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Abstract

Let (s2(n))22, denote Stern’s diatomic sequence. For n > 2, we may view sa(n)
as the number of partitions of n — 1 into powers of 2 with each part occurring at
most twice. More generally, for integers b,n > 2, let sy(n) denote the number of
partitions of n — 1 into powers of b with each part occurring at most b times. Using
this combinatorial interpretation of the sequences s,(n), we use the transfer-matrix
method to develop a means of calculating s(n) for certain values of n. This then
allows us to derive upper bounds for s;(n). In the special case b = 2, our bounds

improve upon the current upper bounds for the Stern sequence. We then show that

b2 -1 logy, ¢
lim sup Slb(n) = ( ) .
n—soo  MI08H P \/5

Keywords: Stern sequence; Fibonacci number; Lucas number; over-expansion;

transfer-matrix method.

1 Introduction

Throughout this paper, F}, and L,, will denote the Fibonacci and the Lucas numbers.
We have F,,, .0 = F,1+ F,, and Ly, o = L1 + Ly, for all integers m (including negative
integers). We convene to use the initial values F; = F; =1, Ly = 1, and Ly, = 3. We also

1+56 1-v6 -1

let ¢ = 5 and ¢ = = —. The symbol N will denote the set of positive

2 ¢
integers.
Problem B1 of the 2014 William Lowell Putnam Competition defines a base 10 over-
expansion of a positive integer N to be an expression of the form

N = d, 10" + dp 1101 + -+ + do10°
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with dj, # 0 and d; € {0,1,2,...,10} for all i. We may generalize (and slightly modify)
this notion to obtain the following definition.

Definition 1. Let b > 2 be an integer. A base b over-expansion of a positive integer N is

k
a word dydg_1 - - - dy over the alphabet {0, 1,...,b} such that dj # 0 and Zdibi = N. We
i=0
refer to the letter d; as the i digit of the expansion. It is well-known that each positive
integer NV has a unique base b over-expansion that does not contain the letter (or digit)
b; we refer to this expansion as the ordinary base b expansion of N.

The Stern-Brocot sequence, also known as Stern’s diatomic sequence or simply Stern’s
sequence, is defined by the simple recurrence relations

s(2n) =s(n) and s(2n+1)=s(n)+s(n+1)

for all nonnegative integers n, where s(0) = 0. This sequence has found numerous ap-
plications in number theory and combinatorics, and it has several interesting properties
which relate it to the Fibonacci sequence. For n > 2/ it is well-known that s(n) is the
number of base 2 over-expansions (also known as hyperbinary expansions) of n — 1 [3].
To generalize Stern’s sequence, let s,(n) denote the number of base b over-expansions of
n — 1. Equivalently, one may wish to think of s,(n) as the number of partitions of n — 1
into powers of b with each part occurring at most b times. We convene to let s,(0) = 0
and s,(1) = 1. The sequence s,(n) satisfies the recurrence relations s,(bn) = su(n),
sp(bn + 1) = sp(n) + sp(n + 1), and sp(bn + i) = sp(n + 1) for i € {2,3,...,b — 1}.
Equivalently,

sy (%), ifn=0 (mod b);
sp(n) = < s (22) + s (B2 +1), ifn=1 (mod b); (1)
5;,(%—1—1), ifn=14 (modb)and2<i<b.

Using (1), one may easily prove the following lemma.

Lemma 2. Let n be a positive integer. If n =1 (mod b?), then

sy(n) = s <nb—21) + 5 (%H)

Ifn=0+1 (mod b?), then

n—1 n+b—->b—1
sp(n) = sp 2 + sp — )

Calkin and Wilf [2] determined that

Jloga ¢
0.958854 ... =

1
< lim sup s(n) < +¢

NG mSUp o S g =1.170820.. .,
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and they asked for the exact value of limsup Here, we give upper bounds for the

nlogz ¢”
values of sy(n) for any integer b > 2, from which we will deduce that

. sp(n) _ (b2 —1)m?
hgi Solip om 6 NG .

s(n)  3le? . : : : .
ogig = = While preparing this manuscript, the author dis-
082

In particular, lim sup
n—oo T

covered that Coons and Tyler [4] had already determined this value of the supremum

s(n
l(g ) % in the same paper, they mention that this problem actually dates back
N'082

to Berlekamp, Conway, and Guy in 1982 [1]. However, the bounds we derive apply to
the more general family of sequences s,(n) and are stronger than those given in [4]. In
addition, our methods of proof are quite different from those used in [4]. Coons and Tyler
use clever analytic estimates to prove their results from the recursive definition of s(n).
By contrast, we will make heavy use of the interpretation of s,(n) as the number of base b
over-expansions of n— 1 in order to prove several of our most important results. In partic-
ular, we will combine this combinatorial interpretation of sy(n) with the transfer-matrix
method in order to prove Theorem 12. In turn, Theorem 12 will allow us to determine
the maximum values of s,(n) when n is restricted to certain intervals.

For each fixed b > 2, the sequence s,(n) has a somewhat periodic nature. Our upper
bounds are local estimates within the periods; they refine the more global estimates given
in [4] when b = 2.

limit of

2 Determining Maximum Values

Throughout this section, fix an integer b > 2. Our goal is to derive upper bounds for the
numbers s,(n), particularly those values of n that are slightly larger than a power of b
(we will make this precise soon). To do so, we will make use of the following sequence.

Definition 3. Let h; = hy = 1. For m > 3, let

5]
hm — 1+ Z bm7272i.
=0

Alternatively, we may calculate h,, using the recurrence relation

bhy, 1 —b+1, if 2|m:
hm:{ 1— b+ if 2|m )

bhom_1 + 1, if 24 m

along with the initial value h; = 1. For example, hs =b+1, hy =b* +1, hs = b> + b+ 1,
and hg = b* +b? + 1. It is important to note that h,, = 1 (mod b) for all m € N. We
state the following lemma for easy reference, although we omit the proof because it is
fairly straightforward.
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Lemma 4. For any positive integer m,

b (1)
hm+1 - hm — b—|— 1 .

The following lemma lists three simple but useful observations about the numbers
sp(n). We omit the proof because it follows easily from (1).

Lemma 5. Let n and k be nonnegative integers with b* < n < bF+1,
i. If n=jb* for some j € {1,2,...,b— 1}, then sy(n) = 1.
ii. If k=1, then sp(n) < 2, where equality holds if and only if n =1 (mod b).

ii. If k> 1 andn %1 (mod b), then sy(n) = sp(n') for some integer n' with b*= < n' <
b

Proposition 6. Let k and n be nonnegative integers with b* < n < b**'. We may write
n uniquely in the form n = jb¥ + ¢, where j € {1,2,...,b—1} and t € {0,1,...,b* — 1}.
We have sy(n) < Fyio, where equality holds if and only if t = hy, ort = hyyq.

Proof. That we may write n uniquely in the form n = jb* 4 ¢ is trivial. The proof of the
rest of the proposition is by induction on k. The case k = 0 is immediate from the first
part of Lemma 5. The case k = 1 follows from the second part of the same lemma. Now,
assume k > 1. We divide the proof into three cases.

Case 1: In this case, suppose t = hy or t = hyy1;. We will assume that t = h;, and that k
is even; a similar argument holds if & is odd or t = hy, ;. Thus, n = jb* + h;. Because k
is even, we may use (2) to write hy = bhy_1 — b+ 1 and hy_; = bhy_o + 1. Furthermore,
hry = 1 (mod b*) because k is even. Since n = hy = 1 (mod b?), we have by Lemma 2
that

—1 +b—1 ] he — 1 _ he — 1
sp(n) = sp (an ) + S (HT) = b (]bk_Q + kb—2) + Sp (]bk_l + kT + 1)

= S (]ka + M) + Sp (jbkil + hkfl) =S (jbki2 + hk,Q) + Sp (jbkil + hkfl) .

b

By induction on k, s (jbk_2 + hk_g) = F}, and s (jbk_l + hk_l) = Fyy1. Thus, sp(n) =
Fy + Fyyq = Fyyo, as desired.

Case 2: In this case, suppose n Z 1 (mod b). By Lemma 5, there exists an integer n’
with b=t < n’ < bF such that sy(n) = sp(n’). If ' = b*, then, using Lemma 5 again,
sp(n) = 1 < Fryo. If 0’ < V¥, then it follows from induction on k that sy(n) = sp(n’) <
Fri1 < Figo.

Case 3: In this final case, suppose n = 1 (mod b) and that t # hy and ¢ # hy1. Suppose,
by way of contradiction, that s,(n) > Fiis. Since t = n = 1 (mod b), we may write
t = bt + 1 for some integer ¢’ < b*~1. Using (1), we have

—1 —1
sp(n) = sy (n ; ) + 8 (n —+ 1> = s (jOF T+ ) + (G0 1) (3)
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If ' # 0,1 (mod b), then we know from Lemma 5 and the fact that v*~! < jo*~! + ¢ <
GOt 4+ 1 < bF that s, (50 + 1) = sp(v1) and su(jBF 1 + ' + 1) = s(vy) for some
integers vy, vy € [0*72,0%71]. By (3) and induction on k, it follows that if ¢ # 0,1 (mod b),
then

sb(n) = Sb(Ul) + sb(vg) =< Fk + Fk < Fk+2.

This is a contradiction, so ¢ = 0,1 (mod b). We will assume that ¢ = 0 (mod b);
a similar argument may be used to derive a contradiction in the case t = 1 (mod b).
Write ¢ = bt”. Because t' < b* ' and j < b—1, jbF ' +¢ +1 < b*. We know
that jb*~' + ¢ + 1 # b* because ¥ = 0 (mod b). Therefore, we have the inequalities
P2 G027 < b1 < 0P+ 4+ 1 < b, We see by (3) and induction that

sp(n) = sp(0F 7 -t ) s (JO T 1) = sy (JOF T2 ) sy (JO T 1) < FptFry1 = Frgo,

where the equality s,(j0* 1 +#') = s, (jb*2+1") is immediate from (1). This last inequality
must be an equality since we are assuming s,(n) > Fjyo, 5o we must have s,(j0* 2 +1") =
Fy, and s3(jbF "1 +#'+1) = F};1. The induction hypothesis states that this is only possible
if " € {hg_o,hx_1} and ¢’ +1 € {hj_1, hy.}. Suppose first that t” = hy_o and ' +1 = hy_;.
We have hy_1 = bhy—o + 1, so it follows from (2) that k£ must be even. Using (2) again,
we see that hy =bhy_1 —b+1=>0b(t'+1) — b+ 1 =t, which contradicts our assumption
that ¢ # hy. Similarly, if t = hy_; and ' + 1 = hy, then we may derive the contradiction
t = hypy1. It is clearly impossible to have t” = hy_; and ¢ + 1 = hy_; since t' = bt”.
Therefore, we are left to conclude that ¢ = hy_o and ¢/ + 1 = hy. If k is even, then we
may use (2) to write

bt =t = hy, —1=bhy_1 —b=b(bhy_s+ 1) — b= bhy_y = b’

which is impossible. This means that k£ must be odd, so hy = bhx_1 + 1 by (2). Since
hy =t +1=10t"4+1= bhi_o + 1, we conclude that hy_1 = hy_o. It is easy to see from
Definition 3 that this is only possible if & = 3. Hence, t" = hy = 1,/ = hg — 1 = b,
and t = bt' + 1 = b> + 1. However, this means that ¢ = hy = hjq, which is our final
contradiction because we assumed ¢ & {hy, hyy1}- O

Now that we know the maximum values of s,(n) for b* < n < b¥**! we may easily
derive the following result.

Corollary 7. We have

. sp(n) _ (b* —1)los?
e 5 > S

Proof. We will need Binet’s formula for the Fibonacci numbers, which states that
(bm _ (_(b)—m
V5

for all m € Z. For each positive integer k, let uy, = b* + hy. Let i, = (b — 1)hy, — b*, and
observe that
, 1, if 2|k
. —
V¥ —b—1, if2¢k.
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We have

. ¢k+2 _ (_¢)—(k+2) . 1 — ¢—(k+2)(_¢)—(k+2) . 1 — ¢—(k+2)(_¢)—(k+2)
(A Y R S ] (N L i Wy o
By Proposition 6 and Binet’s formula,

Sb(uk) B Fk+2 B ¢k+2 _ (_¢)—(k+2) B ¢k+2 _ (_¢)—(k+2)
uLogm (O hy)leed bk 4 py)lomed/F (b% + %’;tif)logm\/g
(b2 o 1)logb¢ ¢k3+2 _ (_¢)—(k+2)
- \/5 (bk+2 +Z~k)1ogb¢>
SO 2 g, 6
— 1)
lim sup Sfo(gnl =l Sﬁg;’j = ( ) : O
n—oo T8 koo gy V5
bQ -1 logy, ¢
We now wish to show that limsup (1) < ( ) CIE W+ by < o< BETY for

nsoo N8 ® h
some positive integer k, then we know from Proposition 6 that

sb(n) < Fk+2 - Sb<bk + hk) Sb(bk + hk)
nlogy ¢ S plogy ¢ nlogy, ¢ (bk 4 hk>1ogb¢'

We saw in the proof of Corollary 7 that

L s (B 1)
1 — X
k—o00 (bk + hk)logb¢ \/5

Hence, we need only find a sufficiently strong upper bound for s,(n) when b* < n < b¥+h,,
for some positive integer k. For this purpose, we make the following definitions.

Definition 8. For nonnegative integers k,r,y, let

Yy
[(kﬂ’,y) = {nGN: bk <n<bk+zbr2i}7

=0

p(k,r,y) = max{sy(n): n € I(k,r,y)},
and
v(k,r,y) =min{n € I(k,r,y): sp(n) = p(k,r,y)}.

Our goal is to calculate p(k,r,y) for any given nonnegative integers k, r, y that satisfy
2y < r < k — 1. This will allow us to to derive tight upper bounds for all integers n
that satisfy b* < n < b¥ + hy, for some k by choosing appropriate values of r and y.
One might think that a simple inductive argument based on the recurrence relation (1)
should be able to derive our upper bounds quite effortlessly. However, the author has
found that attempts to prove upper bounds for s,(n) using induction often fail or become
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incredibly convoluted. Indeed, the reader may wish to look at [4] in order to appreciate
the surprising amount of ingenuity that Coons and Tyler need for the derivation of their
upper bounds (which are weaker than ours) in the specific case b = 2. Therefore, we shall
prove a sequence of lemmas in order to develop more combinatorial means of calculating

p(k, 7 y) and v(k,r,y).

Lemma 9. Let a;a;_1 - - ag be the ordinary base b expansion of a positive integer n. Let
coCo_1 -+ - Co be a base b over-expansion of n. Set ¢; = 0 for all integers i with ¢ < i < t.
For any m € {0,1,...,t},

{Oab_17b}7 Zfam:07
cm € £ {0, 1,0}, if ap = 1;

{am — 1,a,,}, otherwise.

t t
Proof. We know that Zaibi = Zcibi because a;a;_1---ag and cecp_1 -+ - cg are base b
i=0 i=0
over-expansions of the same number. Therefore, for any j € {0,1,...,t},

J J
Zaibi = Zcibi (mod & 1). (4)
i=0 i=0

J J
If Zaibi > Zcibi for some j € {0,1,...,t}, then it follows from (4) and the fact that
i=0 i=0
a; €4{0,1,...,b— 1} for all i that
> oab <Y et < -V 4> (b— 1) =1,
i=0 i=0 ‘
which is impossible. Hence, Z a;b" < Z c;b' for all j € {0,1,...,t}. Choose some

=0

=0
m € {0,1,...,t}. Since ¢; < b for all ¢, we have

m m—1 m—2
Db Ko™+ Y b= (cp P4 Y BT < (e + 2)b™ (5)
1=0 =0 =0
It follows that . .
4™ <Y abt <Y ab' < (e + 20",
=0 =0

SO ¢y, = Gy, — 1. To complete the proof, we simply need to show that if ¢,, > a,,, then
either a,, = 0 and b, € {b —1,b} or a,, = 1 and ¢,, = b. Suppose ¢,, > a,,. We have

m m—1 m—1 m
Z a;bt = a,,b™ + Z a;bt < a,b™ + Z bt < Z ;b
1=0 =0 =0 1=0
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and
m m

d a => bt (mod b

=0 =0
(by (4)), so we know from (5) that

D albt < b EY et < =BT (o + 2)0™
=0 1=0

This implies that a,,b™ < —b™*! + ¢,,b™ + 2™, s0 ¢, — G > b — 2. This is impossible if
an & {0, 1} because ¢, < b. If a,, = 0, we must have either ¢,, =b—1 or ¢,, = b, and if
a,, = 1, then we must have ¢, = b. O

Lemma 10. Let k,r,y be nonnegative integers with 2y < r < k — 1. If a;a;_1---ap s
the ordinary base b expansion of v(k,r,y) — 1, thent =k, ap = 1, aj = ag = 0 for all
je{r+1,....,k—1}, and a; € {0,1} for alli € {0,1,... k}.

Proof. Let v = v(k,r,y), and let a;a;_1 - - - ap be the ordinary base b expansion of v — 1.
It follows from the fact that v € I(k,r,y) that ¢ = k, a, = 1, and a; = 0 for all
je{r+1,....;k—1}. We still need to show that ag = 0 and a; € {0,1} for all i €
{0,1,...,k}. Suppose, for the sake of finding a contradiction, that a,, € {2,3,...,0— 1}
for some m € {0,1,...,k}. Because ay = 1, we know that m € {0,1,...,k — 1}. Let
V' =v—(a, —1)b™. The ordinary base b expansion of v’ — 1 is simply the word obtained
from agag_; - - - ag by replacing the m!* digit (which is a,,) with 1. Observe that v/ < v
and v/ € I(k,r,y) since

V< b 0" =0+ ™ — (ap — D™ < v — (@, — D)D" =1,

Hence, by the definition of v in Definition 8, s,(’) < s(v). Choose some base b
over-expansion c¢ycy_1---co of v — 1, and let f(cec—1---co) be the word obtained from
CceCy_1 - - - ¢y by replacing the m** digit (which is ¢,,) with ¢,, — a,, + 1. Lemma 9 implies
that ¢,, — a,, + 1 € {0,1} because ¢,, € {a, — 1,a,,}. Therefore, f(coco_1---¢o) is a
base b over-expansion of v/ — 1. We see that f is an injection from the set of base b
over-expansions of v — 1 to the set of base b over-expansions of v/ — 1. This contradicts
the fact that s,(v') < sp(v), so we conclude that a; € {0,1} for all i € {0,1,...,k}.

We are left with the task of showing that ag = 0. Suppose ay # 0. By the preceding
paragraph, we must have ap = 1. This means that v =2 (mod b), so

sb(V):sb(VZQ—l—l) <sb<VT_2)+sb<V;2+1) = s(v—1)

by (1). Since v = 2 (mod b) and v > b* by definition, we know that v—1 > b*. Therefore,
v—1¢€I(k,ry) and sp(v) < sp(v — 1), which contradicts the definition of v. It follows
from this contradiction that ay = O. ]
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Lemma 10 hints that it is of interest to enumerate the base b over-expansions of positive
integers whose ordinary base b expansions use only the digits 0 and 1. Let eg,eq,..., ey
be nonnegative integers with ey < e; < -+ < ey, and let n = 0 + b** + --- 4+ b*. Let
(@; denote the operation that changes one base b over-expansion of n into another by
increasing the " digit of an expansion by b and decreasing the (i + 1) digit of the
expansion by 1. The operation @; can only be used if the i digit of the expansion under
consideration is a 0. If we use the operation ; when the (i + 1) digit of the expansion
is a 0, then this digit is immediately converted to a b— 1 and the (i +2)" digit is reduced
by 1. If the (i + 2)" digit is also 0, then it is immediately converted to a b — 1 and the
(i + 3)" digit is reduced by 1. This process continues until a nonzero digit is reduced
by 1. After using the operation );, any leading 0’s are erased from the expansion. The
transformation of 0’s to (b — 1)’s is analogous to the transformation of 0’s to 9’s that
occurs when the number 1 is subtracted from the number 10000, resulting in 9999. As
an example, only the operations o, Q4, @5, Qs, and (Y5 may be used to transform the
expansion 1010001011 into a new expansion. The operation ()4 changes the expansion
1010001011 into the expansion 100(b—1)(b—1)b1011. The operation Qg first changes the
expansion 1010001011 into 0610001011; the leading 0 is then erased, yielding b10001011.

We will transform the ordinary base b expansion of n into a base b over-expansion
cici—1 -+ - cg of n by repeated use of the operations just described. At each step, we will
choose the value of ¢, for some i € {0,1,...,¢} while simultaneously deciding the values
ofcjforallj € {e;_1+1,e;_1+2,...,e;—1} (orall j < e; in the case i = 0). We proceed by
permanently deciding the values of cg, c1, .. ., ce,, then permanently deciding the values of
Ceo+15 Ceg+25 - - -  Cey » annd so on until we decide the values of ¢, |41, ¢e, 42, ..., Ce,. We omit
ce, from the word c,c;—; - - ¢ if ¢, = 0; in this case, t = e, — 1. For the sake of providing
a concrete example of this process, we will suppose that {eg,e1,...,e,} = {2,4,5,9,11}
and b = 7. Here, the ordinary base 7 expansion of n is 101000110100. Since ey = 2, we
first choose the value of ¢y (while simultaneously deciding the values of ¢y and ¢1). There
is only one way to set co = 1; namely, we keep the same expansion 101000110100. If we
want to have ¢ = 0, then we could either perform the operation )y to get the expansion
101000110067 or perform the operation ()1 to get the expansion 101000110070. Similarly,
if we want to have co = 7, then we could either perform the operations ()g and then @)
to obtain 101000106767 or perform the operations () and then ()2 to get 101000106770.
That is, there are ey = 2 ways to set co = 0 and eg = 2 ways to set co = 7. By Lemma
9, 0,1, and 7 are the only possible values of ¢y;. For this example, we will assume we
chose to use the operations )1 and )5 to get the expansion 101000106770. Next, we
choose the value of ¢, because e; = 4. Because we used the operation @, the 4" digit
of the expansion was temporarily converted into a 0. This means that there is no way
to set ¢4 = 1 using the operations ();. There is one way to set ¢, = 0; just keep the
expansion 101000106770. Similarly, there is one way to set ¢4 = 7; just use the operation
(4 to obtain 101000076770. We will assume that we make the former choice and keep
the expansion 101000106770. Next, we choose the value of c¢; since e = 5. The only
way to set ¢ = 1 is to keep the expansion the same. Since we have already determined
Co, C1, C2, C3, ¢4, We cannot perform any of the operations (g, @1, @2, Q3,4 in order to
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Wy W5 Wy, 2 W
Figure 1: The edge-weighted digraph G for the given example. Note that each of the
vertices ug, Vg, Wy is drawn twice.

temporarily reduce the 5 digit of the expansion by 1. In other words, cs5 is stuck with
the value 1. We now have the expansion 101000106770, and we wish to choose the value of
g (since e3 = 9) while simultaneously determining the values of cg, ¢z, cs. Again, the only
way to make cg = 1 is to keep the expansion 101000106770. To make ¢y = 0, we could use
Qs to get 100667106770, use Q7 to get 100670106770, or use Qg to get 100700106770. To
set cg = 7, we could use Qg and then (g to obtain 67667106770, use (7 and then Qg to get
67670106770, or use Yg and then Qg to get 67700106770. Hence, there are e3 —ey —1 =3
ways to set cg = 0 and e3—eys —1 = 3 ways to set ¢g = 7. We will assume that we choose to
use 7 (and not ()g) to obtain the expansion 100670106770. All that is left to do is decide
the value of ¢;; (while simultaneously determining cj9). We cannot set ¢;; = 7 because
there is no nonzero digit to the left of the 11 digit from which to “borrow.” Alternatively,
one could observe that if ¢;; = 7, then cq1¢1¢ - - - ¢g would be a base 7 over-expansion for a
number strictly larger than n. We can, however, keep the expansion 100670106770 if we
wish to set ¢;; = 1. There is one way (because e — e3 — 1 = 1) to set ¢;; = 0; simply use
the operation )1y to obtain the expansion 70670106770.

Figure 1 depicts an edge-weighted digraph G which encodes all the possible choices
that we could have made in this example. The graph has only fifteen vertices, but we
have drawn each of the vertices ug, vg, wy twice in order to improve the aesthetics of the
image. The vertex wu; corresponds to choosing to set ¢, = 0. The vertex v; corresponds
to setting c., = 1. The vertex w; corresponds to setting c., = 7. The weights of the edges
correspond to the number of choices possible. For example, if we have chosen to let c5 = 0
(corresponding to the vertex us), then there are three ways to set ¢y = 7 (corresponding
to the vertex ws). Thus, there is an edge of weight 3 from uy to ws. After setting co = 7,
it is impossible to set ¢;; = 1, so there is an edge of weight 0 from w3 to v4. The reader
might ask why there are edges from uy, v4, w4 to ug, vo, wg. We include these edges because
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we wish to interpret base 7 over-expansion of n in terms of closed walks in the graph G.
There are edges of weight 2 from uy, v4, w4 to ug because there are two ways to set ¢y = 0,
regardless of the value of ¢1; (recall that we choose ¢y before choosing c¢;;). Similarly,
there are edges of weight 1 from wuy, v4, wy to vy and edges of weight 2 from uy, vy, w4 to
wo.

Suppose we want to construct a base 7 over-expansion of n in which ¢, = 0, ¢4 = 1,
¢s =1, cg =7, and ¢;; = 0. This choice of the values of ¢, fori € {0, 1,2, 3,4} corresponds
to the closed walk (ug, v1, V2, w3, U4, up) in G. The weight of this walk (which we calculate
as the product of the weights of its edges) is 6, so there are 6 base 7 over-expansions of
n with these specific values of ¢, ¢4, 5, ¢9, c11. As another example, there are no base 7
over-expansions of n in which ¢ =7, ¢4 =7, ¢5 = 1, cg = 0, and ¢;; = 1 because the
weight of the closed walk (wg, w1, va, us, vy, wp) is 0.

We are finally in a position to enumerate the base 7 over-expansions of n. To do so,
we will need the following definition.

Definition 11. For any real ¢, let

t 1 t t 1 ¢t
Mt = t 1 ¢t and Nt = t 1 t
1 01 0 00
If we put the vertices of G in the order ug, vg, wp, U1, vy, W1, ..., Us, Vg, Wy, then the
adjacency matrix of G (written as a block matrix) is
O Mg, O O O
O O My, O O
A= O O O My O [,
O O O O B
c O O O O
where d; = e; —e;_1 — 1,
er—ep1—1 1 0 1 10 eo 1 e 2 1 2
B=1|¢e—¢e_1—11 0 | = 1 1 0], C=|e 1 e |=|212],
1 0 0 1 00 eo 1 e 2 1 2

and O denotes the 3 x 3 zero matrix. The total number of base 7 over-expansions of n is
equal to the sum of the weights of the closed walks of length 5 in GG that start at ug, vy,
or wy. This, in turn, is equal to the sum of the first three diagonal entries of A°. Using
elementary linear algebra, we see that the first three rows and the first three columns of
A5 intersect in a 3 x 3 block given by M; MyM3;BC'. Therefore, the sum of the first three
diagonal entries of A5 is Tr(M; MyM3BC'), where Tr denotes the trace of a matrix. One
easily calculates this value to be 158.

We now state this result in greater generality (and in a slightly different form). Sketch-
ing the proof of the following theorem, we trust the reader to see that the method used
in the preceding example is representative of the method used in general.
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Theorem 12. Let ey, eq,...,e, be nonnegative integers with eg < ey < --- < e; (where
0>1). Letd; =e;—e;_1—1 foralli € {1,2,...,¢}. The number of base b over-expansions
of the number b 4 b°* + - - - 4+ b* is given by

Tr(Neonl Md2 s Md@>-

Proof. Let n = 0% + bt 4 --- 4+ b*. Let

O My O O 0O O
O O M, O 0O O
O O O O 0O O
A= : : ;
O O O O My, O
O O O O O B
c O O O 0O O
where
dg 1 0 €0 1 €0
B=\|d 1 0 and C=1[ ¢ 1 e
1 00 eg 1 eg
Let G be the edge-weighted digraph with vertex set {ug, vo, wo, w1, vy, w1, ..., Up, Ve, Wy}
and adjacency matrix A. Suppose we wish to construct a base b over-expansion ¢;¢;_1 - - - ¢y
of n. As in the example above, specifying the values of ¢, ¢,, ..., c., (each such value

must be 0, 1, or b by Lemma 9) corresponds to choosing a closed walk of length ¢ + 1
in G starting at ug, vy, or wy. The weight of this walk is the number of base b over-
expansions ce,c.,—1 - - - ¢o of n that have the specified values of ¢, ce,, .. ., ce,. Therefore,
the total number of base b over-expansions of n is equal to the sum of the first three
diagonal entries of A“*!. The first three rows and the first three columns of A“*! intersect
in the 3 x 3 block Mg, Mg, --- My, ,BC, so the number of base b over-expansions of n is
Tr(Mg, My, - - - Mg, , BC). Now, one may easily calculate that BC' = M, N,,. Therefore,
using the fact that Tr(XY') = Tr(Y X)) for any square matrices X, Y of the same size, we
conclude that

Tr(MdlMd2 cee Mdg_lBC) = Tr(Mathz e Mde—lMdeNEO) = rI‘l"(]\/veO]\Lil]\4d2 tee Mdg)' ]

ry 2 I
Definition 13. We define = = r1 2z x| ix,x9,23,220,2#0p and T/ =
Ty I3 X2

= U {13}, where I3 is the 3 x 3 identity matrix.

We omit the proofs of the following three lemmas because they are fairly straightfor-

ward.
Lemma 14. The set = is closed under matriz multiplication, and Z' is a monoid under

matrix multiplication. For any nonnegative real number u, M,, N, € =.
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Lemma 15. Let X be a 3 x 3 matriz with nonnegative real entries, and let Y € Z'. If
the second diagonal entry (the entry in the second row and the second column) of X is
positive, then Tr(XY) > 0.

Lemma 16. For any positive integer t,

For  Fyn Fy
My = For  Fon Fy
For 1 Foro For

The following lemma attempts to gain information about the ordinary base b expansion
of v(k,r,y) —1 when 2y < r < k—1. By Lemma 10, all of the digits in that expansion are
0’s and 1’s, so we may write v(k,r,y)—1 = b +b°' +- - - +b* for some nonnegative integers
€o, €1, - - ., ey that satisfy eg < e < -+ < ey = k. Because v(k,r,y) € I(k,r,y), we have

Yy
b < wlk,ry) =1 < b+ 0% It follows that e,_; < r—2j for all j € {0,1,...,y},

i=0
where equality cannot hold for all j. Hence, we may consider the smallest nonnegative
integer A\ such that e,_1_, <r—2\—1.

Lemma 17. Let k,r,y be nonnegative integers with 2y < r < k — 1. Lel agax_1---ag be
the ordinary base b expansion of v(k,r,y)—1, and write v(k,r,y) —1 = b +b 4 - - + b,
where ey, e1,...,e; are nonnegative integers that satisfy eg < e < -+ < e, = k. Let A
be the smallest nonnegative integer such that e,_1_\ < r — 2\ — 1. There does not exist
i€{1,2,...,ep_1_2\} such that a; = a;41.

Proof. Let v = v(k,r,y). Note that it follows from the preceding paragraph that A < y.
Because v — 1 = b + b** + - - - 4 b*, we have

(6)

_J 1, ifi=e; for some j;
’ 0, otherwise.

for all i € {0,1,...,k}. In particular, ey > 0 because ag = 0 by Lemma 10. We will let
dj =ej—ej_1—1forall j € {1,2,...,¢}. Suppose, by way of contradiction, that a; = a;41
for some i € {1,2,...,e,_1_,}, and let m be the smallest such index i. We have five cases
to consider.

First, assume a; = 1 and a,, = a,,5+1 = 0. By the minimality of m, we see that a; = 0
for all nonnegative even integers ¢ < m and a; = 1 for all positive odd integers j < m.

In addition, m must be even. Therefore, setting t = m_—’ we have e; = 25 + 1 for all

j €40,1,...,t}. This means that d; =1 for all j € {1,2,...,t}. It follows from (6) and
the assumption that a,, = a,,+; = 0 that

g=m—1l<m<m+1l<eq <eio<---<e =k (7)
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Note that ¢ < ¢ —1— X because ¢, < m € {1,2,...,e,1_,}. Let us write vy = 1 +

Zbelﬂ + Z b%. We have

i=t+1
et 2
V1—1+Zb€z“+ Z b < 1+an+ Z b <1+ i b+ Z b
i=t+41 i=t+41 i=t+1
l £—1—X
< bet+1—1 + Z pei — pet+1— 1 + Z pei + Z bei
i=t+1 i=t+1 1=0—X

Recall from the paragraph immediately preceding this theorem that e,_;_; < r—2j for all
j€40,1,...,y}. Since )\ is the smallest nonnegative integer such that e, 1, < r—2A—1,
Cp_1—i =T — 2 for all nonnegative integers ¢ < A. Furthermore, ¢, = k, so we find that

¢
Z bei = bF + Zbr % Therefore,

i=f—\ =0
£—1-X -1 A—1
v < bet+1—1 + Z pei +bk + Zbr—Zz < b€£—1—>\+1 —f—bk +Zbr—21
i=t+1 i=0 =0
A—1 Y
< bk + br72)\ + Z br72z < bk + Z br72z’
=0 =0

where we have used the inequalities ey 1 < r— 2\ — 1 and A < y. This shows that
v € I(k,r,y), so sp(v1) < sp(v) by the definition of v. Our goal is to derive a contradiction
by showing that s,(11) > sy(v). Let B = My, ,Myg, ., --- Mgy,. We saw that t < £ —1— A,
sot + 1 < ¢. This shows that the matrix product defining B is nonempty. Lemma 14
implies that B € =. Now, ey = 2(0) + 1 = 1. By Theorem 12,

Sb(V> = TI"(N1Md1Md2 e Md2> = Tr(NleMdt+1B).

We may write vy — 1 = b% + b + ... + b%, where e; =e;+1forall je {0, 1,...,t} and
e =ejforall je{t+1,... ¢} Settlng d’ = —¢; forall j€{1,2,... 0}, we have

J
Sb(l/l) = ’I‘I'(]V,36]\4d/1]\461/2 tee Mdé) = TI'(NQM{MdH_I_lB)
by Theorem 12. Consequently,
Sb(Vl) - 5b(”> = Tr((NszMdtJrl*l - NleMdtJrl)B)'

We remark that one must take care when considering the case t = 0. In this case, M? is
the 3 x 3 identity matrix. A straightforward calculation invoking Lemma 16 shows that

t t
NoMiMg, .1 — NtMiMgy, , = Fo11oNg,, 2,
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SO
Sb(l/l) — Sb(l/) = F2t+2 TT(th+1—QB)-

Because diy1 = €01 —€,— 12> (m+2) —(m—1)—1=2by (7), we see that Ny, - is a
matrix with nonnegative entries whose second diagonal entry is positive. By Lemma 15,
sp(v1) — sp(v) > 0, which is our desired contradiction.

Next, we assume a; = 1 and a,, = a,,+1 = 1. The proof is similar to that given in
the preceding paragraph. It follows from the minimality of m that a; = 0 for all even
nonnegative integers ¢ < m and a; = 1 for all odd positive integers j < m. Also, m must

—1
be odd. Let t = mT We have e; =2j + 1 for all j € {0,1,...,t} and
ee=m<m+1l=ey <euo<---<e =k
We know from Lemma 10 that a; =0 for all j € {r+1,...,k—1}, so m < r. This implies
¢

t—1
that e;py =m+1 < r <k =ep Setting v, =1+ ZbeiH + Z b, we have

i=0 1=t+1
t—1 V4 t—1 y4
vy — 1 = E bei-l—l + E pei — E b€i+1—1 + E pei
i=0 i=t+1 =0 i=t+1

t £
:E:wr%+§:b%<y—m<dﬁ+§5U42
i=1 1=0

i=t+1
so vy € I(k,r,y) and vy < v. It follows from the definition of v that su(1vs) < sp(v). As
in the preceding case, we let B = Mg, ,Mg, ,--- My, The matrix product defining B is
nonempty because e;;1 < e¢y. In addition, B € =, so we may write

SERSIRS!
B=| & & &
& & &3

for some nonnegative real £, &y, &3, &y with & > 0. Since dyy 1 = e;01 —e,—1=(m+1) —
m — 1 = 0, we have by Theorem 12 that

sp(v) = Tr(NyM{MyB) and  sy(v) = Tr(No M| B).

As in the previous paragraph, note that M! is the 3 x 3 identity matrix if ¢ = 0. By
elementary calculations that make use of Lemma 16, we find that

1 -1 1
NoM! — NyM!My = Fyiq | 1 —1
0 0 0

Thus,
sp(va) — sp(v) = Tr((NoM{ — Ny M{Mo)B) = For1(&5 + &) > 0,
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which is a contradiction.
We now assume a; = 0, as = 1, and a,, = a,,41 = 0. Invoking the minimality of m,
we see that a; = 1 for all positive even integers ¢ < m and a; = 1 for all positive odd

-3
integers 7 < m. The index m must be odd. Let t = mT We find that e; = 2j + 2 for

all j €{0,1,...,t},s0d; =1forall j € {1,2,...,t}. Coupling (6) with the assumption
that a,, = a;,+1 = 0 shows us that

g=m—l<m<m+l<eq<ea<---<e =k (8)

Thus, t < /—1—Abecausee, <m € {1,2,...,e,1_2}. Let vg3 = 1—|—b+z peitl 4 Z b

i=t+4+1
We find that " "
€t
u3—1_b+2bez+1+ Z b <Zb”+ Z b
i=t+1 i=t+1
et41—2 ¢ {—1-X
Z b 4 Z bei < bet+171+ Z pe — pet+1— 1+ Z bei 4+ Z bei .
i=t+1 i=t+1 i=t+41 i=0—\

Because e, = k and e,_1_; = r — 2¢ for all nonnegative integers i < A\, we have

l A—1
Z b — bk + Zbr—%‘
=0

=0
Consequently,
—1-) A—1 A1
e e e N e AR e S S A N

i=t+1 i=0 =0

A1 y
< bk + br—2)\ + Zbr—Qz < bk + Zbr—Qz’

i=0 i=0

where we have used the inequalities e;_1_y < r—2X —1 and A < y. It follows that
vs € I(k,ry), so sp(v3) < sp(v). Let B = My, ,Mg,,,--- Mg, As in the previous
two cases, the matrix product defining B is nonempty (because t +1 < £ — \ < ¥)
and B € Z. Note that ey = 2(0) +2 = 2. We have s,(v) = Tr(NoM{M,,, ,B) and
sp(v3) = Tr(Ny Mt My, , -1 B), so

Sb(V3) - Sb(y) = Tr((Nle+1Mdt+1—1 - N2MfMdt+1)B)'
Using Lemma 16, one may easily show that

t+1 t —
N M{™ Mg, 1 — NoM{Myg,,, = F53Ng, o,
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SO
Sb(l/g) — Sb(l/) = F2t+3 TT(th+1—QB)-

Because diy1 = epp1—e,—1 2> (m+2)—(m—1)—1=2by (8), there follows that Ny, o
is a matrix with nonnegative entries whose second diagonal entry is positive. By Lemma
15, sp(v3) — sp(v) > 0, a contradiction.

The fourth case we consider is that in which a; =0, as = 1, and a,, = a,,41 = 1. By
now the reader is probably familiar with the general pattern of the proof. We use the
minimality of m to say that a;, = 1 for all positive even integers ¢ < m and a; = 1 for all

positive odd integers ;7 < m. The index m must be even. Let t = , and observe

that e; =25 +2 for all j € {0,1,...,t} and that
ee=m<m+1l=e4 <euo<---<e =k
We know that m < r because Lemma 10 tells us that a; = 0 for allje{r+1,...,k—1}.

t—1

Therefore, e, <Kr<k=ep Let vy=1+b+ Z peitt 4 Z b%. We have

=0 i=t+1
t—1 ¢
V4—1:b+2bei+1 Zbel—b+2b€z+1 1y Zbei
=0 i=t+1 i=t+1
_b—f-Zbel + Z bez_Zbel_l—f— Z b < V_1<bk+zy:br—2i’
i=t+1 i=t+1 i—o

sovy € I(k,r,y) and vy < v. This implies that s,(v4) < sp(v). Let B=Mg, ,,Mg, - Ma,.
The matrix product defining B is nonempty because e;; < ey, and B € =. Consequently,

& & &
B=1& & &
& &1 &3

for some nonnegative real &;,&s,&3,&4 with & > 0. Because di; 1 = €01 — e — 1 =
(m+1) —m —1=0, we may use Theorem 12 to deduce that

Sb(l/) = TI“(NQMfMOB) and Sb(V4) — Tr(NleHB).
One may show that

NlMltJrl - NQMltMO == F2t+2 ]_ —1 1 5

SO
sp(va) — sp(v) = Tr((Ny M — NoMIMo)B) = Fopo(é3+ &) =0
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This is our desired contradiction.
Finally, we consider the case in which a; = ay = 0. In this case, v = 1 (mod b?).

y
Because v — 1 < b* + Zb’“m and v — 1 = bk + Zb’” 2 = 0 (mod b), it follows that
i=0

y

v—1<bF—b+ Zb"_%. This means that v + b € I(k,r,y), so sp(v + b) < sp(v) by the
=0

definition of v. Asv+b=b+1 (mod b?), we find by (1) and Lemma 2 that

%@+ﬁy:%(g:%?:i)+6b(@+by+w—b—1)

b2
and
v—1 rl41) -1 rl41) -1
sb( 72 +1>:sb((b2 b) >+3b<(b2 b) +1>
(5E4+1) -1 v—1 v—1
> Sp | = = = 5y 2 .
Therefore,
-1 2-b—-1
sb(y+b):sb & + s (V+b>+b b
b b2
o (U i) rse () s () s () = s
= S b Sp b2 Sp b Sp b = Sp\V).
With this contradiction, the proof is complete. O

Lemma 18. Preserving the notation from Lemma 17, we have e;_1_y =1 — 2\ — 1.

Proof. The proof is very similar to those of the first and third cases considered in the
proof of Lemma 17. Suppose by way of contradiction, that e,_1_y <r — 2\ — 2, and let

—1-x
V=1+ Z beitt 4 Z b and " = v/ +b. We have
i=0 i=0—\
{—1—X er—1-x+1 r—2X—1
V—1<v' —1=b+ Z et Z b < Z b+ Z b < Z "+ Z b
i=0—\ i=0—\ i=0—\
¢ A1 y
<b7‘—2)\+zb — 2A+bk+zbr QZ—bk—f—Zbr 2 bk—f-Zbr_Qi,
i=0—)\ 1=0
A1
where we convene to let Zb’”_% =0 if A = 0. Therefore, v/, " € I(k,r,y). This means
i=0

that s,(), sp(V") < sp(v), so we will derive a contradiction by showing that s,(v") > s,(v)
or (V") > sp(v).
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Let B = Mgy, ,,, Mg, ,,, - Mg, where we define B to be the 3 x 3 identity matrix
if A\ = 0. By Lemma 14, B € Z/. To ease our notation, let t = ¢/ —1— X and ¢ =
di—x. We have s,(v) = Tr(NeyMiM,B), sp(v') = Tr(Negr1 MiM,1B), and s,(v") =
Tr(NyMey—1 MM, 1B). 1t is straightforward to show that NoM{M,  — NyMiM, =
F2t+2Nq_2 and Nle+1Mq_1 - NQMlth = F2t+3Nq_2. IfA= 0, then it follows from our
assumption that e,_;_, < r — 2\ — 2 that

g=erx—€1rx—1l=e—e1—1=k—e 1—-12k—(r—2)—1=>3.
If A > 0, then
g=ern—er1a—l=erip-ny—e1a—1=1—=-2A=1)) —ep1-n— 1
> (r—20—1)) = (r—20—2)—1=3.

In either case, ¢ > 3, so both Fy 19 N,_o and Fy 3N, are 3 X 3 matrices with nonnegative
real entries whose second diagonal entries are positive. It follows from Lemma 15 that if
eop = 1, then

sp(V) — sp(v) = Tr((NoM{M, 1 — NyM{M,)B) = Tr(Fy 2N, 2B) > 0.
Similarly, if eg = 2, then
sp(V") = sp(v) = Te(NyMIT M,y — NoMiM,)B) = Tr(Fy 3N, oB) > 0.
This is a contradiction, so the proof is complete. O

For nonnegative integers k,r,y with 2y < r < k — 1, let w = agai_1---ap be the
ordinary base b expansion of v(k,r,y) — 1. We summarize here the information we have
gained about this expansion. From Lemma 10, we know that a; € {0,1} for all i. We
know from the same lemma that ay =1, ap =0, and a; =0forall j € {r+1,...,k—1}.
Therefore, w = 10*~""1v, where v is a word of length 7+ 1 over the binary alphabet {0, 1}
that ends in the letter (digit) 0. From Lemmas 17 and 18 and (6), we find that there
exists some A € {0,1,...,y} such that

A a,_9;=1and a,_9 1 =0forallie {0,1,...,\—1}.

B. a,_5, =0.

C. ay_ox92i11 =1 and a,_9y_o; =0 foralli € {1,2,...,[r/2] — A}.
That is,

(10)20(10)/21=20,  if 24 r;
v =
(10)0(10)/21=2 0 if 2.

This means that
1057 7=1(10)*0(10)l7/21=20, if 24 r;
w =
10F=m=1(10)20(10)r/21=A 1 if 2|,

This leads us to the following.
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Definition 19. Let k,r, z be nonnegative integers such that 2x < r < k — 1. Define the
word w(k,r, x) by

10k=7=1(10)=0(10) /2 ==0, if 24 r;
w(k,r,x) = (10)70(10) ’ 1 KE
105==1(10)=0(10) /2= if 2|r,
and let y(k,r, z) be the positive integer whose ordinary base b expansion is w(k, r, x).

Definition 20. For any integers k,r, z, define
1
V(ka r, ‘1') = 5((k - T)(2Lr+2 - Lr74m+1) + 2Lr+1 + Lr74m+2)-

Lemma 21. Let k,r,z,y be nonnegative integers such that 2z < 2y <r < k—1. We
have
y(k,ryx)+ 1€ I(k,r,y) and  sp(y(k,r,x)+ 1) =V(k,r x).

y
Proof. The ordinary base b expansion of bk+z b2 is 10577"1(10)¥+10" ¥~ 50 one may
i—0 , |
see from Definition 19 and the hypothesis that x < y that y(k,r, z)+1 < b* +Z b It
i=0

should also be clear from Definition 19 that b* < ~y(k,r, z)+1, so v(k,r,x)+1 é](k, T Y).
¢

If we choose to write y(k,r, z) = Z b* for nonnegative integers ey, ey, ..., e, with ey <
i=0
ey -+ < ey then
2, if2¢r;
€0 = .
1, if 2|,

e; =eo+2j forall j €{1,2,...,t},
erp; =T —2r+2j=e+2t+2j+1forall je{1,2,... 2},

and
€y = ka

where t = [r/2] —x — 1. Observe that the letter (digit) 1 appears exactly |r/2] + 1 times
in the word w(k,r, ), so it follows from (6) that ¢ = |r/2| (implying that ¢t + 1 = ¢ — x).
Let us first assume z = 0. Setting d; =e; —e;_1 — 1 for all j € {1,2,..., ¢}, we have

et if je{1,2,....0—1};
T k=1, ifj=0

We may invoke Theorem 12 to see that

sp(y(k,7,0) + 1) = Tr(Nyy Mg, My, - - - My,) = Tr(Ney M{ ' My_,.). (10)
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Let

Fr Fr—l Fr
T= Fr Frfl Fr
o 0 0
If 2|r, we may use Lemma 16 to find that
1
Ny M = NP = T
Similarly, if 2 1 r, then
1
N M = N2 =

Therefore, regardless of the parity of r, we have s;(v(k,7,0) + 1) = Tr(T'M_,) by (10).
Thus,
sy(y(k,7,0) + 1) = Te(TMy—,) = (k — 1) Fppr + Fypo,

where the last equality is obtained by simply calculating the matrix T'M},_, by hand. One

1
may easily show that F,,; = g(QLHQ —L,11) and F,yg = 5(2LT+1 + L12), so

1
sb(”y(k,r, O) -+ 1) = g((k — 7’)(2[47«+2 — LT+1> -+ 2Lr+1 -+ Lr+2) = V(k,?", O)

Let us now assume z > 0. Again, we set d; = e; —e;—; — 1 for all j € {1,2,...,(},
and we see that

1, ifje{1,2,...,0— 1\ {t+1};
dj =<2, if j=t+1;
k—r—1, ifj=¢

By Theorem 12,
3b<’7<k> r, $) + 1) = Tr(NeonlMdz e Mdg) = Tr(NeoMltMQMfili(tJrl)Mkfrfl)

= Tr(No MMy M My, _y).
If 2|r, then Lemma 16 allows us to find that

Fr—QJJ Fr—QJz—l Fr—?a}
]\760]\4}e = NlMI/Q_x_I = Fr—2:(: Fr—2:r;—1 Fr—2:c
0 0 0

Similarly, if 2 1 r, then
Fr—2a: Fr—Za:—l Fr—?:c

NeoMf = NQMl(T_l)/2_$_1 = Fr—2a: Fr—2a:—1 Fr—?x
0 0 0
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Therefore, no matter the parity of r, we have

Fr—?:c Fr—2:c—1 Fr—2:v
NeQMfMQMfilefrfl = Frow Frop 1 Friog M2Mf71Mkfrfl-
0 0 0

Using Lemma 16 again, we find that

Frop Frop1 Fr_oy X1 X2 X1
Fr—ZJ: Fr—ZJ:—l FT—QJJ MZMivilefrfl - X1 X2 X1 X
0 0 0 0O 0 O
where
X1 = (k - T)(Fr—2m+3F2x + Fr—2x+1F2a:—1) - Fr—2x+3F2x—2 - Fr—Qa:—i—lFQx—S
and
X2 = Fropialoy, + Fropi1Fop .

Therefore,

Sb<’y<k7 T, {L‘) + 1) = Tr(NeoMfM2Mlz_1Mk—r—1) = X1 + X2
= (k - T)(Fr—2x+3F2x + Fr—2:r:+1F2x—1) + Fr—2x+3F2:c—1 + Fr—2x+1F2:E—2-
We now make use of the well-known identity

1
Fnb, = E(Lm—i-n - (_1)an—n)

to obtain

1
FrogisFoy + Fropi1Foy 1 = 5(Lr+3 — Ly gyi3+ Ly + Ly_4z42)

1 1
= g(Lr+2 + Lr—i—l + Lr - Lr—4z+1) = 5(2Lr+2 - Lr—4a:+1)
and

1
Fropi3Fop 1+ Fr_opi1Foy o = S(LT—I—Q + Ly ggia+ Loy — Ly_ypis)

1 1
= g(Lr+1 + L, + L1 + Lr—4:(;+2) = g(er—i-l + Lr—4x+2)-

Consequently,

1 1
sp(y(kyryz)+1) = (k—r) (E(QLHQ - LT_4I+1)) + 5(2Lr+1 + Ly _gpy0) = V(k,r,x). O

Before proceeding to our main result, we need one final easy lemma.

Lemma 22. For any integers k,r, x,
1
V(ka r,x + 1) - V(k?, T, ZL‘) = g((k - T)(LT—41‘+1 - Lr—4z—3> + Lr—4;t—2 - Lr—4x+2)-
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Proof. Referring to Definition 20, we have

1
V(k,r,x+1)=A+ g((k‘ — 1) (= Ly—4(a+1)+1) + Lr—a(@+1)+2)

and 1
V(k7 T, ;U) =A+ g((li] - T)(_Lr74x+1) + Lr74x+2>>

1
where A = 5((k —1)(2Ly42) +2L,11). Thus,

1
V(ka r,x + 1) - V(k’, r, ZL‘) = g((k - T)(Lr—élx-l—l - Lr—4x—3) + Lr—4ac—2 - Lr—4x+2)- [

We are finally in a position to prove our main result.

Theorem 23. Let k,r,y be nonnegatve integers such that 2y < r < k — 1. If r is even,
then
v(k,r,y) =(k,r,y) + 1 and p(k,r,y) = V(k,r,y).

1
If k—2=7r=3 (mod 4) andy}%, then

V(k?,’)“, y) = ’7(]{7 r, (T - 3)/4) + 1 and M(kﬂﬂu y) = V(k,?”, (T - 3)/4)
Otherwise,
v(k,ry) =k, r,6(r,y)) + 1 and p(k,r,y) = V(k,r,0(r,y)),

where §(r,y) = min {[=2] , y}.

Proof. We saw in the discussion immediately preceding Definition 19 that v(k,r,y) =
v(k,r,\) + 1 for some A € {0,1,...,y}; we simply need to determine the value of \. By
Definition 8, A is the element of {0,1,...,y} such that sy(y(k,r, \) + 1) is maximized
and y(k,7,A\) + 1 € I(k,r,y). Lemma 21 tells us that y(k,r,z) + 1 € I(k,r,y) and
sp(y(k,r,x) + 1) = V(k,r,x) for all x € {0,1,...,y}, so

wu(k,ryy) = max{V(k,r,z): z € {0,1,...,y}}.

That is, A must be the element of the set {0,1,...,y} that maximizes V(k,r, ) (if there
are multiple such elements, we choose the smallest in accordance with the definition of
v(k,r,y) in Definition 8). We first assume r is even. We wish to show that A = y. This
is immediate if y = 0, so we will assume y > 0. Choose some x € {0,1,...,y — 1}. We
make use of an easily-proven fact about Lucas numbers that states that if m,n are odd
integers (not necessarily positive) with m < n, then L,, < L,. In this case, we use the
assumption that r is even to see that r — 4x — 3 and r — 4z + 1 are odd integers with
r—d4xr —3 < r —4x + 1. Therefore, L, 4,11 — L,_4.—3 > 0. Because k —r > 2 by
hypothesis, we may use Lemma 22 to find that

1
V(k,ryoe+1)—V(k,rx) >

5(2<L7‘—4x+1 — Ly yy3)+ Logyo— Ly_4549)
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1

= g(Lr—le—l - Lr—4x—5)-

Asr —4x — 5 and r — 4x — 1 are odd integers with r —4x — 5 < r — 4z — 1, we see that
V(k,r,x+1)—=V(k,r,z) > 0.
Because x was arbitrary, this shows that
V(k,r,0) < V(k,rl)<---<V(kry),

SO\ = 1.
. . r—>5 r—1
We now assume r is odd. Let x1, x5 be integers such that z; < I < 1 < 29
r—>5

We will make use of the fact that L,, = L_,, for any even integer m. Because z; < 0

we obtain the inequalities r—4x1+1 > r—4x1—3 > 0. Therefore, L, 45, 11— Ly—42,-3 > 0.
Because k — r > 2, we see from Lemma 22 that

1
V(kﬁ‘, 1+ 1) - V(k, 7“,$1) = 5(2(Lr—4z1+1 - Lr—4$1—3) + Ly gz 2 — Lr—4x1+2)
1

= E(Lr—4x1—1 - Lr—4a:1—5)~
We know that L, 4,1 — Ly—42,—5 > 0 because r — 4x; — 5 > 0. Thus,

V(k,ryxy+1) > V(k,r, x). (11)

-5

If y < (%W, then every element of the set {0,1,...,y — 1} is less than ! , so (11)

shows that
Vk,r,0) < V(k,rl) <---<V(k,nrvy).
1

This shows that if y < (%L then
A=y =46(ry),
which agrees with the statement of the theorem. Therefore, we will henceforth assume

-1
that y > (%W so that o(r,y) = (%W It follows from the inequality z, > TT that

daxg —r+3>4w9 —1r—12> =2, If 429 —r — 1 > 0, then
Lyzy—r—1 — Lygy—r43 < 0.
If dx9 — r — 1 = —2, then
Lygy—r—1— Liygy—ry3 = L_o— Ly =0.

Hence,
L4x2—r—1 - L4:c2—r+3 < O
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Because r — 425 + 1 and r — 4x5 — 3 are even,
LT—4a:2+1 - Lr—4x2—3 - L4:v2—7’—1 - L4:52—7‘+3 < 0.

Using Lemma 22 and the fact that k£ —r > 2, we have

V<k> T, T2 + 1) - V(ka r, 1'2) g (Q(er4x2+1 - Lr74x273) + Lr74x272 - Lr74:p2+2)

U] =

(Lr74x271 - Lr74a,‘275) .

Because 429 —r +5 > 4wy —r+1>0and r —4xy — 1,r — 429 — 5 are even, we have

Ut =

Lr—4a:2—1 - LT‘—4$2—5 = L4:L‘2—r+1 - L4x2—r+5 < 0.

This shows that
V(k,ryzo+ 1) < V(k,r xs). (12)

We now have three short cases to consider. In the first case, assume r =1 (mod 4). We
have shown through (11) and (12) that

V(k,r,m)>V(k,r,m—1)>V(k,r,m—2)>---

e V(k,r,m)>V(k,r,m+1)>V(k,r,m+2)> .- |
where m = ! This implies that r-1 is the unique value of x that maximizes
V(k,r,z). Recall that we have assumed that y > (%L s0 L € {0,1,...,y}. Conse-
quently,

A= 7‘;1 =4(r,y).

For the second case, we suppose that r = 3 (mod 4) and r < k — 2. We need to show
that A = §(r,y). We may use (11) and (12) to see that

V(k,r,n) >V(k,r,n—1)>V(k,r,n—2)>---

and
Vik,r,n+1) > Vik,r,n+2)>V(k,r,n+3) >,

where n = % By Lemma 22,
1
V(k,r,n+1)—=V(k,r,n) = g((k —1r)(Ly — Lo) + Ly — L3)
1
:g((k—r)(7—2)—1—1—11):k—r—2>0,
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so V(k,r,n) < V(k,r,n+1). This shows that n + 1 = ™ is the unique value of z
that maximizes V (k,r,z). Because y > (%W = %, it follows that % €{0,1,...,y}.
Therefore,

For the third and final case, we assume k —2 =r =3 (mod 4). We wish to show that

A =2 Using (11) and (12), we obtain
Vik,r,n)>V(k,r,n—1)>V(krn—2)>--

and
Vik,rn+1) > Vik,ry,n+2)>V(kr,n+3) >,

where n = % Lemma 22 tells us that
1
V(k,r,n+1)—=V(k,r,n) = g((k —1r)(Ly — Lo) + Ly — L3)

:%((k_r)(7—2)+1—11):k—r—2=07

so V(k,r,n) = V(k,r,n+ 1). Therefore, V(k,r, x) obtains its maximum when x = n and
when « = n+1. This means that u(k,r,y) = V(k,r,n). Either v(k,r,y) = v(k,r,n)+1or
v(k,r,n+1)+1. Note that v(k,r,n)+1 < ~v(k,r,n+1)+1 by Definition 19. Since v(k,r,y)
is defined to be the smallest element of I(k,r,y) such that s,(v(k,r,y) + 1) = p(k,r,y),
it follows that v(k,r,y) = ~v(k,r,n) + 1. That is, A\ =n = ! ; O

We end this section with a definition and a theorem that will prove useful in the next
section.

Definition 24. For any integers k and m with 2 < m < k, let Gix(m) = b + h,, and
Hi(m) = Foyo + (k—m)F,,.

Although it is possible to give an easy inductive proof of the following theorem using
the simple Fibonacci-like recurrence

Hy(m) = Hy—1(m — 1) + Hy—o(m — 2), (13)
we prefer a proof based on Theorem 12.
Theorem 25. For any integers k and m with 2 < m < k, we have sp(Gr(m)) = Hi(m).

Proof. Referring to Definition 3, we see that we may write

L= ¢
Ge(m) —1=0bF+ " p" 272 =) e,
=0 =0
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where
2, if 2|m;
. m—3 _ ) )
eo_m_2_2LTJ_{1 if 24 m

(= Lm—_lj, eg =k, and e; = ey +2j for all j € {0,1,...,¢ —1}. For example,

2
5]
G12(7) — 1= b12 + § b7—2—2i — bl + b3 + b5 + b12.

i=0
Defining d; as in Theorem 12, we have d; = 1 for all j € {1,2,...,¢— 1} and
de=er—er1—1=k—(eg+2((—1))—1=k—((m—-2-2]["2])+2 (|| -1)) -1
=k—m+1.

By Theorem 12, s,(Gx(m)) = Tr(Ne M{ ' My_pi1). Using Lemma 16, one may show
that
PL P2 1
NegM{ " My—mpii=| p1 p2 m |,
0 0 O

where
pP1 = (k} —m — 1)(60F24 + Fngl) + 60F24+2 + Fgul and P2 = €0F25 -+ Fzgfl.
Therefore,

sp(Gr(m)) = p1+ p2 = (k —m)(eoFar + For—1) + €0 Foryo + Forpr.

—2
If m is even, then ¢y = 2 and ¢ = m2 , SO
sp(Gr(m)) = (k —=m)(2F o+ F3) + 2F0 + Fopy = (K —m)Fy + Fp = Hiy(m).
-1
If m is odd, then eg = 1 and ¢ = m2 , SO

Sb(Gk(m)) = (k - m)<Fm—1 + Fm—2) + Fm+1 + F, = (k - m)Fm + Fm+2 = Hk(m) L

3 More Manageable Bounds

In the previous section, we derived fairly strong upper bounds (relative to those previously
known) for the values of s,(n) for those integers n satisfying v* < n < b + hy for some
integer k > 3. Unfortunately, these bounds are somewhat cumbersome. In this section,
we will weaken them in order to make them cleaner and more easily applicable.

Suppose k, m, and n are integers such that 2 < m < k and Gg(m) <n < Gg(m + 1).
We wish to use Theorem 23 to show that the point (n, sy(n)) lies below the line segment
connecting the points (G(m), Hp(m)) and (Gg(m + 1), Hy(m + 1)). This leads us to the
following definition.
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Definition 26. For any integers k£ and m with 2 < m < k, define a function Ji,,: R =+ R
by

- Gk(m + 1) — Gk(m)

Jem () (x — Gk(m)) + Hg(m).

The graph of Ji,,(z) is the line passing through (Gg(m), Hi(m)) and
(Gr(m+1), H,(m + 1)). Our aim is to show that sy(n) < Ji,(n) for all n € {Gr(m) +
1,...,Gr(m+ 1) — 1}. Observe that we may rewrite Ji ,,(z) as

Fo1(k—m)

T (@) = hog1 — D

(x = G(m)) + Hi(m)
because Hy(m+1)—Hi(m) = (k—m—1)F 1+ Frys— (E—m)F,, — Fio = Fr1(k—m)
and Gi(m + 1) — Gr(m) = hyps1 — by,

Lemma 27. If m and x are positive integers with m > 4 and x < Gp—1(m — 3), then
sp(x) < By

Proof. Let m and  be as in the statement of the lemma. If < ™1, then it follows
from Proposition 6 that sy(z) < F,,. If z = 0™ ! then sy(z) = 1 < F,, by Lemma 5.
Therefore, we will assume ™! < x. Note that the inequalities b™ ! < x < G,,,_1(m — 3)
force m > 6. Since

|5
P < < Ga(m —3) 1= Yy,
1=0

it follows from Definition 8 that x € [ (m 1,m —5, LmT_GJ) Referring to Definition 8

again, we find that s,(x) < p (m —1,m — 5, [@J) Therefore, we simply need to show
that
p(m—1,m—5,[22]) < F,. (14)

Suppose m is odd. It follows from Theorem 23 and Definition 20 that

= Lom = 5. 252]) = (= Lom = 5,%57) =V (m = 1, — 5,757

—_

= _(4( L3 — LlO—m) + 2L, 4 + Lll—m)-

ot

Because m is odd, Lig_,, = —L,,—10 and Ly1_,, = L,,—11. Therefore,

1
12 (m - 1, m — 5, LmTiﬁj) = g(4<2Lm_3 + Lm—lO) + 2Lm_4 + Lm_n).
For any integer ¢, let

1
N = 5(4(2Lt_3 +Lic10) + 2L s+ Lin)  and Ky = 11F 5.
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It is easy to see that the recurrence relations 7,14 = 3m:12 — 1 and Kepq = 3Ke2 — Ky hold
for all integers ¢t. In addition, one may verify that k5 = 75 = 0 and xk; = n; = 11. This
implies that x; = 1, for all odd integers ¢. In particular,

u(m—l,m—E), LmT_GJ) =N = Km = 11F,,_5 < F,,

where the inequality 11F,, 5 < F,, is easily-proven for all odd m > 6 (for example, by
showing that 11F,,_5 = 22F,, 7 + 11F,, g < 21F,,_7 + 13F,,_s = F};,). This proves (14)
when m is odd.

Next, assume m is even. By Theorem 23,

u(m—l,m—5, L"‘—_GJ) :V(m—l,m—5,(5(m—5, LmT_GJ)%

2

where

6 (m =5, %5 ) = min { | =Pt | [ 0] | = [ge]

1
p(m—1,m—=5|28]) =V (m—1m-521) = = (4L = Lo) + 2Lim-a + L)

1
5

Similarly, if m =2 (mod 4), then [mT_ﬂ =m0 4

(8L + 2Lm—s —7) < =(8Lpm—3 + 2Lm_4).

| =

p(m—1m—5 |2 =V (m—1m-5279) = %(4(2Lm3 — Ly) + 2Lp—q + Ls)

1 1
= g(ng_g + 2Lm—4 — 8) < 5(8Lm_3 + 2Lm—4)-

1
In either case, we may use the identity F, = g(Lqul + L,_1) to see that
m—6 1 1 1
M (m —1,m-—35, L—2 J) < 5(8Lm_3—|—2Lm_4) = g(GLm—3+2Lm—2) = 5(4Lm—3+2Lm—1)

1 1 1
=2- g(mes + L) + g(me:a + Lpa+ Lyps) =2F, 2+ g(Lmq + Lps)

1
< 2F, 2+ g(Lm—2 + Lm—4) =2F, 2+ Fy,_3=Fp,.
This proves (14) in the case when m is even, so the proof is complete. O

Throughout the proofs of the following three lemmas, we assume b = 2. For example,
since Gy (4) = b¥ + hy = b¥ + b* + 1, it will be understood that Gy (4) = 2% + 5.

Lemma 28. For any positive integers t and x with t > |log, x| + 2, we have

59(2" + ) < so(x)(t + 1 — |logy ).
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Proof. The proof is by induction on ¢. The inequality ¢t > [log, x| + 2 forces t > 2. If
t = 2, then the inequality t > [log, x| + 2 forces x = 1 so that

52(2' + ) = 53(5) =3 =55(1)(2+ 1 — [log, 1]) = sa(w)(t + 1 — [log, z]).
Now, suppose ¢t > 3. If x is even, then it follows from (1) and induction on ¢ that
$o(2 4+ 2) = 52(2 4+ 2/2) < so(x/2)((t— 1) + 1 — |logy(1/2)]) = so(x)(t +1— |logy z]).
Therefore, we may assume x is odd. By induction on ¢, we have
52271 + (2 =1)/2) < s2((2 = 1)/2)((t = 1) + 1 — [log, (¢ — 1)/2)])

= so((z —1)/2)(t + 1 — [logy z|)
and
52(27 4 (2 +1)/2) <so((x+1)/2)((t = 1) +1 = [log, (= +1)/2)])

<so((x+1)/2)(t+ 1 — |logyx]).
Therefore, it follows from (1) that
$2(2'+ 1) =5 (27 + (2 —1)/2) + 52 (2 + (x+1)/2)
<(s2((z—=1)/2) + s2((x+1)/2)) (t+ 1 — |logyx]) = so(x)(t + 1 — |logyx]|). O
Lemma 29. If k,m, and n are integers such that 4 < m < k and
28 2mt <in <28 + Gy (m - 3),
then so(n) < Hy(m).

Proof. Let k,m, and n be as stated in the lemma. Let = n — 2* and note that
|log, 2] = m — 1. We may combine Lemmas 27 and 28 to get

s9(n) = 59(2% + 1) < so(x)(k + 1 — |logy z]) = s9(2)(k —m + 2)

Lemma 30. If k,m, and n are integers such that m € {57}, m < k, and n = 2% +
Gm—1(m — 3), then sa(n) < Jgm(n).

Proof. The proof is very straightforward. We make use of the fact that s5(17) = 5 and
$9(69) = 14. Suppose m = 5. Then k > 6 and n = 2% + G4(2) = 28 + 2% + hy = 28 + 17
by hypothesis. Using Lemma 28 and the remark following Definition 26, we have

s9(n) = 59(28 +17) < 59(17)(k + 1 — [log, 17]) = 5(k — 3) < %(k —5)+13

3(k — 5)

- m((2’c +17) = (2" +11)) + 134 5(k — 5)
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_ Fu(k=5)

~ hg—hs
Next, suppose m = 7. Then k > 8 and n = 2% + Gg(4) = 28 + 26 + 22 + 1 = 2F + 69.
Using Lemma 28 and the paragraph following Definition 26 once again yields

(n— G(5)) + Fy + Fy(k — 5) = Jys(n).

53(n) = 55(2" +69) < 55(69)(k+ 1 — [logy 69]) = 14(k —5) < 22 () 7y + 34+ 13(k — 7)

21
C8(k=T), .

= 55 (2 +69) — (2 +43) + 34+ 13(k - 7)

= —F,jik__h:) (n — Gi(7)) + Fy + Fr(k —7) = Jy7(n). 0

We now return to our base assumption that b may represent any integer larger than
1.

m—2

Lemma 31. Let m and y be integers such that m > 4 and 1 < y < LTJ We have
me4y71 < me5 and me4y = _me6-

Proof. First, suppose m is even. We use the fact that L, < L, for any odd integers
u,v with v < v to see that the maximum possible value of L., 4,1 is obtained when
y = 1. That is, Ly,—4y—1 < Ly—5. It is easy to see that L, > 2 for all even integers u, so
Lm—4y =>2>-22>2—L,_s.

Next, suppose m is odd. We use the fact that L_, = L, < L, = L_, for any nonnega-
tive even integers u, v with u < v to find that the bilateral sequence ..., L_4, L 5, Lg, Lo,
Ly, ... is strictly convex. Therefore, the maximum possible value of L,, 4,1 occurs when
Yy = 1 or when Yy = LmT—QJ = mT—3 Because Lm—4(1)—1 = Lm_5 = L5_m = Lm—4((m—3)/2)—17
the maximum possible value of L,,_4y_1 is Ly,—5. As L, < L, for any odd integers
u,v with v < v, the smallest possible value of L,,_4, occurs when y = ’”T_S That is,
L4y =2 Lyp—a(m-3),2) = Le—m- Now, L_, = —L, for all odd integers u, so L,,_4, >
Le_y, = —Lpy—s. n

Lemma 32. If m and y are integers such that m >4 and 1 <y < LmT’?J, then
Lm—2 + Lm—4y
> VH —2.
5-Fm—l \/_
Furthermore, if m > 4 and m & {5,7}, then
Lm72 + Lm74 > 8 .
5F,,_1 21

¢"— ¢

and L, = ¢" + ¢ for the
Fibonacci and Lucas numbers. We also make use of the fact that L, > 2 for any even
integer u. For any integer j, we have

Lin_; 1 ¢+ am_j 1 1 Em_j <¢j71 + 5j_1>

51 9715 N <¢m—1 —am_1> NG N N %@—1 <¢m—1 _am*)

Proof. We will use the closed-form expressions F;,, =
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1 LW Ly ey L
7 gmt — " 50T 5™ P

where the last equality follows from the identity ¢ = % Therefore,

Ly, 1 . L4
= S i P e
S5Fn_1 (bj_l\/g * ( ) 5¢m—lFm_1
If m is even, then we may set j = 2 in (15) and invoke the inequality L,,_4, > 2 (since
m — 4y is even) to find that
Lm—2 + Lm—4y > Lm—2 +2 > Lm—2 _ 1 +
5-F'rn—l 5Fm—1 5Fm—1 ¢\/5
1 1 1
= + > > V5 —2.
VIR ey S R V]
Let us now suppose m is odd. By Lemma 31,
Lm—2 + Lm—4y S Lm—2 - Lm—ﬁ o Lm—3 + Lm—5
5Fm71 g 5F’mfl B 5Fm71 ‘

(15)

Ly
5¢m—1Fm_1

(12

Using (15), once with j = 3 and once with j = 5, yields

L3+ L5 1 )m,g Lo 1

= + (- + +
5,1 #V5 ( 56" 1,1 ¢4/5
! ! V5 =2

> - =
VATV

L, Ly
———— and (-1)" P ———
s, Y g
proof of the first inequality in the statement of the lemma.

Assume, now, that m > 4 and m ¢ {5,7}. We may use (15), once with j = 2 and
again with j = 4, to see that

Ly
5¢m—1 Fm—l

(1)

m—3

because (—1) are positive. This completes the

Lot Ly 1 L L 1 . L
= —— (- + (-t
5,1 5 (=1) 56" 1,1 ¢35 (=1) 5¢m1F,, 4
1 1 (=)™ + L) 1 1 (—1)m

I A A N AN T Vo
(=™

— attains its minimum when
qu_ Fm—l

For m > 4 and m ¢ {5,7}, it is easy to see that

m = 9. Thus,
Lo+ Ly S 1 1 (—1)? 8

= + + — <o
5F,,_1 V5 Vs PBFy 21
where this last equality is easily verified. Alternatively, we could have proven the second

Ly o+ Ly, F
inequality stated in the lemma using the fact that 52F+ L = 7 3 O]
m—1 m—1
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Lemma 33. Let k and m be integers such that k > 5 and 2 < m < k — 1. Define a
function O, R = R by

Jk’m(bk + .73)
@k,m(‘r) - (bk _i_x)logb(z)'

For any x > 0,

d
— Oy, (V" > 0.
dx k, ( +:z:)

F,_
Proof. We begin with the easily-proven fact that 2 <

2
F . S3 for all integers m > 4. From

this, we have

Hy(m) (k= m)E, + Fryo o (k—m)F, + (k—m)F,.2
(l{? — m)Fm_1 n (k’ — m)Fm_1 = (l{? — m)Fm_1
_Im T Fmir St Ofme2 | gime2 g

One may easily show that
b+ b tlog, ¢ > 6log, ¢

for any choice of an integer b > 2 (if b > 3, this follows from the observation that
b?> > 6log, ¢). In addition, using Definition 3 and Lemma 4, we have h,, > ™2 and

bm+b< b 4 pml
b+1 = b+1

=y,

hm-i—l - hm X
Therefore,

VY 4 hylogy ¢ = 0F + 0" 2 log, ¢ = ™ H(BFT™T 4 b7 log, ¢) > ™ (B + bt log, ©)

. Hi(m
> 6! log, ¢ = 6(hmi1 — him) log, & > %(hmﬂ — hy,) logy, ¢.
k—m)F,,_ H
Let Ty(m) = (k= m) Py so that we obtain b* + h,,, log, ¢ > e(m) log, ¢. Choose some
hm+1 — hm Tk(m)
z > 0. We have
H
2T (m)(1 —log, ¢) = 0 = Ti(m) e(m) logy, & — hy, log, ¢ — bF
Ti(m)

= [Hi(m) — Ti(m)hum]log, ¢ — b*Tx(m).
Adding xTy(m)log, ¢ + b*Ti(m) to each side of this last inequality yields

(0" + 2)T(m) > log, ¢ («Ti(m) + [Hi(m) = Ti(m)hy)),
which we may rewrite as

(" + 2)T5.(m) — logy, ¢ [Hy(m) + Tiu(m)(z — )] 2 0. (16)
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Now, referring to the paragraph immediately following Definition 26, we see that
Jim(b*+x) = Ti(m)(x — hy,) + Hi.(m). Therefore, (16) becomes (0% + )Ty (m) — Jy pm (¥ +

d
x)log, ¢ > 0. In addition, %Jk,m(bk + ) = Ty(m). Consequently,

d Jem(VF + )  (OF + )19 2T (m) — Jim (V" + x) log, ¢(bF + )18 271

dx (bF + z)lossd (bF + x)2logy ¢
_ (V% + 2)Ti(m) — Jy (b + 2) log, & 0. 0
(bk + x)logb o+1

We are finally ready to prove the main results of this section.

Theorem 34. If k,m, and n are integers such that 2 < m < k and Gp(m) < n <
Gr(m +1), then
sp(n) < Jim(n).

Proof. By Definition 3 and Definition 24,
[ 52 |
n<Grm+1)—1=0bF+ > pm 72,
i=0
Therefore, we may let y be the smallest element of the set {0, 1,..., LmT”J} such that
Yy
n < b —l—Z b 172 Referring to Definition 8, we find that s,(n) < u(k, m—1,y) because

i=0
n € I(k,m — 1,y). Hence, it suffices to prove that

M(k7m - 1ay) < Jk,m(n)‘ (17)

1
It follows from Theorem 23, Definition 20, Definition 24, and the identity F, = E(Lu+1 +
Lu71> that

1
p(k,m—1,0)=V(k,m—1,0) = 5((/@ —m+1)(2Ly11 — L) + 2L, + Lii1)

=(k—m) (%(QLm-s-l — Lm)) + é(ZLm_m + L)

1 1
= (k—m) <5(Lm+1 + Lml)) + g(Lm+3 + Limt1) = (k —m)Fo + Foyo = Hi(m).
This shows that if y = 0, then

sp(n) < p(k,m —1,0) = Hp(m) = Jgm(Gr(m)) < Jim(n),
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where we have used the trivial fact that J ,, is an increasing function. Therefore, we may
y—1

assume y > 0. Because of the way we chose y, this means that n > b + Z pymiTE >
i=0

b* + 5™ L. Note that this also forces m > 4 because y < LmT_ﬂ By a similar token, it

follows from Lemma 29 that

sp(n) = s2(n) < Hy(m) = Jym(Gr(m)) < Jgm(n)

if b =2 and n < 2* + G,,_1(m — 3). Therefore, we may assume n > 28 + G,,_,(m — 3)
ifb=2 Ifb=2 me {57}, and n = 2" + G,,_1(m — 3), then the desired result
is simply Lemma 30. This means that if b = 2 and m € {5,7}, then we may assume
n > 28 + G,_1(m — 3) + 1. We have two cases to consider.

Case 1: In this case, assume that u(k,m — 1,y) = V(k,m — 1,y). Recall Definition 20 to
see that

1
V(k, m — 1, y) = 5((]{/’ —m + 1)(2Lm+1 — Lm—4y) + 2Lm —+ Lm—4y+1)

1
5
We now use the fact that L,,_4,—1 < Ly,—1 (which follows immediately from Lemma 31)

((k - m)(2Lm+1 - Lm—4y) + 2Lm+2 + Lm—4y—1)'

1
as well as the identity 3<Lu+1 + L, 1) = F, to see that

1
V(k7m - ]-7y) < 5((1{: - m)(QLm-i-l - Lm—4y) + 2Lm+2 + Lm—l)

1 1 1
= g(k - m)(sz—H - Lm—4y) + g(Lm—i-?) + Lm+1) = g(k - m)(sz-H - Lm—4y) + Fm+2'
Because Foo(k )
m— -m
Jrm(n) = hl—h (n — Gr(m)) + Hg(m)
m+1 — Idm
o _
= W (n — bk — hm) + F(k—m)+ Fio,
m+1 = im

we simply need to show that

1
)

Fo_1(k—m)

k — 2L, — Lpp_y4y) <
( m)( +1 4y) hm+]_ _ hm

(n— 0" — hy) + Fp(k —m)

in order to obtain (17). After dividing each side by k& — m and using the identity

1 1
5(2Lm+1 - Lm74y) =Fn— S(me2 + Lm—4y)a

we find that this last inequality becomes

1 hms1 — (n — bF
Fm+1 - g(Lm—2 +Lm—4y> < Fm—l <]- - ;1 +1(—h )> +Fm7
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which we may rewrite as

hm+1 - (n - bk) < Lm—2 + Lm—4y
h 5Fﬂm—l

—— (18)
after subtracting F,, 1 from each side and then rearranging terms. We will prove (18) in
each of the following two subcases.

Subcase 1: In this subcase, assume b = 2 and y = 1. Recall that we mentioned at
the beginning of the proof that we may assume n > 2% + G,,_1(m — 3) when b = 2.
Furthermore, we may assume n > 2% + G,,_;(m — 3) + 1 if m € {5,7}. If m = 5, then

hm-‘,—l — (n — bk) < hm+1 — (G’m_l(m - 3) + 1) _ h@ - (G4(2) + 1)

~X

hm+1_hm hm+1 _hm h6_h5
_(24+22+1)_(24+1+1>_i<1 L3+ Ly Ly—o+ Ly
(244224 1)—(2B4+2+1) 10 3 5F, 5E,,
If m =7, then
hm+1—(n—bk)<hm+1—(Gm_1(m—3)—|—l):hg—(G6(4)+1)
hm+1_hm = herl_hm h8_h7
_(26+24+22+1)—(26+22+1+1)_i<§_L5+L3_Lm,Q+me4y
(264204224 1)— (25428 +2+1) 14 8  5Fy 5F,_1

This proves (18) if m € {5, 7}, so we will assume m ¢ {5, 7}. By Definition 3,
[=52] [ 5]

3

" ‘

hfm—i—l =1 + Z 2m—1—2i -1 =+ 2m—1 + 2m—3 + 2m—1—2i
i=0 i=2
5] |
-1 + 2m—1 + 2m—3 + 2m—5—2z — 2m—3 + 2m—1 + hm—3 — 2m—3 + Gm_1<m _ 3)
i=0
2m —1H)™. 2
Therefore, using Lemma 4 to write h,,1 1 — by, = + (3 ) , we have
hm—i—l — (TL — bk) < hm+1 — Gm_l(m — 3) - 2m—3 _3 om—3
Pong1 — P Pns1 — P C hmar — b 2 (—1)m -2
If m is even, then
hipt1 — (n — bF gm—3 2m=3 3 8
n = (=07 <3 <3 = <.
Rms1 — 2m 4+ 9 2m 8 21
If m is odd, then m > 9, so
hyps1 — (n — bF gm—3 3 3 32 8
hms1 — him 2m —2  8§—24m TR _9249 85 2]
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M1 —(n—=0%) 8 8 Lo+ Ly
Either way, ;;;H (_nhm ) < o7 Lemma 32 tells us that 57 < %’ SO we
obtain (18).

Subcase 2: In this subcase, suppose either y > 1 or b # 2. It follows from our choice of y

y—1
that n > b* + Z b™~17% Using Definition 3 and Lemma 4, we see that
=0
|52 o0
B — (= bF) =14 Y b7 — (= 0F) <1+ ) b — (n - 0F)
i=0 i=0

bm+1—2y

o0 —1 oo
<1+ z; bm—1—2i o %Z;bm—l—% =14+ Z bm—l—Zi =14+ ]
i= i= i=y

and
b —b

b+1"

herl - hm 2
Therefore,

fip = (n = 0%) 1+ 0™/ —1) 0T -
Pmi1 — hun (bm—b)/(b+1) (b —b)(b—1)"

If we treat m as a continuous real variable, then

o (bQ + bm+1—2y _ 1) 1 o (b2 + bm+l—2y o 1)

om\ " —b(b-1) ) b—10m b —b
1 (™ =) W logh — (b + 6T — 1) log b
Cbh—1 (bm — b)?
log b
_ _bm+2—2y _ bm-i-? pm 0.
(= 1) — b T <
2 + bm+1—2y -1
This shows that is decreasing in m.
(bm —b)(b—1)
b2 + bm+1—2y -1
Suppose y > 2. This forces m > 6 because y < LmT_QJ Because is

(™ —b)(b—1)
decreasing in m, we see from (19) that
Byt — (n — bF) _ A | o b4+ b — 1 o v+ b -1
hmt1 — him (b —b)(b—1) ~ (5 —=b)(b—1) = (B =b)(b—1)

If b= 2, then

Byt — (n — bF) b+ b3 —1 11
PN GI)
[ S (AT R Vi
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If b > 3, then

Pyt — (n — bF) _ b+ b5 —1 _ B+ +b+1+0b71
i1 — B (b5 — b)(b—1) (b5 — b)(b— 1)

B it e o e S SR 1 s
R -1)0b-1) (b -1)2 T 32(3-12 36 ‘

No matter the value of b, we find from Lemma 32 that

P — (0 — bk) “5_9< Lo+ me4y7
hm+1 — h’m 5Fm—1

which is (18).
We have proven (18) when y > 2, so assume y = 1. We assumed either y > 1 or b # 2,
b? bm+1—2y -1
so we must have b > 3. Since * is decreasing in m and m > 4, it follows

(b = b)(b—=1)
from (19) that

P = (0 =) P01 RO 1 Db
bt~ O —0)6-1) SO —0)6-1) (O —0)b-1)

If b =3, then

hoir — (=B BB —1 35
=2 )
SO onb-1) 156 vh-2
which proves (18) with the help of Lemma 32. If b > 4, then

hm+1 - hm

Bomi1 — (n — bF) B2+0b —1 B3+ b2 +0b B>+b+1

et — T O —D)-1) G —Bb-1) (B -1)b-1)

1 1 1
- < — <52,
b—-1)2% " (4-1)2 9 vh

which proves (18) once again.

Case 2: Here, assume pu(k,m — 1,y) # V(k,m — 1,y). Referring to Theorem 23, we see

that v(k,m—1,y) = v(k,m—1,z)+1 and pu(k,m—1,y) = V(k,m—1, z) for some z < y.
z—1

One finds from Definition 19 that y(k,m — 1,2) + 1 > b* + me_l_%. By Lemma 21,
i=0

v(k,m —1,2)+ 1€ I(k,m —1,z). In other words, if we let ¢ be the smallest element of

y/
the set {0, 1,..., LmT_QJ } such that y(k,m —1,2) +1 < b + me_l_%, then ¢y = z. By
=0
definition, p(k,m — 1,z) is the maximum value of s,(j) as j ranges over all elements of
I(k,m —1,x). Because v(k,m — 1,z) + 1 € I(k,m — 1, x), this means that

H(k7m - 1,1’) = Sb(,}/(kj7m - 1,1’) + 1) = Sb(y(k’m - 17?/)) = M(kam - 17y)7
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where we have used Definition 8 to deduce the last equality. Similarly, pu(k,m — 1,y) is
the maximum value of s,(j) as j ranges over all elements of I(k,m — 1,y). Since z < y,
I(k,m —1,z) C I(k,m — 1,y). Therefore, u(k,m — 1,2) < p(k,m — 1,y). This shows
that

plk,m—1,2) = pu(k,m—1,y) =V(k,m—1,x).

i=0 =0
v(k,m — 1,2) + 1 is in this interval). Because z is the smallest element of the set

z—1 T
Now, choose some integer n’ € (bk + Z pmi2 k4 Z bm_l_zi] (note that

{0, 1,..., LmT’zJ} satisfying n’ < b + me’l’% and p(k,m — 1,2) = V(k,m — 1,x),
=0

it follows from Case 1 that s,(n') < Jgm(n'). We may set n’ = ~v(k,m — 1,2) + 1, so

sp(y(k,m —1,2)+ 1) < Jem(y(k,m —1,2) +1). Using the fact that y(k,m —1,z2) + 1 <

T y—1
b+ Z T R Z b 172 <, we have
i=0 i=0

:u(k7m - 1a y) = Sb(’Y(ka m — 17 l’) + 1) < Jk,mw(/fa m — 17$) + 1) < Jk,m(n)
This proves (17) and completes the proof of the theorem. O

Corollary 35. We have
sp(n) (b2 —1)los?

lim su =
naoop nlogy ¢ \/5

Proof. Corollary 7 states that

b2 -1 logy, ¢
lim sup Sf(n) > ( ) ,
N—00 nlog, ¢ \/5
so we will now prove the reverse inequality. For each integer k > 3, let uy = Gi(k) =

V¥ + hy. Let 0(z) = [log,(z)] — 1 for each x > 0. Recall that we showed in the proof of
Corollary 7 that

sb(uk) o (b2 — 1)10gb¢

klggo UZngﬂﬁ o \/5 (20>
We will show that
o) sultom) gy s ) (21)

nlogy ¢ = (ue(n))k’gb(b
It will then follow from (20) and (21) that

Sb(UQ(n)) ~ lim sup sb(uk) _ (b2 _ 1>logb¢

S
n—oo nlOgb ¢ n—00 (ue(n) )10gb ¢ k—o00 ’U,Logb ¢ \/5

which will complete the proof. In order to derive (21), let us choose some integer n > b°.
Let § = 0(n), and note that b’ < n < b*1. Tt follows from Proposition 6 that

sp(n) < Fyyo = s,(07 + hg) = sp(ug)
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(if n = 0%+, then Proposition 6 does not apply, but the inequality still holds because
sp(n) =1 < Fyia). If n > uy, then this shows that

sp(n) _ sp(ug) _ sp(ug)
nlOgb¢ = nbgb¢ = u1903b¢7

which is the inequality we seek to prove. Therefore, we will assume n < uy.
For any t € {2,3,...,6 — 1}, we may use Lemma 33 to see that

O (Gy(t)) = @e,t(be + hy) < Ge,t(be + hip1) = Og(Go(t + 1)),

where we have preserved the notation from that lemma. Furthermore, with the help of
Definition 26, we find that

Joa(Go(t+1)) _  Ho(t+1)  Joina(Go(t +1))

Op(Go(t+1)) = Coll + 1) %~ Golt £ 1)°80 — Cylt 1 1)omo Op,14+1(Go(t+1))
for all £ € {2,3,...,6 — 1}. Therefore, 22
Op,1(Go(t)) < Opr+1(Go(t + 1))

for all t € {2,3,...,0 — 1}. That is,
©02(Go(2)) < Op3(Go(3)) < - -+ < Ogp(Go(0)). (23)

Because b < n < ug = Gy(f), there exists some m € {2,3,...,0 — 1} such that Gg(m) <
n < Gg(m + 1). In other words, we may write n = b’ + x for some & € {h,, by +
1,..., hme1 — 1}, By Lemma 33 and (22),

Qpm(n) = Op (b’ + 1) < O (b’ + hyny1) = Opm(Go(m + 1)) = Oy i1 (Go(m + 1)).
It follows from (23) that O, +1(Go(m + 1)) < Oge(Ga(H)), so
Op.m(n) < Oye(Gy(0)). (24)
If n = Gy(m), then it follows easily from Theorem 25 and Definition 26, that
se(n) = sp(Go(m)) = Hy(m) = Jpu(Go(m)) = Jom(n).

If n # Go(m), then Gy(m) < n < Gg(m + 1), so Theorem 34 shows that s,(n) < Jym(n).
Either way, sp(n) < Jgm(n). Hence, using (24), we obtain

s(n) _ Jom(n) ~Joo(Go(0))  sp(Go(0))  sp(up)
nlogé S plog, ¢ - Ge(e)logbq& - G0<9)logb¢) - uleogma

= Og,m(n) < Opp(Go(0))
which proves (21). O
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Theorem 36. For any real x > 0 and any integer k > 3, let

B(z) = log,((b* — 1)z + 1)

and

o) = <2 (k= ) (@) -+ 6770 4 702 757

If k and n are positive integers such that k > 3 and b* < n < b* + hy, then sp(n) <

W+ —b—1
Proof. Let k > 3 be an integer. Let a = 71 , and note that hy < a. We
will show that f is increasing and concave down on the open interval (1, «). The desired
inequality will then follow quite easily. Observe that we may write fi(z) = gr(8(x)),

where

gawz;%Kk—@wf+wﬂ+¢“%uf*ﬂ.

If 2 < log, (b* + b* — b), then

-1 -1 -1 1
k;—x}k—logb(bk+b2—b):—logb<1 b )2 b > b >

b1 Cbhllogh © b2logh ©  4log?2’

where we have used the inequality log, (1 + u) < % that holds for all u > —1 (as well
0g
as the inequalities k > 3 and b > 2). Therefore, if 2 < x < log, (b* + b? — b), then

[(k = 2)(¢" = ¢™")log ¢ — (¢" + &%) + ("% — ¢™"7%) log ¢]

>3>P 1<w—¢m%¢4w+¢%+WH—¢fm%4

R I _ logo . logg
V5 P <¢210g¢ 4log 2 1>+¢ ( ? 210g¢+410g2 1>]

1
= 7 [C19" + Cap™"]
where log &
= %1 _ 989 1=0.
o log ¢ Tlog? 0.086
and o
Cy = 6210 ¢+i¢2—1~—1010

If # > 2, then C1¢* > C,¢? and Cy0~* > Cy¢~2. This means that

g(x) 2 C1¢" + Cogp™] = C1¢? + Cogp™2 > 0

> |
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whenever 2 < x < log, (b* + b* —b). Now, if 1 < 2 < «, then 2 < B(z) < log, (b* +b? — b)
and f’'(z) > 0. Consequently,

d

fil@) = ——gr(B(2)) = gx(B(2))B'(z) > 0

for all z € [1,a]. This shows that fy is increasing on the open interval (1, «).
We now wish to show that fj is concave down on the interval (1, «). We first calculate

N B
P = o - D 11
and ) )
5'0) = o7 (o gs) (@) losd
to obtain
1(2) = 2 (B(w)) = (g (B)B (@) = gh(B)B" () + (7)o (B(x))

= (8'(2))*(9(B(2)) — gi(B(z)) logb).
Therefore, to show that f; is concave down on the interval (1, a), we just need to show
that ¢,.(5(z))logb > g/ (B(x)) for all z € (1,«). To do so, it suffices to show that

5logb 5)
VOIOBD ) > L) )

for all z € (2,log, (b* + b* — b)).
Suppose z € (2,log,(b* + b? — b)). We have

—(¢" + ™) + (0" — 67" ) log ¢ = ¢"(¢* log ¢ — 1) — ¢~ (¢ *log d + 1)
> ¢*(¢"logp — 1) — ¢~ "(6 " log o + 1) > ¢*(¢"log ¢ — 1) — ¢ *(¢ *log ¢ + 1) > 0,

SO

[(k —2)(¢" — ¢7")log ¢ — (¢" + ¢~") + (6" — 7" %) log ¢]

> % [k — 2)(¢" — 67) log 8] .

In other words,

V5 logb - o
Wﬂl@(iﬂ) > (k—x)(¢" — ¢7")logh. (26)
Using the inequality log, (1 + u) < %, which holds for all © > —1, we find that
0og
b—1 b—1
k| 12
k—x >k —log,(b" + b* — b) = —log, (1+F> Z TP Tlogh’
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so it follows from the assumption that £ > 3 that

b—1

S
T2 T logh

(27)

In addition, since z > 2,

" (logb — log ¢) — ¢ *(log b + log ¢) > ¢*(logb — log ¢) — ¢ *(logb + log ¢) > 0. (28)
Combining (26), (27), and (28) with the fact that

\/5 "
log qbgk

(x) =log o |(k —z)(¢" +¢7") — 2% + ("2 o2

yields

\/Slogb / \/5 "
log ¢ gi(z) — 10gq§gk<x>

(k—2)(¢" — ¢™")logb — (k — 2)(¢" + ¢~")log ¢ +2(¢" — ¢~) — (6" + ™" 7*) log ¢
= (k —2)(¢"(logb — log ¢) — ¢~ “(log b+ log @) + ¢"(2 — ¢*log ¢) — ¢~ *(2 + ¢~ log ¢)

-1
" b2log b<¢m<10g b—logd) — ¢ “(logb + log ¢)) + ¢“(2 — ¢*log d) — ¢~ (2 + ¢ *log @)
= A1¢” — A",
where -
o _ 42 _ b— B
Ay =2—¢"logo 2logb (logb — log ¢)
and .
_ -2 _b—
Ay =2+¢ "logo bzlogb(logb+log¢).

Because b > 2, it is easy to see that

b—1 1
A >2—¢?log ¢ — 7 22—¢210g¢—1>0.49 and Ay <2+ ¢ %log¢ < 2.19.
Since x > 2,

\/glogb, V5

gr(x) > A1d” — Asd™™ > 0.49¢" — 2.19¢* > 0.49¢* — 2.19¢ 2 > 0,

log ¢ 9i(w) = log ¢
which proves (25).

We have shown that f; is increasing and concave down on the interval (1,«). Now,
suppose m is odd and 3 < m < k. Because m is odd, one may easily show that h,, =

[ =72
b+ —b—1
1+ Z pr2 — + . Since
i=0

b? —1

R —b—1 b —1
_— k: p—
Gk(m) b hon 21 > 21
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we may use the fact that f; is increasing on (1, «) to see that

Gt 1> 5 (= ) = (8 (=1 ) ) = antm)

1 m —m m-+42 —m—2

=7 [(k —m)(¢™ +¢™™) + "2 + 7]

B o V1) LA et o VL i
- (k ) \/5 + \/5

Similarly, if m is even and 2 < m < k, then
b —1 b —1
(Gl =) = fitn) = 5 (=1 ) = (8 (=1 ) ) = anl)

[(k—m)(¢™ 4+ ¢~™) + ¢ + 677

> —= [(k=m)(@™ —¢™") + ™ — 7]
m_ (1] m m+2 -1 m—+2

O o Vi e VL)

V5 V5

Hence, fi.(Grp(m) — b¥) > Hi(m) for all m € {2,3,...,k}. We may now prove that

sp(n) < fr(n —bF) for all n € {bF + 1,68 +2,... b + hy,}. Choose such an integer n. If

n = Gi(m) for some m € {2,3,...,k}, then it follows from Theorem 25 and the preceding

discussion that

Sl= &l

sp(n) = Hy(m) < fu(n — 0F).

Therefore, we will assume n # Gi(m) for all m € {2,3,...,k}. Note that there exists
some m € {2,3,...,k — 1} such that Gx(m) < n < Gg(m + 1). Let C be the curve
{(z, fr(x = b%)): Gx(m) < 2 < Gr(m+ 1)}, and let £ = {Jn(x): Ge(m) < x < G(m +
1)} be the line segment connecting the points (Gg(m), Hix(m)) and (Gr(m+1), Hy(m+1)).
Because fi(z) is concave down on the interval (1, «), the curve C is concave down. Since
fe(Ge(m) — b¥) > Hp(m) and fi(Gp(m + 1) — b*) > Hy(m + 1), the curve C must
lie above the line segment £. In particular, Ji,,(n) < fi(n — b¥). By Theorem 34,
sp(n) < Jm(n) < fr(n — %), as desired. O

4 Concluding Remarks

We wish to acknowledge some of the potential uses and extensions of results derived in
this paper. First, we note that Theorem 12 allows us to derive explicit formulas for the
values of s,(n) for integers n whose ordinary base b expansions have certain forms. For
example, we were able to invoke Theorem 12 in the proof of Theorem 25 in order to show
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Figure 2: Two plots of s3(n) for 1 < n < b'°. The top plot uses the value b = 2, while the
bottom uses b = 3. For each k € {3,4,...,9}, the graph of f,(z — ) for b* < o < V*+hy,

is shown in green.
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Figure 3: A plot of s3(n) for 3° < n < 3% + hy (where hyg is defined with b = 3). The
graph of fy(x —3%) is colored green. The upper bound from Theorem 34 is the polygonal
path colored purple. The points (Gg(m), Hy(m)) for m € {2,3,...,9} are colored blue.

that s,(Gx(m)) = Hi(m). As another example, it is possible to use Theorem 12 to show
that

Sb<1 + b* + bx1+z2 + bzl+x2+w3) = XT3 + T1XTo + T1T3 + ToX3 + To — 1 (29)

for any positive integers z1, o, 3. The equation (29) appears with several similar identi-
ties (many of which can be deduced from Theorem 12) in [3].

Second, arguments based on symmetry and periodicity may be used to extend the
upper bounds given by Theorems 23, 34, and 36. For example, referring to the top image
in Figure 2, one will see that the plot of sq(n) forms several “mound” shapes. However,
only the left sides of the mounds are bounded above by the green curves. It is known [5,
page 2] that if k£ € N, then

59(2F + 2) = 55 (28 —2) for all z € {1,2,...,2%}. (30)

This allows us to obtain upper bounds over the right sides of the mounds for free. More
precisely, since we know from Theorem 36 that so(2+2) < fi.(z) for allz € {1,2, ..., hy},
it follows from (30) that sy(28™1 — 2) < fi(x) for all such z. Using identities similar to
(30) for arbitrary values of b, one may extend our upper bounds for s,(n) to a larger range
of values of n.
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