

(1) If fe DB,,.. ., ,(n), then f(0,...,0)=0.

(2) fe€ DBy, ., ,(n)if and only if f(x1,2a,...,2,) < f(y1,Y2, ..., Yn) whenever
(1,22, xn), (Y1, Y2y - sYn) € L(r1, ... Tno1) and z1 < y1.

(3) If f € DBY(1), then f is the identity map on I*.

Now we calculate the cardinalities of the sets E,, ,,. . . ,(n,2) and Dy . (0, 2).
Denote the cardinalities of the sets E,, ,, . . ,(n,2) and D,, ., . ., (n,z) by the func-
tions Ty, o ry (@) and Qpy ry.. ., (), respectively. Also we define T, ,, ., (—1) =
Qryrg..mn 1 (—1) = 0. The next lemma calculates the cardinality of these sets.

Lemma 2. Ifry,ry,...,rn_1 are positive integers and x s any nonnegative integer, then

T Tn—1in—1

Tm,rz,...,’l’nfl (I) - Z T Z 17 (6)
i2=0 in=0

x  Trii Tn—1tn—1

QT17T2,-~.,M—1<$) = Z Z T Z L, (7)
i1=0i2=0 in=0

QT17T27-~~77’TL71 (I) = Q7"177"27~~~77'n71('r - 1) + QT27~-~7T7L71 (7’1.1’). (8>

Proof. Clearly, |E(1,z)| = 1. For n > 1, relation (3) and the induction hypothesis imply
that

rT rx r2j Tn—1in—1
R (z) = E Tm,---ﬂ‘n—l(j) = § : E : o E : L.
=0 =0 i3—0 in=0

Thus (6) holds. From (3), (4) and (6) we obtain

T T
er,w,m,rnq(m) - |D7’1,7’2,~~7Tn71 (n,2)| = Z |E7"1,7"2,m,7"n71(n7@.1>| - ZTT’LT%M%A (41)

i1=0 i1=0
T Tt Tn—1%n—1
— Z Z e Z 1
11=012=0 in=

Thus (7) holds.
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By (7) we have that

T ri1i1 Tn—1%n—1 x—1 r1i1 Tn—2%n—2 T T2l Tn—1%n—1
Qv = 33 3 1= Y 143y Y 0
11=012=0 in—1=0 11=0172=0 in—1=0 i0=0143=0 in=0
= er,rg,...,rn_l(x - 1) + Qrg,...,rn_1(7n1x)'
This completes the proof. n

Using binomial coefficient identities, we can check that

Tya(z) = (”_1”),

n—1
Ql ..... 1(ZE) = (n;—x)

3 Polynomial formula

In this section we express the functions 75, ,, . ;. ,(x) and Qr, r,..»,_,(x) as polynomials
in the variable x. In order to prove this, for any positive integer r we first construct a
family of polynomials in the variable x,

k
T
{Pr,k@) =>oa(7) 1= 1n}
s=1

whose coefficients ¢}, ; satisfy the recurrence relations

k—j+1

" Ty . . v r+1 .
i = Z (s) Ch_s 1 for k> j > 2 with ¢ |, = ( i ) k>2and cf, =71 (9)

s=1

(when no confusion arises we omit the superscript r). Since ¢ = r and ¢ = rcgp—1 -1
for k > 2, it follows that cgy = r* for k > 1.
Example. For n = 3, we have

Poa(i) =i, Poa(i) = 12 (;) + (T ; 1)¢, Poa(i) = 1 (;) 48 (;) + (7" g 1)@;

Let r and ¢ be two positive integers and ¢ be any integer such that 0 <t < r. It is not
hard to check that for every positive integer k,

£0) - (1)

S0) = S5 ()

£ - SECEEE () o

=0
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These binomial coefficient identities will be used in the proof of the following lemma.

Lemma 3. Let r be a positive integer. Then, for any positive integer i and any integer

0<t<r,
ri+t ;. k
J . t+1
Z(k) = Prgya(d +Z(> rk+1—h(2 )+<k—|—1>'

Jj=0 =1

Proof. We give an inductive proof on k. Assume that k£ = 1. Then by (10)-(12) we obtain

S = S() () =S e S

=0 =0 j=1 j=0 s=1 j=1
i s (Y] g (P
= T T
et B 2

! 2 r+1 b 4 t+1
= r i+ tri .
2 2 2

Since (J)r? + ("11)i = P.»(i) and ir = P, ;(i), the formula holds for k = 1.

Now suppose that the induction hypothesis is true for £ — 1. Note that (11) allows us
to divide the proof in two parts:
Part A. Here we prove that > '", () = Pk+1(i). From (10) and (12) we obtain

i . i—1 r +€ i—1 r rj+i—1

>0 - 22 () -2 2 ()
7=0 7=0 /=1 7=0 /=1 m=0

Then, by induction hypothesis

S0 - 5

j=0

s
h= =

r N\ (T j r j

h) Ck+1—h,1 (1) + ; (h) Ck+1—h,2 (2) + - (1) Ch i (k:)
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S EEE 0062

= s=1 h=1
k k+l—s i—1
r) J r+1
-2 (e ()2 (1)
— (h S o k+1
ikis(r)c ( )*(’”“)Z‘
= k+1—h,s
—~ —~ \h k+1
- £ k+1—h,s—1 k—Fl .
However, from (9) we get cxi1,5 = k“ st ( )Ck+1 hs—1 for k+1>s > 2. Therefore

Z< ) §C’“HS( ) <,:ii)i=Pr,k+1(z).

7=0

Thus we have proved part A.

Part B. Here we prove that ZE: (") = Sohe (1) Pres1-n (i) + (,ifl) By (10) and (12)
we get

() -2 R ()

j=1

Then, by induction hypothesis

£C2) -3

J=1 Jj=1

h=1
k
t t+1
= Py
S (Dm0 (1))
h=1
Thus we have proved part B.
Finally, parts A, B and (11) imply the lemma. O

In the following theorem we show that the functions 7}, ,, ., ,(z) and Qy, 1y, ()
can be extended to polynomials in the variable z. For use as the basis of an induction
below, since F(1,z) = {z} and D(1,z) = {0,...,z}, we can define T'(z) = 1 and
QY (z) =2+ 1.
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Theorem 4. Let ry,719,...,7,_1 be positive integers. Then

2 io+1 in—2+1 T
_ Tn—1 Tn—2 Tn—3 71
Trl,rg,..‘,Tn—l (.T) - Cl,l § : 0272'2 E : Ci2+1,i3 T z : Cin,Q—f—l,in,l ( ) (]'3>

.
ig=1 iz=1 in_1=1 n—1

+Tr1,...,rn_2 (x)a

2 i2+1 in—2+1
Q (z) = vty Gty LN o vl (14)
rira,era—1 ) = €y C2.iy Cig+1,i3 Cip_ot+1yin_1 41
e

i9=1 i3=1 in—1=1

+Qry, s (7).

Moreover, both functions Ty, . v, (2) and Quy ry....r . (x) are polynomials in x of degree
n — 1 and n, respectively.

Proof. From Lemma 2 we get

< x r+1
T = Y1 =ra 1= (1) + 70, Q=i (7] ) vt

11=0

Thus the lemma holds for n = 2. Now suppose that n > 2. It follows from Lemma 2 and
the induction hypothesis that

riT T2j2 Tn—1jn—1 iz
TT17T27-~,Tn71(I) - E § T § 1= § :TT'27~~77‘n—1(‘]2>
J2=0373=0 Jn=0 Jj2=0
1T 2 1241 in—3+1 ]
_ Tn—1 T'n—2 Tn—3 . 72 2
= Z €11 ©2,i Z Cio+1,i3 Z Cin_s+1,in_2 (z )
j2=0 ia=1 iz=1 in_o=1 n—2
T
+ : :TT27"'aTn—2(j2)
J2=0
2 i2+1 in—3+1 rT ]
_ Tn—1 Tn—2 Tn—3 . 79 2
= G 0272'2 Zciz-i-l,is Z Cin—3+1,in—2 § : (Z )
ia=1 is=1 in_2=1 jo=0 N2
1T
+ E T?"%---J’nfz(jQ)' (15)
j2=0

However, from Lemma 3 we get

T ] in—2+1 "
Z 2 _ _ § 71
(- > - PTlain—Q“Fl(a:) - Cin_2+1,in_1 (Z ) :

Vo — _
ja=0 NP2 in_1=1 n—1
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Using the above identity in (15) we obtain

2 i2+1 in—3+1 T ]
Tn—1 T'n—2 Tn—3 () 2
Cl 1 E CQ ,i92 § Ci2+l,i3 e z : Cin—3+17in—2 : : <Z )

in=1 is=1 in_2=1 jo=0 N2
2 7/2+1 Z'7173%”1 Zn72+1 T
_ Tn—1 Tn—2 Tn—3 . 72 1
= G 5:02@2 E:Ciz-i-l,is E: Cip3+1yin—2 E: Cin_2+1,z‘n_1(< ) (16)
: ._ . - . _ tn—1
ia=1 i3=1 in—2=1 in—1=1
On the other hand, from (6) we have
1z rix T2j2 Tp—2in—2
E , Tz, Tn—2 2)' = § : E , § : 1= T7'177'2:-~~77‘n72 (x) (17>
j2=0 J2=013=0 in—1=0

Then (15), (16) and (17) imply relation (13). Clearly, Equation (16) gives a polynomial in
x. Moreover, by induction hypothesis 7T}, ;, ., () is also a polynomial in x. Therefore
Ty ron_n(x) is & polynomial in x. From (13) it is clear that i,—; < n — 1; hence the
degree of this polynomial is n — 1.

Now we show (14). From (6) and (7) we deduce that Qr, . r,. () = > Try, rn s (Y)-
Then Using (13), we can see that

12+1 in—2+1 y
_ Tn—1 T'n—2 T'n—3
Qm,..-,?‘n_l(x) - § : €11 § C2.is E : Cigtlys " § Czn o+1,ip_1 (’l ) + Tm,...,rn—Q (y)

y=1 io=1 ig=1 in—1=1 n—1
i2+1 ipn—2+1 €T y -
Tn—1 Tn—2 Tn 3 71
=C11 E C2.iq E Ciotlyg " § Cipatlin_1 E [(z ) + T (Y)
i9=1 iz3=1 tn—1=1 y=1 n—1 J
2 io+1 in—2+1 41
_ Tn—-1 § Tn—2 § Tn—3 . §
Cl 1 CZ,iQ CZQ+1 i3 C’Ln 2+1,4n—1 . 1 + QTI,---aT’n—2 (l’)
. tn—1 +
12=1 i3=1 in—1=1

In a similar way as in the proof of (13), we can show that @Q,, .. ,(z) is a polynomial in
x of degree n. O

4 s-Diagonal polynomials on integer sectors

Here, for n > 1 we construct recursive 2"~! s-diagonal packing polynomials on multidi-
mensional integer sectors, using the polynomial formula of the function @, +, . ,. ,. The
recursive construction begins with the s-diagonal identity polynomial on the integer sector
It

Let 71,79, ...,7,—1 be any positive integers and f be a real-valued function on N"~!.
We define two operators F' and G that transform the function f into two functions on
N", as follows

Ff(xy,...;xn) = Qurgwn (X1 — 1)+ f2o,...,2), (18)
Gf(x1,...,2n) = Qrirgwn (1) =1 — f2e,...,2,). (19)
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Let 7 be a positive integer. By Lemma 1(3), if Z € DB'(1), then Z is the identity map
on I' (=N). Thus by direct calculation, F'Z and GZ are the same Nathanson polynomials
defined in [6, Theorem 7]. Also [6, Theorem 7] yields that F'Z, GZ € DB,(2).

Theorem 5. Letry,72,...,r,—1 be positive integers. Ifn > 1 and f € DB,, ,. ,(n—1),
then F'f, Gf € DBy, 1., 4 (0).

Proof. To prove the theorem, we use a double induction on n and x,. For n = 2 and x; ar-
bitrary the statement follows from the preceding remark. By definition, E,, ., ,(n,0) =
{(0,...,0)}, so (4) implies that D, . ,(n,0)={(0,...,0)}. Then the result is true for
allnm > 2 and x; = 0.

Now assume that n > 2 and x; > 0. Then by induction hypothesis, F'f and Gf are
bijections from D,, . ,(n,xy —1) onto {0,1,...,—1 4+ Q... ,(x1 —1)}. However,
by (3) and (4) we have that D,, ., ,(n,z1) is the disjoint union of D,, ,, ,(n,x; —1)
and E,, ;. ., (n,21). Hence to complete the proof of the theorem, we need only show
that F'f and Gf bijectively map E,, ., . ,(n,21) onto {Qr sy, vy (x1 —1),..., =1+
QT177’27~-~7T7L71 (xl)}

On the other, by the hypothesis, f bijectively maps

Dy yp o (n—1,mz1) onto {0,1,..., =1+ Qpy.. ., (r121)}

Then it is easy to see that Q. r,.. ., (1 —1)+ f and Qv 1y 1., (x1) — 1 — f bijectively
map D,, . ,(n—1,riz) onto

{Qm,rz,m,f‘n—l (561 - 1)7 SRR -1+ Qﬁﬂ“z,.--ﬂ"n—l(xl - 1) + QTQ ~~~~~ 7'7L—1(T1x1)} and (20)

{=Qryyry (1171) + Q"’177’27---77’n71(l‘1)7 e anz,---,mq(zl)}? (21)
respectively. By (8) we get

er,rz,‘..,rn_l ('1.1) - QT1,T2,...,7‘n_1($1 - 1) _'_ QTQ ..... Trn—1 (r1x1)7 (22)

QT’177’27---,Tn—1 (xl - 1) = _Qm ----- T’n71(r1x1) + QT17T27---77‘1’L71 (‘Tl) (23)

Then (20), (21), (22) and (23) imply that Qr, ry,..r, (1 —1)+f and Quy ry. v (x1)—1—f

.....

{QT17T27~--77‘7L—1 (xl - 1)7 N Qm,m,...,rn—l(xl)}' (24>
However, by (5), (18), (19) and (24) we deduce that both Af and Bf bijectively map
Erivgzn s (nyz1) onto {Qpyro vn (@1 — 1), ..oy =1+ Qpy g, (1) }. This completes
the proof. O

Theorem 6. Let 11,79, ...,r,—1 be positive integers. If n > 1 and f € DP,, _, ,(n—1)
then

Ff(1,0,...,0) =1, Gf(1,0,...,0) = Qpyoov . (2) — 1. (25)

Moreover, if n > 1 then Ff and Gf are distinct functions.
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Proof. From Theorems 4 and 5 we have that F'f, Gf € DPF, ,, ., ,(n). Lemma
1, (18) and (19) yield relations (25). By definition, if n > 1, then Q.. ,(2) =

| Dy rg.oin 1 (1, 1)] = 3. This result and (25) imply the last statement. O
Given any positive integers ri,rs,...,r,—1 with n > 0, then by Theorems 4 and
5 we can define a family of s-diagonal degree n polynomials, QDry,r,...,r,_1(n), on

I(ry,...,rn_1) such that @D*(1) = DP'(1), and for n > 1,

QD'rl,'rg,.“,rn,1 (TL) = {Ff7 Gf | f € QDTQ ..... Tn,l(n - 1) }

Note that if f and ¢ are two different functions in DP,, . ,(n — 1), then by (25),
Ff # Gf. Therefore, it follows from Theorem 6 that |QD,, ry.. ., (n)| =271

Example. Let r; and ro be any nonnegative integers and Z € DB'(1). By direct
calculation, the four s-diagonal polynomials of the set QD,, ,,(3) are

1
FFI(xy, 20, 13) = rQr%<?)+r2(T1; ><:;1>+r( )+x1+r2(x22)+x2+:1:3,
o (T1 r1+ 1\ [z T
FGZ(xqy,x9,23) = rory 5 + 7y 5 0 +ry + 21+ 7o + 29

—|—1—1—$3,

1 1 1
GFI(xy,x9,23) = 7"2’/"%(:[;1;— )+T2(T1; )(361;— ) (961+ )+x1—|—1—1
4]
—|:7"2( )+3§2+ZB3:|,
2
1 1 1 1
GGZ(xy,x9,23) = r2r1<xlg_ )+7’2<T1; )(1‘1; )—H“l(xl; )+x1+1—1

1
_{rz(m; )+x2+1—1—x3}

5 s-Diagonal polynomials on I(1,...,1)

In this section we study the relation between packing polynomials on I(1,...,1) and on
I(00,...,00). Here Z denotes the identity map on N.

Let f be a real-valued function on N"~!. Morales and Lew [5] defined the operators
A and B that transform the function f into two functions on N", as follows

n

Af(rn ) = (”‘”“'””")+f<x2,...,xn>, (26)

Bf(l’h .«

n+ry+-+T
7xn) = n

") —1— f(zp_1,...,21). (27)

They proved that if f is a diagonal polynomial on N”~! then both Af and Bf are
diagonal polynomials on N”. In particular, they proved that both AZ and BZ are the same
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Cantor polynomial (1). Thus they constructed 2”2 inequivalent diagonal polynomials on
I(oc0,...,00).

For any positive n > 1, we define a linear transformation from R" to R"™ whose matrix
with respect to the standard base is

1 1 1 11
011 11
Ap=1 1 :
0 00 11
0 00 01
It is easy to see that
1 -1 0 . 0 0
0 1 -1 0 O
ALY : : : : :
o O 0 ... 1 -1
0O 0 0 ... 0
Theorem 7. If f is a diagonal polynomial on I(oco, . ..,00) then fo A ' is an s-diagonal
polynomial on I(1,...,1). Moreover, if f is an s-diagonal polynomial on I(1,...,1), then
f oA, is a diagonal polynomial on I(oo, ..., 00).

Proof. Clearly A! is a bijection from I(1,...,1) onto I(co,...,00). Let x = (x1,...,1,),
Yy = (Y1, Yn) € I(c0,...,00). Then z; < y; if and only if s(A;'(x)) < s(A,'(x)).
Therefore, if f is a diagonal polynomial on I(co,...,00), then fo A ! is an s-diagonal
polynomial on I(1,...,1). The last statement is proved in a similar way. O

Example. The four s-diagonal polynomials on I(1, 1) satisfy

FFI(Q?l, T2, 513'3) = AAIA71<£C1, Ta, %3), FGI(xl, T2, .1'3) = AAI(1)<23>A71(Z'1, Ta, .%'3)
GFI(Il, T, ZL‘3> = BAI(13)(2)A_1(ZL'1, T2, $3),
GGI(ZEl, o, .133) = BAI(]_32)A_1(I1, T, .Tg).

These identities are not hard to prove. For example if (x1, 29, 23) € I(1, 1), then

BAI(].?))(Q)A_l(Il, T, ZE3) == BAI(13)(2)(.T1 — X9, Lo — I3, l’g)
= BAL(x3,75 — 23,71 — T2)

= (3—}—1’1) —1 —AI(.TQ —Ig,l’g)

3
3 1
= ( _;x1> —1-— < ‘;752) — X3 = GFI(J]l,l'Q,ZL’g).
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