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Abstract

We prove that if H = (V (H), E(H)) is a hypergraph, γ is an edge colouring of H,
and S ⊆ V (H) such that any permutation of S is an automorphism of H, then there
exists a permutation π of E(H) such that |π(E)| = |E| and π(E)\S = E \S for each
E ∈ E(H), and such that the edge colouring γ′ of H given by γ′(E) = γ(π−1(E)) for
each E ∈ E(H) is almost regular on S. The proof is short and elementary. We show
that a number of known results, such as Baranyai’s Theorem on almost-regular edge
colourings of complete k-uniform hypergraphs, are easy corollaries of this theorem.

There are many results in the literature concerning edge colorings of various families
of “complete” hypergraphs such that the colouring is “almost regular”. In this short note,
we give a general theorem of this kind and present several corollaries. These corollaries
are all known results, or at least very similar to known results. The purpose here is to
demonstrate the generality of the theorem, and in particular to present its simple proof. A
similar proof for the corresponding result in the special case of ordinary graphs appeared
in [12].

Results of the above-mentioned kind can be loosely described as generalisations of a
well-known theorem of Baranyai [6]. There is a multitude of generalisations of Baranyai’s
Theorem, for example see [2, 7, 8, 9, 11, 13, 14], and a comprehensive discussion of
these and the overlaps and relationships between existing results and consequences of
our theorem would be rather lengthy and involved. Instead we present just a few of the
cleaner corollaries to our theorem, and give some pointers to closely related results in the
literature.

In [2], Bahmanian proves results along somewhat similar lines to our main theorem,
and also obtains several generalisations of Baranyai’s Theorem as corollaries. Bahmanian’s
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main theorem applies the method of amalgamations of graphs [1] to hypergraphs. His
proof is considerably more substantial and involved than ours, and uses a result of Nash-
Williams [15] on laminar families of sets.

A hypergraph H consists of a vertex set V (H) and a collection E(H) of edges where
each E ∈ E(H) is a subset of V (H). The elements of an edge E are called its endpoints. A
hypergraph may have edges with different cardinalities, and may have multiple edges with
the same endpoints. We say that a hypergraph H′ is a subhypergraph of a hypergraph H
if V (H′) ⊆ V (H) and E(H′) ⊆ E(H).

If φ is a permutation of a set N and X ⊆ N , then φ(X) is defined by φ(X) = {φ(x) :
x ∈ X}. A permutation φ of V (H) is an automorphism of H if the multiplicity in H of
φ(X) equals the multiplicity in H of X for every X ⊆ V (H), where the multiplicity of any
X ⊆ V (H) is defined to be the number of edges in E(H) that have precisely the elements
of X as their endpoints.

A hypergraph H is almost regular if | degH(x)− degH(y)| 6 1 for all x, y ∈ V (H), and
is almost regular on S ⊆ V (H) if | degH(x)− degH(y)| 6 1 for all x, y ∈ S. If γ is an edge
colouring of H and c is one of the colours, then the spanning subhypergraph of H whose
edges are those assigned colour c by γ is called colour class c and is denoted by Hγ

c . An
edge colouring γ of H is almost regular if each colour class is almost regular, and is almost
regular on S ⊆ V (H) if each colour class is almost regular on S.

Our main result is the following theorem.

Theorem 1. If H is a hypergraph, γ is an edge colouring of H, and S ⊆ V (H) such
that any permutation of S is an automorphism of H, then there exists a permutation π of
E(H) such that |π(E)| = |E| and π(E) \ S = E \ S for each E ∈ E(H), and such that the
edge colouring γ′ of H given by γ′(E) = γ(π−1(E)) for each E ∈ E(H) is almost regular
on S.

Proof. If γ is almost regular on S, then we let π be the identity and we are finished.
Otherwise, there exists a colour c and vertices α, β ∈ S such that degHγc (α)−degHγc (β) > 1
and degHγc (α) > degHγc (x) > degHγc (β) for all x ∈ S. Let Eα\β = {E ∈ E(H) : α ∈ E, β /∈
E} and let θ be an involution of E(H) induced by the transposition (αβ). Note that
image(θ) ⊆ E(H), because the transposition (αβ) is an automorphism.

Construct an auxiliary multigraph G, possibly containing loops, with a vertex for each
colour, and with an edge {γ(E), γ(θ(E))} for each edge E ∈ Eα\β (so {γ(E), γ(θ(E))} is
a loop if E and θ(E) are the same colour). Now define an orientation O of the edges of
G by orienting {γ(E), γ(θ(E))} from γ(E) to γ(θ(E)) for each E ∈ Eα\β. Observe that
for each colour x we have deg+

G(x)− deg−G(x) = degHγx(α)− degHγx(β) where deg+
G(x) and

deg−G(x), respectively, denote the outdegree and indegree, respectively, of x in G.
It is easily shown that there is an orientation of any multigraph such that the indegree

of each vertex differs from its outdegree by at most 1. One way to obtain such an
orientation is to add a new vertex which is joined to every vertex of odd degree, greedily
decompose the resulting graph into edge-disjoint cycles, orient each of these cycles to form
a directed cycle, and then delete the added vertex.
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Let O∗ be an orientation of G such that the indegree of each vertex differs from its
outdegree by at most 1, and define π∗ to be the involution of E(H) that transposes E
and θ(E) precisely when E ∈ Eα\β and {γ(E), γ(θ(E))} has opposite orientation in O and
O∗. It follows that for each E ∈ E(H) we have |π∗(E)| = |E| and π∗(E) \ S = E \ S
(recall that α, β ∈ S). Moreover, since in G with orientation O∗ the indegree of each
vertex differs from its outdegree by at most 1, the edge colouring γ∗ given by γ∗(E) =
γ(π∗−1(E)) for each E ∈ E(H) is almost regular on {α, β}. Also, for each colour x, we
have degHγ∗x (α) + degHγ∗x (β) = degHγx(α) + degHγx(β). Noting that relative to the edge
colouring γ, colour class c of γ∗ is strictly “closer” to almost regular on S, and that no
colour class of γ∗ is “further” from almost regular on S, it is clear that the required
permutation π can be obtained by repeating the above-described procedure until colour
class c is almost regular on S, and then repeating for each colour.

A hypergraph is k-uniform if each edge has exactly k endpoints. Let n be a positive
integer, let N = {1, 2, . . . , n}, and for k = 0, 1, . . . , n let

(
N
k

)
= {X ⊆ N : |X| = k} be

the set of all k-subsets of N . The hypergraph with vertex set N , and edge set
(
N
k

)
is

called the complete k-uniform hypergraph (of order |N |) and is denoted KkN . The most
well-known version of Baranyai’s Theorem [6] is obtained from the following immediate
corollary of Theorem 1 by putting t =

(
n−1
k−1

)
and a1 = a2 = · · · = at = n

k
in the case k

divides n.

Corollary 2. If n, k, t and a1, a2, . . . , at are positive integers such that a1 + a2 + · · · +
at =

(
n
k

)
, then the complete k-uniform hypergraph of order n has an almost-regular edge

colouring with t colours c1, c2, . . . , ct such that the number of edges of colour ci is ai for
i = 1, 2, . . . , t.

Proof. Arbitrarily colour the
(
n
k

)
edges of the complete k-uniform hypergraph H so that

there are ai edges of colour ci for i = 1, 2, . . . , t, and then apply Theorem 1 with S =
V (H).

Let N = {1, 2, . . . , n}. For any vector Λ = (λ0, λ1, . . . , λn) of non-negative integers,
the hypergraph KΛ

N has vertex set V (KΛ
N) = N , and E(KΛ

N) ;given by including λr copies of
each r-subset of N for r = 0, 1, . . . , n. Thus, the hypergraph whose edges are the elements
of the power set of N is denoted K(1,1,...,1)

N , and the complete k-uniform hypergraph KkN is

the graph K(λ0,λ1,...,λn)
N with λk = 1 and λj = 0 for j 6= k.

The type of any collection of subsets of N is the vector (r0, r1, . . . , rn) such that for
j = 0, 1, . . . , n, rj is the number of subsets of cardinality j in the collection. In Corollary 3,
if we put λj = 1 for j = 0, 1, . . . , n, and choose ri,j so that

∑n
j=0 ri,j 6 n for i = 1, 2, . . . , t,

then we obtain a theorem from [13]. See [3] for a general result along these lines.

Corollary 3. Let n and t be positive integers, let N = {1, 2, . . . , n}, let λ0, λ1, . . . , λn
be non-negative integers, and let ri,j be a non-negative integer for i = 1, 2, . . . , t and
j = 0, 1, . . . , n. There is an almost-regular edge colouring of some almost-regular spanning
subhypergraph of K(λ0,λ1,...,λn)

N with t colours c1, c2, . . . , ct such that the edges in colour class
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ci are of type (ri,0, ri,1, . . . , ri,n) for i = 1, 2, . . . , t if and only if
∑t

i=1 ri,j 6 λj
(
n
j

)
for

j = 0, 1, . . . , n.

Proof. The condition that
∑t

i=1 ri,j 6 λj
(
n
j

)
for j = 0, 1, . . . , n is clearly necessary for

the existence of the required colouring of K(λ0,λ1,...,λn)
N . It says that across all the colour

classes, the required number of edges with exactly j endpoints does not exceed the number
of edges in K(λ0,λ1,...,λn)

N with exactly j endpoints.
Now conversely suppose

∑t
i=1 ri,j 6 λj

(
n
j

)
holds for j = 0, 1, . . . , n. Let rt+1,j =

λj
(
n
j

)
−
∑t

i=1 ri,j for j = 0, 1, . . . , n, and arbitrarily colour the edges of K(λ0,λ1,...,λn)
N so

that the edges in colour class ci are of type (ri,0, ri,1, . . . , ri,n) for i = 1, 2, . . . , t + 1. The
result now follows by applying Theorem 1 with S = N , and then removing the edges in
colour class ct+1.

Theorem 1 can be used to prove results on hypergraphs in which the vertex set V
is partitioned into parts V1, V2, . . . , Vn and for i = 1, 2, . . . , n any permutation of Vi is
an automorphism. Existing results on almost-regular edge colourings of such graphs
appear in [2, 3, 8, 9, 14]. One family of such graphs is complete k-uniform n-partite
hypergraphs. The complete k-uniform n-partite hypergraph KkM1,...,Mn

has vertex set V =
M1 ∪M2 ∪ · · · ∪Mn, where Mi ∩Mj = ∅ for i 6= j, and has an edge {x1, x2, . . . , xk} for
each k-subset of V where x1, x2, . . . , xk are from k distinct parts. We use Theorem 1 to
prove the following result.

Corollary 4. Let m, n, k, t and r1, r2, . . . , rt be positive integers with k 6 n, and let
M1,M2, . . . ,Mn be pairwise disjoint sets with |M1| = |M2| = · · · = |Mn| = m. There is
an almost-regular edge colouring of KkM1,M2,...,Mn

with t colours c1, c2, . . . , ct such that the

number of edges in colour class ci is ri for i = 1, 2, . . . , t if and only if
∑t

i=1 ri = mk
(
n
k

)
.

Proof. If the edge colouring exists, then the condition
∑t

i=1 ri = mk
(
n
k

)
clearly holds

because mk
(
n
k

)
is the number of edges in KkM1,M2,...,Mn

. Now conversely suppose
∑t

i=1 ri =

mk
(
n
k

)
holds, let N = {1, 2, . . . , n}, and consider the hypergraph H = Kλ0,...,λnN where

λk = mk and λj = 0 for j 6= k. That is, the hypergraph with vertex set N and with mk

edges having endpoints {x1, x2, . . . , xk} for each k-subset {x1, x2, . . . , xk} of N . Note that
the number of edges in H is mk

(
n
k

)
; the same as the number of edges in KkM1,M2,...,Mn

.
Arbitrarily assign the colours c1, c2, . . . , ct to the edges of H so that the number of

edges in colour class ci is ri for i = 1, 2, . . . , t, and apply Theorem 1 with S = N to obtain
an almost-regular edge colouring γ of H. Now arbitrarily assign colours to the edges of
KkM1,M2,...,Mn

so that for i = 1, 2, . . . , t and for each k-subset {x1, x2, . . . , xk} of N , the
number of edges of colour ci having an endpoint in each of the parts Mx1 ,Mx2 , . . . ,Mxk

is equal to the number of edges of H that have endpoints x1, x2, . . . , xk and are assigned
colour ci by the edge colouring γ. This is possible because the number of edges having
vertices in parts Mx1 ,Mx2 , . . . ,Mxk is mk; the same as the number of edges in H having
endpoints x1, x2, . . . , xk. If we now apply Theorem 1 taking S to be M1, and then taking
S to be M2, and so on, then the result is the required almost-regular edge colouring of
KkM1,M2,...,Mn

.
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An s-factor of a hypergraph H is a spanning s-regular subhypergraph, and an s-
factorisation is a set of s-factors that partitions the edges of H. We shall think of the s-
factors in an s-factorisation as colour classes in an edge colouring. Thus, an s-factorisation
is an edge colouring where each colour class is an s-factor.

Let M ⊆ N . An s-factorisation γ′ of KkN is an extension of an r-factorisation γ of
KkM if γ′(E) = γ(E) for each E ∈ E(KkM). If there exists an s-factorisation of KkN which
is an extension of an r-factorisation of KkM , then we say that the r-factorisation of KkM
is extendable to an s-factorisation of KkN . We now consider necessary conditions for the
extension of an r-factorisation of KkM to an s-factorisation of KkN . Results on extensions of
factorisations can be found in [4, 5, 10, 14], and Corollary 5 below is similar to Corollary
10 in [4].

Let m = |M |, let n = |N |, let t =
(
m−1
k−1

)
/r and let u =

(
n−1
k−1

)
/s so that t is the number

of colours in an r-factorisation of KkM and u is the number of colours in an s-factorisation
of KkN . If γ is an r-factorisation of KkM , then the number of edges in each colour class is
rm
k

.

We say that (k, r,m, s, n) is admissible if s divides
(
n−1
k−1

)
and there exist non-negative

integers xi,j, i ∈ {1, 2, . . . , u}, j ∈ {1, 2, . . . , k}, such that

(1)
u∑
i=1

xi,j =
(
m
k−j

)(
n−m
j

)
for j ∈ {1, 2, . . . , k};

(2)
k∑
j=1

jxi,j = s(n−m) for i ∈ {1, 2, . . . , u};

(3)
k∑
j=1

(k − j)xi,j = (s− r)m for i ∈ {1, 2, . . . , t}; and

(4)
k∑
j=1

(k − j)xi,j = sm for i ∈ {t+ 1, t+ 2, . . . , u}.

It is easy to see that if an r-factorisation of KkM is extendable to an s-factorisation of KkN ,
then (k, r,m, s, n) is admissible. It is clear that s must divide

(
n−1
k−1

)
because

(
n−1
k−1

)
is the

degree of KkN . Moreover, if we let xi,j be the number of edges of colour ci that have exactly
j endpoints in N \M for i = 1, 2, . . . , u and j = 1, 2, . . . , k, where c1, c2, . . . , ct are the
colours in the r-factorisation of KkM , and c1, c2, . . . , cu are the colours in the s-factorisation
of KkN , then simple counting guarantees that Conditions (1)-(4) hold. Condition (1) is
obtained by counting the number of edges of KkN that have exactly j endpoints in N \M ,
Condition (2) is obtained by counting the number of endpoints in N \ M of edges of
colour ci, and Conditions (3) and (4), respectively, are obtained by counting the number
of endpoints in M of the edges of colour ci in E(KkN) \ E(KkM), when i = 1, 2, . . . , t and
when i = t+ 1, t+ 2, . . . , u, respectively.

the electronic journal of combinatorics 23(4) (2016), #P4.7 5



Corollary 5. Let M and N be sets with M ⊆ N , let m = |M | and let n = |N |. An
r-factorisation of KkM is extendable to an s-factorisation of KkN if and only if (k, r,m, s, n)
is admissible.

Proof. The discussion preceding the statement of the corollary shows that (k, r,m, s, n)
being admissible is necessary for the existence of the extension. Now conversely suppose
that (k, r,m, s, n) is admissible, let γ be any r-factorisation ofKkM , let t =

(
m−1
k−1

)
/r and u =(

n−1
k−1

)
/s, let the colours assigned by γ be c1, c2, . . . , ct, and define xi,j for i ∈ {1, 2, . . . , u}

and j ∈ {1, 2, . . . , k} so that the xi,j satisfy Conditions (1)-(4) in the definition of admis-
sible. Let H be the hypergraph with V (H) = N and E(H) = E(KkN) \ E(KkM), and define
an edge colouring γ0 of H by arbitrarily assigning colours c1, . . . , cu so that the number
of edges of colour ci that have exactly j endpoints in N \M is xi,j for i ∈ {1, 2, . . . , u}
and j ∈ {1, 2, . . . , k}. Apply Theorem 1 to H with edge colouring γ0; first with S = M ,
and then with S = N \M . The union of the resulting edge colouring of H and γ is the
required s-factorisation of KkN .
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n1···nh Problèmes combinatoires et théorie des graphes (Colloq. Internat.

the electronic journal of combinatorics 23(4) (2016), #P4.7 6



CNRS, Univ. Orsay, Orsay, 1976), pp. 19–21, Colloq. Internat. CNRS, 260, CNRS,
Paris, 1978.

[10] Z. Baranyai and A. E. Brouwer, Extension of colorings of the edges of a complete
(uniform hyper)graph, Math. Centre Report ZW91 (Mathematisch Centrum Ams-
terdam). Zbl. 362.05059, 1977.

[11] A. E. Brouwer and A. Schrijver, Uniform hypergraphs. In A. Schrijver, editor, Pack-
ing and Covering in Combinatorics, pages 39–73. Mathematical Centre Tracts 106,
Math. Centr., Amsterdam, 1979.

[12] D. Bryant and B. Maenhaut, Almost regular edge colourings and regular decompo-
sitions of complete graphs, J. Combin. Des., 16: 499–506, 2008.

[13] C. J. Colbourn, B. Fan and D. Horsley, Disjoint Spread Systems and Fault Location,
SIAM J. Discrete Math., to appear.

[14] R. Häggkvist and T. Hellgren, Extensions of edge-colourings in hypergraphs. I. Com-
binatorics, Paul ErdHos is eighty, Vol. 1, 215–238, Bolyai Soc. Math. Stud., János
Bolyai Math. Soc., Budapest, 1993.

[15] C. St. J. A. Nash-Williams, Amalgamations of almost regular edge-colourings of
simple graphs, J. Combin. Theory Ser. B, 43: 322–342, 1987.

the electronic journal of combinatorics 23(4) (2016), #P4.7 7


