
On matchings in stochastic Kronecker graphs

Justyna Banaszak∗

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
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Abstract

The stochastic Kronecker graph is a random structure whose vertex set is a
hypercube and the probability of an edge depends on the structure of its ends.
We prove that when a.a.s. the stochastic Kronecker graph becomes connected it
a.a.s. contains a perfect matching.

Let n ∈ N, N = 2n, and let 0 6 α, β, γ 6 1, where γ 6 α be some constants. Denote
by P a symmetric matrix

P =

( 1 0

1 α β
0 β γ

)
,

where 0’s and 1’s are labels of rows and columns of P. A stochastic Kronecker graph
K(n,P) is a random graph with vertex set V = {0, 1}n, the set of all binary sequences of
length n, where the probability that two vertices u = (u1, . . . , un), v = (v1, . . . , vn) ∈ V
are adjacent is given by

pu,v =
n∏
i=1

P[ui, vi].

This model was introduced by Leskovec, Chakrabarti, Kleinberg and Faloutsos in [4].
They showed empirically that the desired graph properties of real world networks hold in
this model (see [5], [6]).

In [2] Mahdian and Xu showed that the threshold for connectivity of stochastic Kro-
necker graph is β + γ = 1. They also proved that if α, β, γ are such that K(n,P) is
asymptotically almost surely (a.a.s.) connected, and moreover γ 6 β 6 α, then the graph
has a.a.s. a constant diameter. Horn and Radcliffe [7] studied the emergence of the giant
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component and verified that a.a.s. it appears in K(n,P) as soon as (α + β)(β + γ) > 1.
Kang, Karoński, Koch and Makai [8] showed that the degree distribution of K(n,P)
does not obey a power-law and determined the threshold for the existence of some small
subgraphs.

In this paper we denote by d(v, u) the Hamming distance between two vertices v and
u and by w(v) the weight of a vertex v = (v1, . . . , vn) the number of 1’s in its label

w(v) =
n∑
i=1

vi.

Note that the expected degree of a vertex v with weight w = w(v) is

E(deg(v)) =
w∑
i=0

(
w

i

)
αiβw−i

n−w∑
j=0

(
n− w
j

)
γjβn−w−j = (α + β)w(β + γ)n−w. (1)

We start with stating the connectivity result. As we have already mentioned Mahdian
and Xu [2] showed that if β + γ > 1, then a.a.s. K(n,P) is connected while for β + γ < 1
a.a.s. it contains isolated vertices. Later their result was supplemented (in much larger
generality by Radcliffe and Young [9]). From their result we can derive the following
observation concerning the connectivity of K(n,P) at the threshold, i.e. when β + γ = 1.

Theorem 1.

lim
n→∞

P(K(n,P) is connected) =

{
0 if β + γ = 1, β 6= 1 or β = 1, α = γ = 0
1 if β = 1, α > 0 and γ = 0.

We shall show that the threshold for the emergence of a perfect matching in K(n,P)
is basically the same as the connectivity threshold. Our main result can be stated as
follows.

Theorem 2.

lim
n→∞

P(K(n,P) contains a perfect matching) =

{
0 if β + γ 6 1 and β 6= 1
1 if β + γ > 1 or β = 1.

Proof. Let β + γ 6 1 and β 6= 1. In the proof of Theorem 1, Radcliffe and Young have
shown that a.a.s. K(n,P) contains an isolated vertex and so a.a.s. it does not contain a
perfect matching.

Let β = 1. Then every vertex v = (v1, . . . , vn) ∈ V (K(n,P)) is with probability βn = 1
connected to v̄ = (1−v1, . . . , 1−vn). Thus, with probability 1, K(n,P) contains a perfect
matching.

Now let us consider the most interesting case, β + γ > 1. The main idea of our
argument is the following. We shall choose a dense bipartite subgraph H of K(n,P) and
show that it contains a perfect matching by verifying Hall’s condition.
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To this end for a given odd number t let H = H(n, t) denote a graph with a vertex set
{0, 1}n, and edges between the pairs of vertices of Hamming distance d(u, v) = t. Denote
by V1 and V2 the subsets of vertices of H of odd and even weights respectively. Since t is
odd, all the edges in H must have one end in V1 and the other in V2, i.e. H is bipartite.
Now let H = H(t, n,P) be a subgraph of K(n,P), which contains only the edges between
the vertices of Hamming distance t, i.e. H contains only those edges of K(n,P) which
belong to H. Clearly, H is bipartite. We shall show that for

t = 2

⌈
β

2(β + γ)
n

⌉
+ 1,

which is basically the value of t which maximizes the expected number of edges in H, the
random bipartite graph H a.a.s. fulfills Hall’s condition, and so a.a.s. it contains a perfect
matching.

In order to do that we show first that the underlying bipartite graph H has good
expanding properties. Let us first introduce some notation. For two subsets W and U
of the vertex set of H, let eH(W,U) denote the number of edges with one end in W and
another in U . Let W denote the complement of W in the vertex set of H. By Vol(W ) we
denote the sum of vertex degrees of W .

Let us recall that a graph G is edge-transitive, if for any two edges e1, e2 ∈ E(G)
there exists a graph automorphism F : V (G)→ V (G), which transforms e1 into e2. The
following result of Chung [1] (Theorem 7.1) is crucial for our argument.

Theorem 3. Let G be an edge-transitive graph with diameter D. Then for every W ⊆
V (G), such that Vol(W ) 6 Vol(V (G))

2
,

eG(W,W )

Vol(W )
>

1

2D
.

In order to apply this result we need to check if H is edge transitive and has small
diameter.

Lemma 4. H
(
n, 2

⌈
β

2(β+γ)
n
⌉

+ 1
)

is edge-transitive and its diameter can be bounded

from above by a constant D which depends only on constants β and γ but not on n.

Proof. Clearly, for i ∈ [n] the function τi : {0, 1}n → {0, 1}n that maps (v1, . . . , vi, . . . , vn)
to (v1, . . . , 1− vi, . . . , vn) is an automorphism of H. Also, for any permutation σ : [n]→
[n], the map Aut(σ) : {0, 1}n → {0, 1}n that maps the vertex (v1, . . . , vi, . . . , vn) to
(vσ(1), . . . , vσ(i), . . . , vσ(n)) is an automorphism of H. We show that the group generated
by all automorphisms of the above two kinds acts transitively on edges of H.

Although it is a rather easy observation let us prove it more formally. Let e1 = {u1, v1},
e2 = {u2, v2} be two edges of H. For i ∈ {1, 2}, there exist precisely t positions j such
that uij 6= vij. Let Ii ⊆ [n] be the set of those positions (for i ∈ {1, 2}). Let φ be a
permutation of [n] such that φ(I1) = I2 and φ∗ = Aut(φ) be the automorphism of H
induced by φ. This automorphism is uniquely defined for fixed permutation φ. Note that
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the pairs {φ∗(u1), φ∗(v1)} and {u2, v2} differ on the same positions, i.e. φ∗(u1)j 6= φ∗(v1)j
if and only if u2j 6= v2j . Define ψ : {0, 1}n → {0, 1}n by putting

ψ(x)j =

{
xj if φ∗(u1)j = u2j
1− xj otherwise.

Clearly ψ (φ∗(u1)) = u2. Moreover ψ(x)j = xj iff φ∗(u1)j = u2j and it happens iff φ∗(v1)j =
v2j . Thus ψ (φ∗(v1)) = v2 so ψ ◦φ∗ is an automorphism of H which maps e1 into e2. Hence
H is edge-transitive.

It remains to find an upper bound for the diameter of H. Let v, v′ be two vertices of
H such that d(v, v′) is even. We show that they are connected by a short path. We split
our argument into several cases.

Case 1. d(v, v′) 6 min{2t, 2n− 2t}.
In this case there exists a vertex v′′ which is adjacent to both v and v′. Indeed, to find

v′′ it is enough to change v on d(v, v′)/2 positions on which v and v′ differ and t−d(v, v′)/2
positions on which they coincide.

Case 2. d(v, v′) > 2t (which is possible only if γ > β).

For each pair of such vertices v and v′ there exists a vertex v′′ adjacent to v such that
d(v′′, v′) = d(v, v′)− t. To get v′′ we only need to change v on t positions on which v and
v′ differ. Applying this observation 2r times, where

2r 6

⌈
n− 2t

t

⌉
+ 1 =

⌈n
t
− 2
⌉

+ 1 6
n
β

β+γ
n

=
β + γ

β

one can construct a path vv1 · · · v2r in H such that for every 1 6 i 6 2r, we have
d(vi, v

′) = d(vi−1, v
′)−t and d(v2r, v

′) 6 2t. Notice that in this case 2t < n, so 2t < 2n−2t
and thus d(v2r, v

′) 6 min{2t, 2n − 2t}. As d(v2r, v
′) is even, one can connect vertices v2r

and v′ by a path of length two using the argument from Case 1.

Case 3. 2n− 2t < d(v, v′) 6 2t (which is possible only if β > γ).

For each such v and v′ there exist a path vv1v2 such that d(v2, v
′) = d(v, v′)−2(n− t).

To obtain v1 from v, we need to change all n−d(v, v′) positions on which v, v′ do not differ
and t−n+d(v, v′) among other positions. Then, d(v, v1) = n−d(v, v′)+t−n+d(v, v′) = t.
To obtain v2 from v1, we need to change all n − d(v, v′) positions on which v, v′ do not
differ, all n − t positions on which v and v1 are the same and 2t − 2n + d(v, v′) > 0
other positions. Then, indeed d(v1, v2) = n− d(v, v′) + n− t+ 2t− 2n+ d(v, v′) = t and
d(v2, v

′) = 2t− 2n+ d(v, v′).
Arguing in the same way we find a path vv1 · · · v2s of length

2s 6

⌈
n− (2n− 2t)

n− t

⌉
+ 1 =

⌈
n

n− t
− 2

⌉
+ 1 6

n
γ

β+γ
n− 2

6
2(β + γ)

γ

such that for every i 6 s, d(v2i, v
′) = d(v2i−2, v

′)− 2(n− t) and d(v2s, v
′) 6 2n− 2t. Now,

since d(v2s, v
′) 6 min{2t, 2n− 2t}, and d(v2s, v

′) is even, we can apply Case 1 to connect
v2s and v′ by a path of length two.
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Consequently, we have shown that the diameter D of H is bounded from above by

D 6 2
β + γ

γ
+ 3

As a direct consequence of Theorem 3 and Lemma 4 we get the following result on
expansion properties of H.

Lemma 5. Let W be a subset of the vertex set of H such that

|W | 6 |V (H)|/2 = 2n−1.

Then there exists a constant c = c(β, γ) > 0 such that

eH(W,W ) > c|W |
(
n

t

)
.

Proof. Let W , |W | 6 2n−1, be a set of vertices of H. Since H is an
(
n
t

)
-regular graph,

Vol(W ) =

(
n

t

)
|W | 6

(
n

t

)
|V (H)|

2
=

Vol(V (H))

2
.

Since H is edge transitive, by Theorem 3 we get

eH(W,W )

Vol(W )
>

1

2D
,

where D is the diameter of H. By Lemma 4, D is bounded above by a constant, so for
some positive constant c we have

eH(W,W ) >
1

2D
Vol(W ) > c|W |

(
n

t

)
Let us return to the random graph H. Recall that H is a bipartite graph with a

bipartition (V1, V2), where |V1| = |V2| = 2n−1. We will use the Hall’s condition, which
states that a bipartite graph G(V, U), |V | = |U | does not have a perfect matching iff there
exists a set R ⊆ V or R ⊆ U such that

|NG(R)| < |R|, (2)

where NG(R) is the set of all vertices adjacent in G to the vertices from R. Suppose G
does not have a perfect matching. Let S be the smallest set S ⊆ V or S ⊆ U which
satisfies (2). Without loss of generality, suppose S ⊆ V . Assume |NG(S)| < |S|−1. Then
we can delete any |S| − |NG(S)| − 1 vertices from S to obtain a set smaller than S which
also satisfies (2). Since S is the smallest set satisfying (2) this situation is impossible, so
|NG(S)| = |S| − 1. Moreover the set S ′ = U \NG(S) does not have neighbours in S, i.e.
NG(S ′) ⊆ V \ S, so |NG(S ′)| 6 |V | − |S|, while |S ′| = |U | − |S| + 1 > |NG(S ′)|. Hence
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|S ′| also satisfies (2). |S ′| + |S| = |U | + 1, so as S is the smallest set which satisfies (2),
|S| 6 |U |/2.

Therefore if H does not have a perfect matching, there exists a set S ⊆ V1 or S ⊆ V2
such that |NH(S)| = |S| − 1 and |S| 6 |V1|/2 = 2n−2. Let A be the event that such a
subset S exists in H. Let A1 be the event that such a subset S ⊆ V1 exists. Let A2 be
the event that such a subset S ⊆ V2 exists. Then P(A1) = P(A2), hence

P(H does not contain a perfect matching) = P(A) 6 2P(A1).

For two fixed sets S ⊆ V1, |S| 6 2n−2 = N/4 and T ⊆ V2, |T | = |S| − 1, let AS,T
denote the event that T is the neighbourhood of S in the random graph H. In order
to estimate the probability of AS,T we apply Lemma 5 to the set W = S ∪ T . Clearly
|W | = 2|S| − 1 < N/2.

For deterministic H we have

eH(S, V2 \ T ) + eH(T, V1 \ S) = eH(W,W ) > c

(
n

t

)
|W | = c

(
n

t

)
(2|S| − 1), (3)

while from the regularity of H we get

eH(S, S) = eH(S, V2 \ T ) + eH(S, T ) =

(
n

t

)
|S|, (4)

and

eH(T, T ) = eH(T, V1 \ S) + eH(T, S) =

(
n

t

)
|T | =

(
n

t

)
(|S| − 1). (5)

Adding (3) and (4) and subtracting (5), we obtain that in H,

eH(S, V2 \ T ) >
1

2

(
n

t

)
(|S|+ 2c|S| − c− |S|+ 1) > c′

(
n

t

)
|S| ,

for some constant c′ > 0. Thus if AS,T occurs, c′
(
n
t

)
|S| fixed pairs of vertices which are

adjacent in H are not adjacent in H. Observe that for each pair u, v of vertices with
Hamming distance t, the probability that there exists an edge {u, v} is at least βtγn−t.
Thus, the probability of A that Hall’s condition fails for some set S, |S| 6 2n−2 = N/4,
is bounded from above by

P(A) 6 2
∑
S⊆V1
|S|6N/4

∑
T⊆V2

|T |=|S|−1

P(AS,T )

6 2

N/4∑
s=1

(
N/2

s

)(
N/2

s− 1

)
(1− βtγn−t)c′s(

n
t)

6 2

N/4∑
s=1

N2s exp

(
−c′s

(
n

t

)
βtγn−t

)
.
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Since
n∑
i=0

(
n

i

)
βiγn−i = (β + γ)n

and t was chosen to correspond the largest term in the sum, so for n large enough(
n

t

)
βtγn−t > (β + γ)n/n .

Hence

P(A) 6 2

N/4∑
s=1

(
22n exp (−c′(β + γ)n/n)

)s
and since the term in brackets is exponentially small, it is maximal when s = 1 that is

P(A) 6 2

N/4∑
s=1

(
22n exp (−c′(β + γ)n/n)

)s
6 2n22n exp (−c′(β + γ)n/n) = o(1).

Consequently, a.a.s. H, and thus also K(n,P), contains a perfect matching.

In the proof we have found a perfect matching in a bipartite subgraph H of K(n,P),
containing only the edges joining vertices which are at Hamming distance

t = 2

⌈
β

2(β + γ)
n

⌉
+ 1

in the hypercube. Note however that if we take k edge-disjoint subgraphs H`, for ` ∈ [k],
containing the edges of K(n,P) joining vertices at Hamming distance

t = t(`) = 2

⌈
β

2(β + γ)
n

⌉
+ 2`+ 1.

respectively, we can mimic our argument to construct k edge-disjoint perfect matchings.
Thus, let k-PM denote the property, that a graph contains k edge-disjoint perfect

matchings.

Theorem 6. Let k ∈ N, k > 2 be a constant.

lim
n→∞

P(K(n,P) has k-PM property) =

{
0 if β + γ 6 1
1 if β + γ > 1.

In particular

lim
n→∞

P(K(n,P) contains k-factor) =

{
0 if β + γ 6 1
1 if β + γ > 1.

Note the difference between the cases k = 1 and k > 2 for β = 1 and γ = 0 when, as
we have already observed, a.a.s. the minimum degree of K(n,P) is one.
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