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Abstract

The stochastic Kronecker graph is a random structure whose vertex set is a
hypercube and the probability of an edge depends on the structure of its ends.
We prove that when a.a.s. the stochastic Kronecker graph becomes connected it
a.a.s. contains a perfect matching.

Let n e N, N =2" and let 0 < a, 8,7 < 1, where v < a be some constants. Denote

by P a symmetric matrix
1 0

1o B
P_0<ﬁ 7)’

where 0’s and 1’s are labels of rows and columns of P. A stochastic Kronecker graph
K(n,P) is a random graph with vertex set V' = {0, 1}", the set of all binary sequences of
length n, where the probability that two vertices u = (uq,...,u,),v = (v1,...,v,) € V
are adjacent is given by

Pupv = H P[uu Ui]-
=1

This model was introduced by Leskovec, Chakrabarti, Kleinberg and Faloutsos in [4].
They showed empirically that the desired graph properties of real world networks hold in
this model (see [5], [6]).

In [2] Mahdian and Xu showed that the threshold for connectivity of stochastic Kro-
necker graph is 5+ = 1. They also proved that if «, 3,7 are such that K(n,P) is
asymptotically almost surely (a.a.s.) connected, and moreover v < < a, then the graph
has a.a.s. a constant diameter. Horn and Radcliffe [7] studied the emergence of the giant
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component and verified that a.a.s. it appears in K(n,P) as soon as (o + 5)(5+v) > 1.
Kang, Karonski, Koch and Makai [8] showed that the degree distribution of K(n,P)
does not obey a power-law and determined the threshold for the existence of some small
subgraphs.

In this paper we denote by d(v,u) the Hamming distance between two vertices v and
u and by w(v) the weight of a vertex v = (vy,...,v,) the number of 1’s in its label

n

w(v) = Z ;.

=1

Note that the expected degree of a vertex v with weight w = w(v) is

Btaes(u)) = 3 (4)oi X (M) = k5 ()

i=0 j=0

We start with stating the connectivity result. As we have already mentioned Mahdian
and Xu [2] showed that if 8+ > 1, then a.a.s. K(n,P) is connected while for g+~ < 1
a.a.s. it contains isolated vertices. Later their result was supplemented (in much larger
generality by Radcliffe and Young [9]). From their result we can derive the following
observation concerning the connectivity of K(n, P) at the threshold, i.e. when §+~ = 1.

Theorem 1.

: . _JO ifB+y=1L8#1lorf=1,a=7=0
JLHSOP(IC(H’P) is connected)—{1 FA=1 a>0and~y—0.

We shall show that the threshold for the emergence of a perfect matching in IC(n, P)
is basically the same as the connectivity threshold. Our main result can be stated as
follows.

Theorem 2.

lim P(K(n,P) contains a perfect matching) =

n—o0

0 iff+y<landpB#1
1 iff+y>1orp=1.

Proof. Let 4+~ < 1 and 8 # 1. In the proof of Theorem 1, Radcliffe and Young have
shown that a.a.s. IC(n, P) contains an isolated vertex and so a.a.s. it does not contain a
perfect matching.

Let 8 = 1. Then every vertex v = (vy,...,v,) € V(K(n,P)) is with probability " = 1
connected to v = (1—wvy,...,1—v,). Thus, with probability 1, (n, P) contains a perfect
matching.

Now let us consider the most interesting case, 5+~ > 1. The main idea of our
argument is the following. We shall choose a dense bipartite subgraph H of K(n,P) and
show that it contains a perfect matching by verifying Hall’s condition.
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To this end for a given odd number t let H = H(n,t) denote a graph with a vertex set
{0,1}", and edges between the pairs of vertices of Hamming distance d(u,v) = t. Denote
by Vi and V5 the subsets of vertices of H of odd and even weights respectively. Since t is
odd, all the edges in H must have one end in V; and the other in V5, i.e. H is bipartite.
Now let H = H(t,n, P) be a subgraph of IC(n, P), which contains only the edges between
the vertices of Hamming distance ¢, i.e. H contains only those edges of K(n,P) which
belong to H. Clearly, H is bipartite. We shall show that for

t:Q[ﬁn—‘—l—l,

which is basically the value of t which maximizes the expected number of edges in H, the
random bipartite graph H a.a.s. fulfills Hall’s condition, and so a.a.s. it contains a perfect
matching.

In order to do that we show first that the underlying bipartite graph H has good
expanding properties. Let us first introduce some notation. For two subsets W and U
of the vertex set of H, let ey (W, U) denote the number of edges with one end in W and
another in U. Let W denote the complement of W in the vertex set of H. By Vol(W) we
denote the sum of vertex degrees of W.

Let us recall that a graph G is edge-transitive, if for any two edges e!,e? € E(G)
there exists a graph automorphism F : V(G) — V(G), which transforms e' into e?. The
following result of Chung [1] (Theorem 7.1) is crucial for our argument.

Theorem 3. Let G be an edge-transitive graph with diameter D. Then for every W C
V(G), such that Vol(W) < w’

eg(W W) 1
B S A
Vol(W) = 2D

In order to apply this result we need to check if H is edge transitive and has small
diameter.

Lemma 4. H (n,2 [%n—‘ + 1> 1s edge-transitive and its diameter can be bounded

from above by a constant D which depends only on constants B and vy but not on n.

Proof. Clearly, for i € [n] the function 7; : {0,1}™ — {0, 1}" that maps (vy,..., v ..., 0,)

to (vy,...,1 —v;,...,v,) is an automorphism of H. Also, for any permutation o : [n] —
[n], the map Aut(c) : {0,1}" — {0,1}" that maps the vertex (vy,...,v;,...,v,) to
(Vo(1) - - Vo(i)s - - - » Vo(n)) is an automorphism of H. We show that the group generated

by all automorphisms of the above two kinds acts transitively on edges of H.

Although it is a rather easy observation let us prove it more formally. Let e! = {u!, v'},
e? = {u?,v*} be two edges of H. For i € {1,2}, there exist precisely ¢ positions j such
that u} # v!. Let I; C [n] be the set of those positions (for i € {1,2}). Let ¢ be a
permutation of [n] such that ¢(I;) = I, and ¢* = Aut(¢) be the automorphism of H
induced by ¢. This automorphism is uniquely defined for fixed permutation ¢. Note that
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the pairs {¢*(u'), ¢*(v')} and {u?, v*} differ on the same positions, i.e. ¢*(u'); # ¢*(v');
if and only if u # vZ. Define ¢ : {0,1}" — {0,1}" by putting

W(z), = { vy i g(ul); =]

1 —x; otherwise.

Clearly ¢ (¢*(u')) = u?. Moreover 9(z); = x; iff ¢*(u'); = u3 and it happens iff ¢*(v'); =
v?. Thus ¢ (¢*(v')) = v? s0 1o $* is an automorphism of H which maps e' into ¢*. Hence
H is edge-transitive.

It remains to find an upper bound for the diameter of H. Let v, v" be two vertices of
H such that d(v,v’) is even. We show that they are connected by a short path. We split
our argument into several cases.

Case 1. d(v,v") < min{2t,2n — 2t}.

In this case there exists a vertex v” which is adjacent to both v and v’. Indeed, to find
v" it is enough to change v on d(v, v’)/2 positions on which v and v’ differ and ¢t —d(v,v")/2
positions on which they coincide.

Case 2. d(v,v") > 2t (which is possible only if v > ).

For each pair of such vertices v and v’ there exists a vertex v” adjacent to v such that

d(v",v") = d(v,v") —t. To get v" we only need to change v on ¢ positions on which v and
v’ differ. Applying this observation 2r times, where

— 2t
2T<[nt W+1:[%—2W+1< n_ _B+y

one can construct a path vwvy---vg. in H such that for every 1 < ¢ < 2r, we have
d(v;,v") = d(vi—1,v") —t and d(va,, v") < 2t. Notice that in this case 2t < n, so 2t < 2n—2t
and thus d(vy,,v") < min{2t,2n — 2t}. As d(vy,.,v') is even, one can connect vertices vy,
and v’ by a path of length two using the argument from Case 1.

Case 3. 2n — 2t < d(v,v") < 2t (which is possible only if 5 > 7).

For each such v and v’ there exist a path vvvy such that d(vy,v") = d(v,v") —2(n —1t).
To obtain v; from v, we need to change all n—d(v,v’) positions on which v, v" do not differ
and t —n+d(v,v’) among other positions. Then, d(v,v;) = n—d(v,v")+t—n+d(v,v") = t.
To obtain vy from vy, we need to change all n — d(v,v") positions on which v,v" do not
differ, all n — ¢ positions on which v and v; are the same and 2t — 2n + d(v,v’) > 0
other positions. Then, indeed d(vy,v9) =n — d(v,v") +n —t+ 2t — 2n + d(v,v’) =t and
d(vg,v") =2t — 2n + d(v,v").

Arguing in the same way we find a path vvy - - - v, of length

n — (2n — 2t) SR BN R n <2(5—1—7)
n—t n—t —L-n —2 v

such that for every i < s, d(vg;, V') = d(v9;_o,v") —2(n —t) and d(vys, v') < 2n — 2t. Now,
since d(vgs,v’) < min{2t,2n — 2t}, and d(vas, v') is even, we can apply Case 1 to connect
U5 and v’ by a path of length two.

2s

N
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Consequently, we have shown that the diameter D of H is bounded from above by

D<otV 3 0

f)/

As a direct consequence of Theorem 3 and Lemma 4 we get the following result on
expansion properties of H.

Lemma 5. Let W be a subset of the vertex set of H such that
W< |[V(H)|/2=2""

Then there ezists a constant ¢ = c(f3,7v) > 0 such that

en(W, W) > c\wy(;‘).

Proof. Let W, [W| < 2"1 be a set of vertices of H. Since H is an (?)-regular graph,

Vol(W) = @ W] < (?) VDI _ YoV (1)

Since H is edge transitive, by Theorem 3 we get

BH(W, W) S 1

Vol(W) ~ 2D’

where D is the diameter of H. By Lemma 4, D is bounded above by a constant, so for
some positive constant ¢ we have

— 1 n
> — Vol >
eg (W, W) 2DVO (W) = c|W]| (t) O

Let us return to the random graph H. Recall that H is a bipartite graph with a
bipartition (Vi,V3), where |Vi| = |V5] = 2"~1. We will use the Hall’s condition, which
states that a bipartite graph G(V,U), |V| = |U| does not have a perfect matching iff there
exists a set R C V or R C U such that

[Na(R)| < |R], (2)

where Ng(R) is the set of all vertices adjacent in G to the vertices from R. Suppose G
does not have a perfect matching. Let S be the smallest set S C V or S C U which
satisfies (2). Without loss of generality, suppose S C V. Assume |Ng(5)| < |S|—1. Then
we can delete any |S| — |Ng(S)| — 1 vertices from S to obtain a set smaller than S which
also satisfies (2). Since S is the smallest set satisfying (2) this situation is impossible, so
|INg(S)| = |S| — 1. Moreover the set S = U \ Ng(S) does not have neighbours in S, i.e.
Ng(S") CV\ S, so |[Ng(S)| < |V]—|S], while |S| = |U| —|S] + 1 > |Ng(S")|. Hence
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|S’| also satisfies (2). |S| + |S| = |U| + 1, so as S is the smallest set which satisfies (2),
51 < U]/2

Therefore if H does not have a perfect matching, there exists a set S C V; or S C V5
such that [Ny (S)| = |S| — 1 and |S| < |V4|/2 = 272, Let A be the event that such a
subset S exists in H. Let A; be the event that such a subset S C V; exists. Let Ay be
the event that such a subset S C V5, exists. Then P(A;) = P(Az), hence

P(H does not contain a perfect matching) = P(A) < 2P(A,;).

For two fixed sets S C Vi, |S]| < 2"2 = N/dand T C Vs, |T| = |S| — 1, let Agr
denote the event that T is the neighbourhood of S in the random graph H. In order
to estimate the probability of Agr we apply Lemma 5 to the set W = SUT. Clearly
(W] =2[S|—1< N/2.

For deterministic H we have

en(S.V\T) +en(T 0 8) = enW V) > ()Wl =< elsl -1, 9
while from the regularity of H we get
en(S.5) = en(5.V\T) + en(s,7) = () 1, 0
and
en(T.T) = en(T i\ )+ enr,5) = ()71 = (1) 051 -1, 5

Adding (3) and (4) and subtracting (5), we obtain that in H,

en(8.a\T) 2 5 () (1814 281 - e~ 151+ 1 > ¢ () 18],

for some constant ¢’ > 0. Thus if Ags occurs, ¢ (’Z) |S| fixed pairs of vertices which are
adjacent in H are not adjacent in H. Observe that for each pair u,v of vertices with
Hamming distance ¢, the probability that there exists an edge {u,v} is at least 5'4" .

Thus, the probability of A that Hall’s condition fails for some set S, |S| < 2"72 = N/4,
is bounded from above by

PA) <2 ) Y PAsy)

scvy TCVy
|SI<N/4 |T|=]S]-1
N/4
N/2\ [ N/2 ton—tye's (")
g 2 1 _ n cs t
S () )
N/4 .
<2 NQS L t.n—t )
; exp ( c s(t)ﬁ ¥ )
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Since
- n i m—1 n
o) =B+
=0
and t was chosen to correspond the largest term in the sum, so for n large enough

(Z) By 2 (B+)"

Hence

N/4

P(A) <2) (2 exp (=c(B+7)"/n))’

s=1
and since the term in brackets is exponentially small, it is maximal when s = 1 that is

N/4
P(A) <2 (2 exp (=¢(B+7)"/n))” < 22" exp (' (B +7)"/n) = o(1).

Consequently, a.a.s. H, and thus also (n, P), contains a perfect matching. O

In the proof we have found a perfect matching in a bipartite subgraph H of IC(n, P),
containing only the edges joining vertices which are at Hamming distance

t:2[ﬁn—‘+l

in the hypercube. Note however that if we take k edge-disjoint subgraphs H,, for ¢ € [k],
containing the edges of IC(n, P) joining vertices at Hamming distance

t:t(f):Q[ﬁnw +20+ 1.

respectively, we can mimic our argument to construct & edge-disjoint perfect matchings.
Thus, let k-PM denote the property, that a graph contains k edge-disjoint perfect
matchings.

Theorem 6. Let k € N, k > 2 be a constant.

. _J 0o B+
nh_)n;(ij’(lC(n,P) has k-PM property) = { 1 if B> 1.

In particular

, <
lim P(K(n,P) contains k-factor) = { (1] ZZ g:::z ; i

Note the difference between the cases k =1 and & > 2 for § =1 and v = 0 when, as
we have already observed, a.a.s. the minimum degree of K(n, P) is one.
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