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Abstract

Let Rn denote the graph with vertex set consisting of the squares of an n × n
grid, with two squares of the grid adjacent when they lie in the same row or column.
This is the square rook’s graph, and can also be thought of as the Cartesian product
of two complete graphs of order n, or the line graph of the complete bipartite graph
Kn,n. In this paper we compute the Smith group and critical group of the graph
Rn and its complement. This is equivalent to determining the Smith normal form
of both the adjacency and Laplacian matrix of each of these graphs. In doing so we
verify a 1986 conjecture of Rushanan.

Keywords: Smith normal form; critical group; chip-firing

1 Introduction

This paper concerns integer invariants of the square rook’s graph, denoted Rn. Such a
graph is formed by taking as its vertex set the squares of an n× n grid, and defining two
squares to be adjacent when they lie in the same row or the same column. That is, if
one decided to play chess on such a grid, two squares are adjacent when a rook can move
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from one to the other. It is easy to see that Rn is isomorphic to the Cartesian product
of two complete graphs of order n, and also to the line graph of the complete bipartite
graph Kn,n.

To avoid trivialities, we let n > 3 throughout. The graph Rn is a strongly regular
graph (srg) with parameters

v = n2

k = 2(n− 1)

λ = n− 2

µ = 2

and is in fact determined up to isomorphism by these parameters, except in the case
n = 4 where it shares these parameters with the Shrikhande graph. See [3, 7, 9] for more
information and many interesting properties.

When considering a graph Γ, a standard method of study is to encode its information
into a matrix and then work to understand algebraic properties of the matrix. This
can sometimes yield useful information about the graph, and is one of the basic ideas of
spectral graph theory. Another graph invariant, somewhat more subtle than the spectrum,
is an abelian group that can be read off from the Smith normal form of such a matrix.
We defer formal definitions until the next section.

From the adjacency matrix we get the Smith group S(Γ) and from the Laplacian
matrix we get the critical group K(Γ). Our main theorem will be the determination of
these groups for the rook’s graph Rn and its complement Rc

n. We will write Zr for the
group Z/rZ.

Theorem 1.1. Let Rn denote the square rook’s graph. The critical group and Smith group
of Rn and its complement Rc

n are given by the following isomorphisms:

K(Rn) ∼= (Z2n)(n−2)2+1 ⊕ (Z2n2)2(n−2) (1.1)

S(Rn) ∼= (Z2)
(n−2)2 ⊕

(
Z2(n−2)

)2n−3 ⊕ Z2(n−1)(n−2) (1.2)

K(Rc
n) ∼=

(
Zn(n−2)

)(n−2)2−1 ⊕
(
Zn(n−1)(n−2)

)2 ⊕ (Zn2(n−1)(n−2)

)2(n−2)
(1.3)

S(Rc
n) ∼=

(
Z(n−1)

)2(n−1) ⊕ Z(n−1)2 . (1.4)

Remarks.

1. In [4, Example SNF2], the authors state isomorphism 1.2, and more generally give
a diagonal form for the matrix A+cI, where A is the adjacency matrix of Rn. They
then refer the reader to van Eijl’s thesis [12] for the “somewhat boring proof”. In [1]
the author computes the critical group of the line graph of the complete bipartite
graph Kn,m (i.e., the n ×m rook’s graph) via integral row and column operations
on the Laplacian. Thus the isomorphisms 1.1 and 1.2 can be deduced from these
works. We believe the isomorphisms 1.3 and 1.4 are new.
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2. The two isomorphisms above for S(Rn) and S(Rc
n) appeared as conjectures in [8,

Examples 4-5 and 4-6].

Computation of the Smith normal form of the adjacency or Laplacian matrix is a
standard technique to determine the Smith or critical group of a graph. It is well known
that this can be achieved through integral row and column operations, and this approach
is popular among many authors. As mentioned in the first remark above, this is how the
rook’s graphs’ invariants have thus far been approached.

Our proof is quite different, and handles all of these isomorphisms uniformly. We will
work directly within the particular abelian group to identify a cyclic decomposition for
it. Visualizing the group elements in terms of configurations on the graphs will play an
important role, and will nicely illuminate the relationship between the graphs and the
groups. We note that the most natural decomposition is not always the invariant factor
decomposition that arises from Smith normal form. See section 3.1.3 below, and see [13]
for a rather spectacular example. See the final Remark of the paper for a further contrast
between our method of proof and a more matrix-based approach. For surveys on Smith
groups see [8, 10]. For a good starting point for critical groups, see [6, 5].

2 Preliminaries

Let M be an m × n matrix with integer entries. We may view the matrix as defining a
homomorphism of free abelian groups:

M : Zn → Zm.

It is the cokernel of this map, Zm/ Im(M), that we are interested in. This finitely generated
abelian group becomes a graph invariant when we take the matrix M to be the adjacency
or Laplacian matrix of the graph.

Formally, let Γ be a simple graph and order the vertices in some arbitrary but fixed
manner. Let A = (ai,j) be a matrix with rows and columns indexed by the vertex set of
Γ. Set

ai,j =

{
1, if vertex i and vertex j are adjacent

0, otherwise.

Then A is the adjacency matrix of Γ. Define a matrix D = (di,j) of the same size as A by

di,j =

{
the degree of vertex i, if i = j

0, otherwise,

and set L = D − A. The matrix L is the Laplacian matrix of Γ. The adjacency matrix
and Laplacian matrix will be our primary focus. The cokernel of A is known as the Smith
group of the graph and is denoted S(Γ). The cokernel of L always has free rank equal to
the number of connected components of the graph. The torsion subgroup of the cokernel
of L is known as the critical group (or sandpile group, Jacobian group, Picard group) of
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Γ and is denoted K(Γ). The critical group is especially interesting; for connected graphs,
its order is equal to the number of spanning trees of the graph.

One way to compute the cokernel of M is by using the Smith normal form. It was
H.J.S. Smith [11] who first proved that there exist square, unimodular (i.e. determinant
±1) integer matrices P and Q so that PMQ = S, where the matrix S = (si,j) satisfies:

1. si,i divides si+1,i+1 for 1 6 i < rank(M)

2. si,j = 0 for i 6= j.

We then have
cokerM ∼= Zs1,1 ⊕ Zs2,2 ⊕ · · ·

and this is the so-called invariant factor decomposition of the abelian group. For this
reason the integers si,i are known as the invariant factors of M ; their prime power factors
are the elementary divisors of M . Any diagonal form of M achieved by unimodular
matrices will give a cyclic decomposition of cokerM , and serves to identify the group.

The following lemma is of fundamental importance and will be used repeatedly. It
gives the conditions that will allow us to identify a cyclic decomposition of the Smith or
critical group.

Lemma 2.1. Let G be a finite abelian group, generated by the elements x1, x2, . . . , xk.
Suppose that there exist integers r1, r2, . . . , rk so that |G| = r1 · r2 · · · rk and |xi| divides
ri, for 1 6 i 6 k. Then

G ∼= Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrk .

Proof. Since the order of each xi divides ri, there is a homomorphism

Zri → G

that sends 1 7→ xi. These homomorphisms extend to a unique map

Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrk → G.

Since the set {xi} generates G, this map is onto, and since both groups have the same
order, it must be an isomorphism.

3 The Rook’s Graph and Its Complement

To prove Theorem 1.1 we will apply Lemma 2.1 to each of the four abelian groups. There
are three ingredients needed to apply the lemma: we need to know the orders of our
groups, exhibit a set of elements and show that their orders divide the orders of the cyclic
factors as stated in the theorem, and show these elements do indeed generate the group.
We will compute orders of the groups immediately below. The two subsections following
will provide the arguments for the orders of the said generators, as well as the proof that
they do indeed form a generating set.
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As the rook’s graph Rn is an srg(n2, 2(n−1), n−2, 2), we immediately get its adjacency
spectrum [3, Chapter 9]:

[−2](n−1)2 , [n− 2]2n−2, [2(n− 1)]1.

The exponents here indicate multiplicity of the eigenvalue. Since the adjacency matrix
of Rn is nonsingular, the product of the eigenvalues equals the product of the invariant
factors. We deduce:

|S(Rn)| = 2(n−1)2 · (n− 2)2n−2 · 2(n− 1)

= 2(n−2)2 · (2(n− 2))2n−3 · 2(n− 1)(n− 2).

Since Rn is regular of degree 2(n − 1), the Laplacian spectrum can be immediately
deduced from the adjacency spectrum. We get:

[2n](n−1)2 , [n]2n−2, [0]1.

Kirchhoff’s Matrix-Tree Theorem [3, Prop. 1.3.4] implies that the order of the critical
group of Rn is the product of the nonzero eigenvalues of the Laplacian, divided by the
number of vertices. We get:

|K(Rn)| = 1

n2
· (2n)(n−1)2 · n2n−2

= (2n)(n−2)2+1 · (2n2)2(n−2).

The complement graph Rc
n is also strongly regular, with parameters srg(n2, (n −

1)2, (n − 2)2, (n − 1)(n − 2)). The exact same calculation as above can be repeated
to compute the group orders |S(Rc

n)| and |K(Rc
n)|, and one sees that in the statement of

Theorem 1.1 the orders of all of the groups involved are correct.

3.1 Order arguments

Let M denote either the adjacency or Laplacian matrix of a graph. Both the domain
and codomain of the map defined by M are equal to the free abelian group on the vertex
set of the graph. We visualize the elements of this group as configurations on our graph.
Formally, for us a configuration on a graph Γ will be a function c : V (Γ)→ Z. We suggest
that the reader imagine a picture of the graph with integers labeling the vertices. Addition
of configurations becomes vertex-wise addition of the labels. For the rook’s graph, such
a visualization is quite easy; simply take an n× n grid and fill the squares with integers.

Now the cokernel of M is still represented by the set of all configurations, but up to a
certain equivalence. For the Laplacian matrix, this equivalence is given by “chip-firing”,
which we will explain in a moment. First, observe that the set of configurations whose
labels sum to zero form the smallest direct summand of the codomain of L that contains
the image of L. Therefore, the elements of the critical group can always be represented
by configurations whose labels sum to zero. (In the Smith group, all configurations are
permitted, not just those with labels summing to zero.)

Two configurations represent the same element of K(Γ) if one can be transformed into
the other by a finite sequence of operations. The following are the operations we allow:
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1. fire at a vertex : results in the label of that vertex decreasing by its degree, and the
labels of its neighbors each increase by 1,

2. pull at a vertex : results in the label of that vertex increasing by its degree, and the
labels of its neighbors each decrease by 1.

We will sometimes refer to the labels in the grid as the number of chips on each vertex.
With a little thought the reader should be able to recognize that two configurations are
equivalent precisely when their difference is in the image of the Laplacian. Thus, we are
indeed describing the cokernel of L. We give an example in Figure 1 of two equivalent
configurations in the critical group of R4. Here and throughout, we use empty space to
denote zeros.

-1 1 000 000

000 000 000

000 000 000 000

000 000 000 000

⇒

-7 1 1 1

000 6 -1 -1

1 -1 000 000

1 -1 000 000

Figure 1: Equivalent configurations in K(R4), seen by firing at the red vertex and pulling
at the blue.

For the adjacency matrix, we can still play a similar game. The elements of the Smith
group can be viewed as configurations on the graph, up to a similar equivalence by a
finite sequence of fires and pulls. The only difference is that in the Smith group, it is only
the neighbors’ labels that change, and no change is made at the vertex that was fired or
pulled. In Figure 2, we give an example of two equivalent configurations in the Smith
group of R4.

-1 1 000 000

000 000 000

000 000 000 000

000 000 000 000

⇒

-1 1 1 1

000 000 -1 -1

1 -1 000 000

1 -1 000 000

Figure 2: Equivalent configurations in S(R4), seen by firing at the red vertex and pulling
at the blue.

Interestingly, the Smith and critical groups for both the rook’s graph and its comple-
ment share many of the same generators. Overall, we have five main generators. The
cyclic summands in our isomorphisms will turn out to be generated by these configura-
tions and their images under certain automorphisms of our graph. If c is a configuration
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on a graph Γ and σ is an automorphism of Γ, then we can define a new configuration σ(c)
by (σ(c))(v) = c(σ−1(v)), for all v ∈ V (Γ). In other words, the label at vertex v in the
configuration c becomes the label at vertex σ(v) in the configuration σ(c). For the rook’s
graph, this is again easy to visualize. The automorphisms of Rn we use are row swaps,
column swaps, and the automorphism ρ : V (Rn) → V (Rn) that reflects across the main
diagonal, swapping the ith row with the ith column. All the above comments apply to
Rc

n as well, since Rn and Rc
n share the same vertex set and have the same automorphisms.

To show that a particular configuration c has order dividing k, we will exhibit a
sequence of fires and pulls that transform the configuration k · c into the all-zero config-
uration. If such a firing sequence exists for the configuration k · c, then clearly such a
firing sequence exists for the configuration k · σ(c): just apply the automorphism σ to
all vertices in the first firing sequence. The important point is that when we consider a
conjugate pair of configurations c and σ(c), their orders will be equal, though this order
will depend on which group we are viewing the elements in.

We now define our main generators c1, c2, c3, c4, c5. We remind the reader that our
vertex set is the squares of an n × n grid; we indicate the value of a configuration c on
the square in the ith row and jth column by c(i, j).

c1(i, j) =


−1, if (i, j) = (1, 1)

1, if (i, j) = (1, 2)

0, otherwise.

c2(i, j) =


−(n− 1), if (i, j) = (1, 1)

1, if i = 1 and 2 6 j 6 n

0, otherwise.

c3(i, j) =


−1, if (i, j) = (1, 1) or (2, 2)

1, if (i, j) = (1, 2) or (2, 1)

0, otherwise.

c4(i, j) =

{
1, if (i, j) = (1, 1)

0, otherwise.

c5(i, j) =


−n(n− 1)(n− 2), if (i, j) = (1, 1)

n(n− 2), if j = 1 and 2 6 i 6 n

0, otherwise.

We illustrate these five configurations in Figure 3.

the electronic journal of combinatorics 23(4) (2016), #P4.9 7



−1 1

c1

−(n − 1) ← 1→

c2

−1 1

1 −1

c3

1

c4

T

←
n

(n
−

2)
→

c5

Figure 3: The main generators. Here T = −n(n− 1)(n− 2).

We emphasize once more that whenever we consider a particular configuration, we are
actually working with the element of the Smith or critical group that it represents.

3.1.1 K(Rn)

We begin with the critical group of Rn, whose claimed decomposition is

K(Rn) ∼= (Z2n)(n−2)2+1 ⊕ (Z2n2)2(n−2).

We will use c1, c2, and c3 to form the set of generators of K(Rn). We will begin by
showing the order of c1 must divide 2n2, and that the order of c2 and c3 must divide 2n.
Finally, we explain how to get the entire set of generators from the images of these three
configurations under certain automorphisms of Rn.

To prove the orders of each configuration must divide the desired order, we simply
give the firing sequence that gets the desired multiple to the all-zero configuration. We
will denote the firing sequence of a configuration c by F (c). Since it does not matter in
which order the vertices are fired/pulled, we can exhibit the firing sequence as a function
F (c) : V (Γ) → Z where the value on vertex v tells you how many times to fire it if
positive, and how many times to pull it if negative. Again, we will usually visualize
the firing sequence as labels on an n × n grid, though it is important not to confuse a
configuration and a firing sequence. In [2], F (c) is called the representative vector of the
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firing sequence. For us, this will always be a vector such that c − LF (c) = ~0, where ~0 is
the all-zero configuration.

We will start by formally defining the firing sequence for one configuration, 2n2 · c1,
and then explain how to check a vertex’s end value after a firing sequence. After doing so,
we will simply display each firing sequence as a diagram on the n × n grid, as described
above. We have the following.

F (2n2 · c1) =



−(n+ 1) at vertex (1, 1),

n+ 1 at vertex (1, 2),

−1 at vertices (i, 1) for 2 6 i 6 n,

1 at vertices (i, 2) for 2 6 i 6 n,

0 elsewhere.

To show this firing sequence does take 2n2 · c1 to the all-zero configuration, we can
check each vertex. First we check (1, 1). The initial value of this vertex is −2n2, and then
it gains (n+ 1)(2n− 2) by being pulled n+ 1 times. It gains n+ 1 chips from (1, 2), and
loses n − 1 chips from every vertex below it being pulled once. Thus, the final value on
(1, 1) is

−2n2 + (n+ 1)(2n− 2) + n+ 1− (n− 1) = −2n2 + 2n2 − 2n+ 2n− 2 + 2

= 0.

Through the same reasoning (but reversing the signs), we find that the value at (1, 2)
goes to 0 as well. It is clear that the value at any other vertex in the top row ends at 0,
since it starts at 0, gains n + 1 from the firings at (1, 2), then loses n + 1 from the pulls
at (1, 1). As you can see, we don’t actually need to check every vertex individually; the
computation is greatly reduced by noticing that certain groups of vertices are affected in
the same way by the firing sequence. For example, every vertex in the leftmost column
(except (1, 1)) will have the same initial value, and take the same steps to determine its
final value. Consider the vertex (i, 1), i > 1, with initial value 0. It will gain 2n− 2 when
it is pulled once, and lose n+1 chips from (1, 1). It will lose n−2 from its other neighbors
in that same column being pulled. Finally, it will gain one chip from (i, 2) being fired.
Therefore, the final value on (i, 1) is

0 + (2n− 2)− (n+ 1)− (n− 2) + 1 = 2n− 2− n− 1− n+ 2 + 1

= 0.

We can again do the same thing for any vertex (i, 2), i > 1, by simply reversing the
signs in our previous argument. Finally, any vertex (i, j) with i > 1 and j > 2 will gain
one chip from (i, 2) and lose one from (i, 1), resulting in no change from 0. Therefore,
this firing sequence takes 2n2 · c1 to the all-zero configuration, i.e., 2n2 · c1 is equivalent
to the identity.

From now on, we will simply display the firing sequences as diagrams on the n × n
grid and allow the reader to check that they work.
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−(n + 1) (n + 1)

−1
↑

↓
1

↑

↓

F (2n2 · c1)

−n ← 1→

−1
↑

↓

F (2n · c2)

−1

−1

1

1

F (2n · c3)

The reader may notice that F (2n·c3) = c3. This is because c3 is actually an eigenvector
of the Laplacian of Rn, with eigenvalue 2n. In fact, c3 will be an eigenvector for the
adjacency matrix of Rn as well, and even for the Laplacian and adjacency matrix for
Rc

n. Thus, c3 will appear as a generator for every group, and its order will be the shifted
eigenvalue. We will now demonstrate how we construct all generators of our group using
these main generators and certain automorphisms.

The configuration c2 will be a single generator of order 2n. The other (n − 2)2 gen-
erators of order 2n will come from c3, through row and column swaps. We allow any
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permutation of the rows that fixes the first and last row, followed by any permutation of
the columns that fixes the first and last column. We can imagine sliding the innermost
−1 of c3 around the inside (n− 2)× (n− 2) square, with the ones on the outer row and
column following it.

Finally, the 2(n− 2) generators of order 2n2 will be the images of c1 under the auto-
morphisms we now list. We allow any permutation of the columns that fixes the first and
last column. We also allow the reflection ρ, followed by any permutation of the rows that
fixes the first and last row.

For illustration, we list all generators of K(R4) in Figure 4.

-1 1 000 000

1 -1 000 000

000 000 000 000

000 000 000 000

-1 1 000 000

000 000 000 000

1 -1 000 000

000 000 000 000

-1 000 1 000

000 000 000 000

1 000 -1 000

000 000 000 000

-1 000 1 000

1 000 -1 000

000 000 000 000

000 000 000 000

-1 1 000 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 1 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

1 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

000 000 000 000

1 000 000 000

000 000 000 000

-3 1 1 1

000 000 000 000

000 000 000 000

000 000 000 000

Figure 4: Generators of K(R4).

3.1.2 S(Rn)

We will now look at the Smith group, whose claimed decomposition is

S(Rn) ∼= (Z2)
(n−2)2 ⊕ (Z2(n−2))

2n−3 ⊕ Z2(n−1)(n−2).

For our generators of order 2, we will use the images of c3 under the same automorphisms
as before, giving us (n − 2)2 total. For our generators of order 2(n − 2), we start with
c1. The automorphisms we apply to c1 here are the same as before, except we no longer
require that the column permutations fix the last column (that is, we allow the 1 to take
the last spot in the top row) giving us a total of 2n−3 such generators. Our sole generator
of order 2(n− 2)(n− 1) will be c4. See Figure 5 for the list of generators of S(R4).

1 000 000 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 1 000 000

1 -1 000 000

000 000 000 000

000 000 000 000

-1 1 000 000

000 000 000 000

1 -1 000 000

000 000 000 000

-1 000 1 000

000 000 000 000

1 000 -1 000

000 000 000 000

-1 000 1 000

1 000 -1 000

000 000 000 000

000 000 000 000

-1 1 000 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 1 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

1 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

000 000 000 000

1 000 000 000

000 000 000 000

-1 000 000 1

000 000 000 000

000 000 000 000

000 000 000 000

Figure 5: Generators of S(R4).
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We give the firing sequences proving that the order of these configurations must divide
the desired orders below. We remind the reader that since we are working in the Smith
group, the vertex that is fired or pulled is unchanged. Let P = n2 − 5n+ 5.

−1

−1

1

1

F (2 · c3)

−(n − 3) n− 3

1

↑

↓
−1
↑

↓

F (2(n− 2) · c1)

P ← −(n− 2)→

←
−

(n
−

2)
→

1

F (2(n− 2)(n− 1) · c4)
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3.1.3 K(Rc
n)

Now we will look at the critical and Smith group of the complement of the rook’s graph.
We’ll begin with the critical group, whose claimed decomposition is

K(Rc
n) ∼=

(
Zn(n−2)

)(n−2)2−1 ⊕
(
Zn(n−1)(n−2)

)2 ⊕ (Zn2(n−1)(n−2)

)2(n−2)
.

However, we find a much nicer proof by splitting up one component of size n(n−1)(n−2)
into one component of size n(n − 2) and one component of size n − 1. We can do this
because n− 1 is relatively prime to both n and n− 2. Thus we will show

K(Rc
n) ∼=

(
Zn(n−2)

)(n−2)2 ⊕ Zn−1 ⊕ Zn(n−1)(n−2) ⊕
(
Zn2(n−1)(n−2)

)2(n−2)
.

Our main generator of order n(n − 2) will be c3; the single generator of order n − 1
will be c5; the single generator of order n(n− 1)(n− 2) will be c2; and the main generator
of order n2(n− 1)(n− 2) will be c1.

The automorphisms we apply to c3 are the same as in the last two cases to create
all (n − 2)2 generators. Similarly, the automorphisms applied to c1 are the same as for
K(Rn); this allows the 1 to be in any square in the top row that is not the last one, and
any square in the leftmost column that is not the last. The firing sequences establishing
the divisibility of the orders of the configurations by our desired orders are given below.
Let Q = n2 − n− 1 and U = n(n− 2).

−Q Q

−1
↑

↓
1

↑

↓

F (n2(n− 2)(n− 1) · c1)

−U ← (n− 1)→

1

↑

↓

F (n(n− 2)(n− 1) · c2)
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−1

−1

1

1

F (n(n− 2) · c3)

Again, the firing sequence for c3 is itself. The configuration c5 is a somewhat special
case. If ρ is the reflection about the main diagonal, then c5 = n(n − 2) · ρ(c2). Since c2
has order dividing n(n−2)(n−1), then ρ(c2) must as well. Therefore, c5 must have order
dividing n− 1.

Again, we list the generators of K(Rc
4) in Figure 6 as an example.

-1 1 000 000

1 -1 000 000

000 000 000 000

000 000 000 000

-1 1 000 000

000 000 000 000

1 -1 000 000

000 000 000 000

-1 000 1 000

000 000 000 000

1 000 -1 000

000 000 000 000

-1 000 1 000

1 000 -1 000

000 000 000 000

000 000 000 000

-1 1 000 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 1 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

1 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

000 000 000 000

1 000 000 000

000 000 000 000

-3 1 1 1

000 000 000 000

000 000 000 000

000 000 000 000

-24 000 000 000

8 000 000 000

8 000 000 000

8 000 000 000

Figure 6: Generators of K(Rc
4).

3.1.4 S(Rc
n)

The Smith group of Rc
n has a very simple and nice decomposition:

S(Rc
n) ∼= (Zn−1)

2(n−1) ⊕ Z(n−1)2 .

We will use c1 as our main generator of order n−1 and c4 as our single generator of order
(n − 1)2. We get 2(n − 1) total generators from c1 by moving the 1 to be in any square
in the top row or leftmost column. We’d like to note that our eigenvector c3 still makes
an appearance in this group, but its eigenvalue is 1, so it’s just the identity. This will be
useful during our spanning arguments in the next section.

The firing sequences proving that the orders of our configurations must divide our
desired order are listed below. We now let T = (n− 2)2.
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n − 2 −(n − 2)

1

↑

↓
−1
↑

↓

F ((n− 1) · c1)

−T ← n− 2→
←

n
−

2
→

-1

F ((n− 1)2 · c4)

Finally, we finish this section by giving all the generators of S(Rc
4) in Figure 7.

1 000 000 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 1 000 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 1 000

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 1

000 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

1 000 000 000

000 000 000 000

000 000 000 000

-1 000 000 000

000 000 000 000

1 000 000 000

000 000 000 000

-1 000 000 000

000 000 000 000

000 000 000 000

1 000 000 000

Figure 7: Generators of S(Rc
4).

The stark similarities between both the generating configurations and firing sequences
for K(Rn), S(Rn),K(Rc

n), and S(Rc
n) lends to the idea that there may be some connection

between each of these objects for a general graph. This connection evades the authors at
this time.
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3.2 Spanning arguments

Now we will show that our set of claimed generators for each group really do span all
possible configurations. We define the configuration

qi,j =


−1, at vertex (1, 1)

1, at vertex (i, j)

0, elsewhere.

As explained earlier, every element of the critical group of both Rn and Rc
n is represented

by a configuration with vertex labels summing to zero. Thus the set

{qi,j | 1 6 i, j 6 n with (i, j) 6= (1, 1)}

is a generating set for both critical groups. We will show that each of these qi,j can
be expressed as a linear combination of the elements exhibited in the previous section,
therefore showing that these elements do indeed form a generating set.

For the Smith groups, an obvious generating set consists of all configurations with a
single vertex labeled 1. We will express all such configurations as linear combinations of
the elements exhibited for the Smith groups in the last section.

3.2.1 K(Rn)

We begin with the critical group of Rn. The configuration c1 with the automorphisms
previously mentioned are in fact q1,j and qi,1 for 1 < i, j < n. To get q1,n, we just take c2
and get rid of the unwanted ones using −q1,j for 1 < j < n. For example, in K(R4), we
can use the following combination of generators.

1 -1 000 000

000 000 000 000

000 000 000 000

000 000 000 000

+

1 000 -1 000

000 000 000 000

000 000 000 000

000 000 000 000

+

-3 1 1 1

000 000 000 000

000 000 000 000

000 000 000 000

=

-1 000 000 1

000 000 000 000

000 000 000 000

000 000 000 000

To get qn,1, we need to start with the all-zero configuration and fire the top left once.
Then, we get rid of the unwanted ones using −c2 and −qi,1 for 1 < i < n. Going back to
R4, we do the following.

-6 1 1 1

1 000 000 000

1 000 000 000

1 000 000 000

+

3 -1 -1 -1

000 000 000 000

000 000 000 000

000 000 000 000

+

1 000 000 000

000 000 000 000

-1 000 000 000

000 000 000 000

+

1 000 000 000

-1 000 000 000

000 000 000 000

000 000 000 000

=

-1 000 000 000

000 000 000 000

000 000 000 000

1 000 000 000

To get qi,j for 1 < i, j < n we can just use the automorphism of −c3 that puts a 1 in spot
(i, j), and then get rid of the unwanted ones using q1,j and qi,1. For example, we can do
the following to get q2,3 in R4.

1 000 -1 000

-1 000 1 000

000 000 000 000

000 000 000 000

+

-1 000 1 000

000 000 000 000

000 000 000 000

000 000 000 000

+

-1 000 000 000

1 000 000 000

000 000 000 000

000 000 000 000

=

-1 000 000 000

000 000 1 000

000 000 000 000

000 000 000 000

the electronic journal of combinatorics 23(4) (2016), #P4.9 16



To get a 1 in some spot in the bottom row, we can start with the all-zero configuration
and fire the first spot of the column it’s in and then get rid of all unwanted ones using the
other qi,j we’ve built up. Analogously, if we want to get a 1 in the rightmost column, we
fire the spot in the same row in the leftmost column, and then get rid of unwanted ones.

1 -6 1 1

000 1 000 000

000 1 000 000

000 1 000 000

+

1 000 -1 000

000 000 000 000

000 000 000 000

000 000 000 000

+

1 000 000 -1

000 000 000 000

000 000 000 000

000 000 000 000

+

1 000 000 000

000 -1 000 000

000 000 000 000

000 000 000 000

+

1 000 000 000

000 000 000 000

000 -1 000 000

000 000 000 000

+

-6 6 000 000

000 000 000 000

000 000 000 000

000 000 000 000

=

-1 000 000 000

000 000 000 000

000 000 000 000

000 1 000 000

After obtaining qi,n or qn,j for 1 6 i, j < n, we can get qn,n using the same method.

3.2.2 S(Rn)

For the Smith group S(Rn), we must show a single 1 can be put in any spot. The
generators of S(Rn) are almost exactly the same as K(Rn), so the spanning argument is
almost identical. Since we are in the Smith group, however, we must worry about getting
a 1 in the top-left corner. But this comes easily from c4. Instead of c2, we have the
automorphism of c1 that puts a 1 in spot (1, n) and then we get rid of the −1 in the top
left using c4. Other than this, the argument is identical.

3.2.3 K(Rc
n)

For the critical group K(Rc
n), we again must show that we can get any qi,j for (i, j) 6= (1, 1).

We can get q1,j for 1 < j 6 n and qi,1 for 1 < i < n the same way we did for the critical
group of the rook’s graph; the fact that we are in the complement doesn’t change anything
since we never fire any vertices. Getting qn,1 takes a little bit of work. We start with the
all-zero configuration and then fire all of the vertices in the top row (except the first).
Then we pull the top left n− 2 times.

000

000 000 000 000

000 000 000 000

000 000 000 000

⇒

-9 -9 -9

3 2 2 2

3 2 2 2

3 2 2 2

⇒

18 -9 -9 -9

3 000 000 000

3 000 000 000

3 000 000 000

If we now add (n − 1)2 · c2 to what we have, we obtain a configuration with n − 1 in all
of the spots of the leftmost column other than the top, which has −(n− 1)2.

-9 000 000 000

3 000 000 000

3 000 000 000

3 000 000 000

Notice that this configuration is similar to c5 which has n(n− 2) in all of the spots of the
leftmost column, except the top which has −n(n − 1)(n − 2). Since n − 1 and n(n − 2)
are relatively prime, by the euclidean algorithm, there must exist integers a and b such
that a(n − 1) + bn(n − 2) = 1 (indeed, take a = n − 1 and b = −1). Letting ρ be our
reflection across the main diagonal again, this means that ρ(c2) is a linear combination of
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c5 and the element above. With ρ(c2) in hand, we can get qn,1 the same way we obtained
q1,n. Getting qi,j for 1 < i, j < n can be done in much the same way as we did in the
non-complement graph. We use the automorphism of −c3 that puts a 1 in spot (i, j), and
then get rid of the unwanted ones using q1,j and qi,1. Lastly, to get a 1 in some spot in
the bottom row not equal to (n, 1) or (n, n), we can start with the all-zero configuration
and fire the top left. Then we pull the first spot of the column it’s in and get rid of all
unwanted numbers using the other qi,j we’ve built up. This gives us qn,j, 1 6 j < n, and
we obtain qi,n, 1 6 i < n, in an analogous way.

-9 000 000 000

000 1 1 1

000 1 1 1

000 1 1 1

+

000 9 000 000

-1 000 -1 -1

-1 000 -1 -1

-1 000 -1 -1

+

9 -9 000 000

000 000 000 000

000 000 000 000

000 000 000 000

+

-3 000 000 000

1 000 000 000

1 000 000 000

1 000 000 000

+

1 000 000 000

000 000 000 000

000 -1 000 000

000 000 000 000

+

1 000 000 000

000 -1 000 000

000 000 000 000

000 000 000 000

=

-1 000 000 000

000 000 000 000

000 000 000 000

000 1 000 000

After obtaining qi,n or qn,j for 1 6 i, j < n, we again get qn,n using the same method.

3.2.4 S(Rc
n)

Looking at S(Rc
n), our spanning argument becomes very easy. The configuration c4 and

all automorphisms of c1 allow us to get a single 1 in any spot in the top row or left column.
We remind the reader that c3, our eigenvector, now has eigenvalue 1, and thus c3 is equal
to the identity. It follows that any automorphism of c3 will be the identity as well. So we
can put a 1 in any spot in the bottom right (n − 1) × (n − 1) square by applying some
automorphism to −c3 that fixes the top left spot, and then getting rid of the unwanted
ones and negative ones in the top row and leftmost column.

Remark. We close with an interesting observation, due to the reviewer, which further
contrasts our method of proof with the usual computation of Smith and critical groups via
Smith normal form. As mentioned in the Introduction and Section 2, one can compute the
Smith normal form of an integer matrix M by construction of unimodular matrices P,Q
so that S = PMQ is in diagonal form. In each case, our firing sequences are candidates
for the columns of Q and the configurations representing the generators of our group are
candidates for the columns of P−1. The matrices L and A map the firing sequences to
the correct multiples of the configurations, as was shown in our order arguments. It then
remains to check in each case that the firing sequences can be extended to an integer basis
of the domain and the corresponding configurations can be extended to an integer basis
of the codomain, say, by verifying that these vectors remain independent when viewed
over any prime field. One runs into some trouble with the configuration c5 for the case
of the Laplacian of Rc

n, but this can be avoided by replacing c5 with the configuration
having label (n − 1)(n − 2) in the upper left square, −(n − 1) in every other position in
the top row, a 1 in the remaining positions of the leftmost column, and zeros elsewhere.
This configuration in fact represents the same element as −c5 in K(Rc

n).
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