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Abstract

For lattice polytopes P1, . . . , Pk ⊆ Rd, Bihan (2016) introduced the discrete
mixed volume DMV(P1, . . . , Pk) in analogy to the classical mixed volume. In this
note we study the associated mixed Ehrhart polynomial MEP1,...,Pk

(n) = DMV(nP1,
. . . , nPk). We provide a characterization of all mixed Ehrhart coefficients in terms
of the classical multivariate Ehrhart polynomial. Bihan (2016) showed that the
discrete mixed volume is always non-negative. Our investigations yield simpler
proofs for certain special cases.

We also introduce and study the associated mixed h∗-vector. We show that for
large enough dilates rP1, . . . , rPk the corresponding mixed h∗-polynomial has only
real roots and as a consequence the mixed h∗-vector becomes non-negative.

Keywords: lattice polytope; (mixed) Ehrhart polynomial; discrete (mixed) vol-
ume; h∗-vector; real roots

1 Introduction

Given a lattice polytope P ⊆ Rd, the number of lattice points |P ∩ Zd| is the discrete
volume of P . It is well-known ([11]; see also [1, 2]) that the lattice point enumerator
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EP (n) = |nP∩Zd| agrees with a polynomial, the so-called Ehrhart polynomial EP (n) ∈
Q[n] of P , for all non-negative integers n. Recently, Bihan [5] introduced the notion of
the discrete mixed volume of k lattice polytopes P1, . . . , Pk ⊆ Rd,

DMV(P1, . . . , Pk) :=
∑
J⊆[k]

(−1)k−|J ||PJ ∩ Zd| , (1)

where PJ :=
∑

j∈J Pj for ∅ 6= J ⊆ [k] and P∅ = {0}.
In the present paper, we study the behavior of the discrete mixed volume under simul-

taneous dilation of the polytopes Pi. This furnishes the definition of a mixed Ehrhart
polynomial

MEP1,...,Pk
(n) := DMV(nP1, . . . , nPk) =

∑
J⊆[k]

(−1)k−|J |EPJ
(n) ∈ Q[n]. (2)

Khovanskii [16] relates the evaluation MEP1,...,Pk
(−1) to the arithmetic genus of a

compactified complete intersection with Newton polytopes P1, . . . , Pk. Danilov and Kho-
vanskii [8] investigate the Hodge-Deligne polynomial e(Z;u, v) ∈ Z[u, v] of a complex
algebraic variety Z which in case of a smooth projective variety agrees with the Hodge
polynomial

∑
pq(−1)p+qhpq(Z)upvq. In joint work with Sandra Di Rocco and Benjamin

Nill the first author verified that DMV(P1, . . . , Pk) = (−1)d−ke(Z; 1, 0) where Z ⊂ (C∗)d
is the uncompactified complete intersection [9]. Using the mixed Ehrhart polynomial, this
yields the reciprocity type result

MEP1,...,Pk
(−1) = (−1)d−ke(Z̄; 1, 0) while MEP1,...,Pk

(1) = (−1)d−ke(Z; 1, 0) ,

relating Z and its compactification Z̄.
To the best of our knowledge, the origin of the mixed Ehrhart polynomial (2) goes

back to Steffens and Theobald [22], see also [21]. In their work, a slight variant of (2),
yet under the same name, has been employed as a very specific means to study higher-
dimensional, mixed versions of Pick’s formula in connection with the combinatorics of
intersections of tropical hypersurfaces. The definition of the mixed Ehrhart polynomial
therein differs from our definition by the exclusion of the empty set from the sum.

Here, we study mixed Ehrhart polynomials and their coefficients with respect to vari-
ous bases of the vector space of polynomials of degree at most d. First, we show that in the
usual monomial basis, the coefficients of mixed Ehrhart polynomials can be read off di-
rectly from the multivariate Ehrhart polynomial EP(n1, . . . , nk), where n1, . . . , nk ∈ Z>0
are non-negative integers (Theorem 2.4). This gives a meaning to the coefficients of
MEP1,...,Pk

(n). In particular this provides a simple proof that the coefficient of ni vanishes
for i < k and also allows to give streamlined proofs for known characterizations of the two
leading coefficients (Corollaries 2.5 and 2.6). We then deal with two prominent subclasses.
For the case that all polytopes P1, . . . , Pk are equal, the mixed Ehrhart polynomial can
be expressed in terms of the h∗-vector of P (see Proposition 2.7). And for the case that
P1, . . . , Pk all contain the origin and satisfy dim(P1 + · · · + Pk) = dimP1 + · · · + dimPk,
we can provide a combinatorial interpretation of DMV(P1, . . . , Pk) (see Proposition 2.9).
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As a consequence of the main result from [5], it follows that MEP1,...,Pk
(n) > 0 for all

n > 0 (see Theorem 3.1). This is accomplished by the use of irrational mixed decomposi-
tions and skilled estimates. Using our understanding of the coefficients of MEP1,...,Pk

(n),
we give direct proofs for this fact in the cases k ∈ {2, d− 1, d} and P1 = · · · = Pk = P in
Section 3. See also [14] for further developments in the context of valuations.

Expressing the (usual or mixed) Ehrhart polynomial in the basis {
(
n+d−i
d

)
: 0 6 i 6 d}

gives rise to the definition of the (usual or mixed) h∗-vector and h∗-polynomial (see Sec-
tion 4). By a famous result of Stanley [18], the usual h∗-vector is non-negative (compo-
nentwise). We illustrate that for the mixed h∗-vector this is not true in general (see Exam-
ple 4.3). Yet, we show that this has to hold asymptotically for dilates rP1, rP2, . . . , rPk
(Corollary 4.6). This follows from the stronger result that for r � 0 the mixed h∗-
polynomial is real-rooted with roots converging to the roots of the dth Eulerian polyno-
mial (Theorem 4.5). This can be seen as the mixed analogue of Theorem 5.1 in [10] (see
also [3, 7]). As a byproduct, we obtain that asymptotically the mixed h∗-vector becomes
log-concave, unimodal and, as mentioned, in particular positive, except for its 0th entry,
which always equals 0 (see Corollary 4.6).

Our paper is structured as follows. In Section 2, we prove various structural properties
of the mixed Ehrhart polynomial. In Section 3, we review Bihan’s non-negativity result of
the discrete mixed volume, particularly from the viewpoint of the mixed Ehrhart polyno-
mial, and provide alternative proofs for some special cases. Finally, in Section 4 we study
the h∗-vector and the h∗-polynomial of the mixed Ehrhart polynomial, and in particular
show real-rootedness of the mixed h∗-polynomial and positivity of the h∗-vector for large
dilates of lattice polytopes.

2 Structure of the mixed Ehrhart polynomial

In this section, we collect basic properties of the mixed Ehrhart polynomial. For some
known results we provide new or simplified proofs. For the whole section, we fix a collec-
tion P = (P1, . . . , Pk) of k lattice polytopes in Rd and we assume that P1 + · · ·+ Pk is of
full dimension d. The mixed Ehrhart polynomial, as introduced in (2), is by definition a
univariate polynomial of degree 6 d, which can be written as

MEP(n) = med(P)nd + med−1(P)nd−1 + · · ·+ me0(P).

Example 2.1. For the case of k copies of the d-dimensional unit cube, P1 = · · · = Pk =
[0, 1]d, we have EPi

(n) = (n+ 1)d and thus

MEP(n) =
k∑
j=0

(−1)k−j
(
k

j

)
(jn+ 1)d =

k∑
j=0

(−1)k−j
(
k

j

) d∑
i=0

(
d

i

)
(jn)i

by the binomial theorem. Hence,

MEP(n) =
d∑
i=0

(
d

i

)
ni

k∑
j=0

(−1)k−j
(
k

j

)
ji ,
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which gives mei(P) =
(
d
i

)
∆kf(0) with f(x) = xi, where ∆kf(0) denotes the kth difference

of the function f at 0 (see, e.g., [19, Sect. 1.4]). This can be expressed as mei(P) =(
d
i

)
k!S(i, k) in the Stirling numbers S(i, k) of the second kind (see [19, Prop. 1.4.2]).

Remark 2.2. If P = (P1, . . . , Pk) is a collection of lattice polytopes in Rd and dimPi = 0
for some i, then MEP(n) = 0. To see this, assume that Pk is 0-dimensional. For any
J ⊆ [k−1], the polytopes PJ and PJ∪{k} are translates of each other and the corresponding
terms in (2) occur with different signs.

As our first result, we give a description of the coefficients of the mixed Ehrhart
polynomial in Theorem 2.4. For this we recall a result independently due to Bernstein
and McMullen; see [13, Theorem 19.4].

Theorem 2.3 (Bernstein-McMullen). For lattice polytopes P = (P1, . . . , Pk) in Rd, the
function

EP(n1, . . . , nk) :=
∣∣(n1P1 + · · ·+ nkPk) ∩ Zd

∣∣
agrees with a multivariate polynomial for all n1, . . . , nk ∈ Z>0. The degree of EP in ni is
dimPi.

In particular, EP(n1, . . . , nk) has total degree d = dim(P1 + · · · + Pk). We write this
polynomial as

EP(n1, . . . , nk) =
∑
α∈Zk

>0

eα(P)nα (3)

where nα = nα1
1 · · ·n

αk
k for α = (α1, . . . , αk) ∈ Zk>0.

Theorem 2.4. For P = (P1, . . . , Pk) a collection of lattice polytopes in Rd

mei(P) =
∑
α

eα(P),

where the sum runs over all α ∈ Zk>1 such that |α| := α1 + · · · + αk = i. In particular,
mei(P ) = 0 for all 0 6 i < k.

Proof. For a subset J ⊆ [k] we write 1J ∈ {0, 1}k for its characteristic vector. Observe
that

DMV(P1, . . . , Pk) =
∑
J⊆[k]

(−1)k−|J |EP(1J).

Setting

A(α) =
∑
J⊆[k]

(−1)k−|J |1αJ where 1
α
J =

k∏
i=1

(1J)αi
i ,

presentation (3) then implies

DMV(P1, . . . , Pk) =
∑
α∈Zk

>0

eα(P)A(α).
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Using that 00 = 1, it is easy to verify that A(α) = 1 if αi > 0 for all i = 1, . . . , k and
A(α) = 0 otherwise. Hence,

MEP1,...,Pk
(n) = DMV(nP1, . . . , nPk) =

∑
α∈Zk

>0

eα(nP)A(α) =
d∑
i=0

( ∑
α∈Zk

>1

|α|=i

eα(P)
)
ni ,

where the last step used that eα is homogeneous of degree (α1, . . . , αd).

The proof also recovers Lemma 4.10 from [22] with different techniques. In order to
give an interpretation to some of the coefficients of MEP(n), let us write

EP(n1, . . . , nk) =
d∑
i=0

Ei
P(n1, . . . , nk)

where Ei
P(n1, . . . , nk) is homogeneous in n1, . . . , nk of degree i. By the same reasoning as

in the case of the usual Ehrhart polynomial (see, e.g., [2, Sect. 3.6]), we note

Ed
P(n1, . . . , nk) = vold(n1P1 + · · ·+ nkPk)

=
∑
α∈Zk

>0

|α|=d

(
d

α1,...,αk

)
MVd(P1[α1], . . . , Pk[αk])n

α. (4)

In the above expression, the (normalized) coefficient MV is called the mixed volume;
see, e.g., [13, Chapter 6]. Moreover, the notation MVd(P1[α1], . . . , Pk[αk]) means that
the polytope Pi is taken αi times, and (4) comes from a well-known property of mixed
volumes (see [17, Section 5.1]). Based on (4) together with Theorem 2.4, we obtain
streamlined proofs for the following known characterizations of the two highest mixed
Ehrhart coefficients (see [22] for the case k = d− 1 and [21, Lemma 3.7 and 3.8]).

Corollary 2.5 (Steffens, Theobald). Let P = (P1, . . . , Pk) be lattice polytopes such that
d = dim(P1 + · · ·+ Pk). Then

med(P) =
∑
α

(
d

α1,...,αk

)
MVd(P1[α1], . . . , Pk[αk]),

where the sum runs over all α ∈ Zk>1 with |α| = d. In particular, MEP(n) is a polynomial
of degree exactly d.

Proof. By Theorem 2.4, med(P) is the sum of the coefficients of EP(n1, . . . , nd) of total
degree d. These are coefficients of Ed

P(n1, . . . , nk) = vol(n1P1 + · · · + nkPk) that are
given by the mixed volumes. For the second claim, it is sufficient to note that since the
sum P1 + · · · + Pk is full-dimensional, Ed

P is not identically zero and all coefficients are
non-negative.
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For k = d, the previous corollary recovers a result of Bernstein [4]

MEP1,...,Pd
(n) = d! MVd(P1, . . . , Pd)n

d. (5)

A similar reasoning also allows us to give an expression for the second highest co-
efficient med−1(P ). For an integral linear functional a ∈ (Zd)∨, the rational subspace
a⊥ ⊆ Rd is equipped with a lattice a⊥∩Zd and a volume form vola so that a fundamental
parallelpiped has unit volume. We denote the face of a polytope P ⊆ Rd where a is
maximized by P a and consider it (after translation) as a polytope inside a⊥. Similarly,
we write MVa (DMVa) for the (discrete) mixed volume of a collection of polytopes in a⊥

computed using vola.

Corollary 2.6 (Steffens, Theobald). Let P = (P1, . . . , Pk) be a collection of d-dimensional
lattice polytopes in Rd. Then

med−1(P) =
1

2

∑
a

∑
α∈Zk

>1

|α|=d−1

(
d− 1

α1, . . . , αk

)
MVa(P

a
1 [α1], . . . , P

a
k [αk]),

where a ranges over the primitive facet normals of P1 + · · ·+ Pk.

Proof. For a full-dimensional lattice polytope P ⊆ Rd, the second highest Ehrhart coeffi-
cient can be expressed as

ed−1(P ) =
∑
a

1

2
vola(P

a),

where a ranges over all primitive vectors of facets of P (see, e.g., [2, Thm. 5.6]). This, of
course, is a finite sum as P has only finitely many facets. It follows that

med−1(P) =
∑
J⊆[k]

(−1)k−|J |
∑
a

1

2
vola(P

a
J )

=
1

2

∑
a

∑
J⊆[k]

(−1)k−|J |vola(P
a
J ).

Since ed(P ) = vold(P ) for a d-dimensional lattice polytope P ⊆ Rd, (2) implies that the
inner sum in the previous expression equals med−1(P

a
1 , . . . , P

a
k ). The result now follows

from Corollary 2.5 applied to Pa = (P a
1 , . . . , P

a
k ). Observe that if a is a facet normal

for PJ , then a is a facet normal for PI for all I ⊇ J . Hence, the above sum is over all
primitive facet normals of P1 + · · ·+ Pk.

Next, we will show that for the special case P1 = P2 = · · · = Pk = P , the mixed
Ehrhart polynomial can be expressed in terms of the h∗-vector of P ; see Section 4. For
now, let us mention that Stanley [18] showed that there exist non-negative integers h∗i (P )
such that

EP (n) = h∗0(P )

(
n+ d

d

)
+ h∗1(P )

(
n+ d− 1

d

)
+ · · ·+ h∗d(P )

(
n

d

)
. (6)

In terms of this presentation we get:
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Proposition 2.7. Let P ⊆ Rd be a d-dimensional lattice polytope and let P = (P, . . . , P )
be a collection of k copies of P . Then

MEP(n) =
d∑
j=0

(
k∑
i=0

(−1)k−i
(
k

i

)(
in+ d− j

d

))
h∗j(P ).

In particular,

DMV(P) =
d∑
j=0

(
d− j
d− k

)
h∗j(P ).

Proof. From the definition of the mixed Ehrhart polynomial, we infer

MEP(n) =
k∑
i=0

(−1)k−i
(
k

i

)
EiP (n).

Using that EiP (n) = EP (in) and the expression of EP (n) as in (6), this yields

MEP(n) =
d∑
j=0

h∗j(P )
k∑
i=0

(−1)k−i
(
k

i

)(
in+ d− j

d

)
.

This shows the first claim. For the second claim it suffices to observe that DMV(P) =
MEP(1) and to check that, in this case, the inner sum in the above expression equals(
d−j
d−k

)
by the binomial identity in [12, (5.24)].

This is reminiscent to the relation between f -vectors and h-vectors in the enumerative
theory of simplicial polytopes. Investigating this analogy further yields a theory of discrete
mixed valuations; see [14].

Example 2.8. Let P = [0, 1]3 ⊆ R3 be the 3-dimensional unit cube. Then the usual
h∗-vector of P equals (1, 4, 1, 0). By Proposition 2.7, the discrete mixed volume of the
collection (P, P ) is given by

DMV(P, P ) =

(
3− 0

3− 2

)
· 1 +

(
3− 1

3− 2

)
· 4 +

(
3− 2

3− 2

)
· 1 = 12.

The mixed Ehrhart polynomial of (P, P ) equals MEP,P (t) = 6t3 + 6t2, which is consistent
with Example 2.1.

Proposition 2.9. Let P = (P1, . . . , Pk) be a collection of lattice polytopes, each containing
0, such that dim(P1 + · · ·+Pk) = dimP1 + · · ·+ dimPk. Then DMV(P1, . . . , Pk) counts
the number of lattice points z ∈ (P1 + · · · + Pk) ∩ Zd that are not contained in a subsum
PJ for J 6= [k].
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Proof. By the hypothesis, P = P1 + · · · + Pk is affinely isomorphic to the Cartesian
product P1 × · · · × Pk. For any J ⊆ [k], this implies that PJ is the intersection of P with
the linear span of PJ . And for I, J ⊆ [k], we see that the intersection PI ∩ PJ is exactly
PI∩J . Hence

DMV(P1, . . . , Pk) = |P ∩ Zd| −
∑
J 6=[k]

(−1)k−|J ||PJ ∩ Zd| =
∣∣(P \ ⋃

J 6=[k]

PJ
)
∩ Zd

∣∣ .
�

For the case that all polytopes are segments, the previous proposition can be used to
recover (5).

3 Non-negativity of the discrete mixed volume and the mixed
Ehrhart polynomial

Bihan [5] showed the following fundamental non-negativity result.

Theorem 3.1 (Bihan). Let P1, . . . , Pk ⊆ Rd be lattice polytopes. Then

DMV(P1, . . . , Pk) > 0 .

Thus the mixed Ehrhart polynomial evaluates to non-negative integers for all positive
integers n.

For a proof of Theorem 3.1, Bihan develops a theory of irrational mixed decompositions
which yields a technical induction on dimension. The discrete mixed volume is a particular
combinatorial mixed valuation in the sense of [14]. It is shown in [14] that the discrete
mixed volume is monotone with respect to inclusion, which implies Theorem 3.1. The
proofs in [14] are less technical but set in the context of the polytope algebra. In this
section we give simple and geometrically sound proofs for the special cases k ∈ {2, d−1, d}
and P1 = · · · = Pk = P . For the case k = d this is a consequence of (5). For P1 =
· · · = Pk = P this follows from Proposition 2.7 together with Stanley’s result on the
non-negativity of the h∗-vector; see [18, 15].

Direct proof of Theorem 3.1 for k = 2. Let P1 and P2 be lattice polytopes in Rd. Since
the mixed Ehrhart polynomial is invariant under translation of the polytopes, we may
assume that 0 is a common vertex of P1 and P2, P1 ∩ P2 = {0} and that there is a
hyperplane H weakly separating P1 from P2. Hence P1 ∪ P2 ⊆ P1 + P2. It follows that

EP1+P2(n) > EP1(n) + EP2(n)− 1,

for all n ∈ Z>0, i.e., MEP1,P2(n) > 0 for all n ∈ Z>0.

For k = d− 1, a direct proof idea has already been used in the framework of tropical
geometry and d-dimensional Pick-type formulas in [22]. The following is a proof along
similar lines.
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Direct proof of Theorem 3.1 for k = d− 1. By Theorem 2.4, the mixed Ehrhart polyno-
mial of a collection of lattice polytopes P = (P1, . . . , Pd−1) ⊆ Rd is of the form

MEP(n) = med(P)nd + med−1(P)nd−1.

It suffices to show that med(P) and med−1(P) are non-negative. Since the mixed volume
is multilinear and symmetric in its entries, Corollary 2.5 yields

med(P) = d!
2

MVd

(
P1, P2, . . . , Pd−1,

d−1∑
i=1

Pi

)
.

For the remaining coefficient, Corollary 2.6 together with the fact that k = d− 1 yields

med−1(P) =
(d− 1)!

2

∑
a

MVa(P
a
1 , . . . , P

a
d−1),

where the sum is over all primitive facet normals of P1 + · · ·+ Pd−1.

4 Mixed h∗-polynomials

For a d-dimensional lattice polytope P , let

EhrP (z) =
∑
n>0

EP (n)zn

be the Ehrhart series of P . As EP (n) is a polynomial in n of degree d, there exist
integers h∗0(P ), . . . , h∗d(P ) such that

EhrP (z) =

∑d
j=0 h

∗
j(P )zj

(1− z)d+1
;

see, e.g., [1, 13]. The polynomial in the numerator is called the h∗-polynomial of P
(also known as δ-polynomial [20]) and denoted by h∗P (z). Similarly, the coefficient vector
h∗(P ) := (h∗0(P ), . . . , h∗d(P )) is called the h∗-vector of P . Stated differently, the Ehrhart
polynomial of a d-dimensional lattice polytope P can be expressed as in (6). By Stanley’s
non-negativity theorem [18], the coefficients h∗0(P ), h∗1(P ), . . . , h∗d(P ) are non-negative in-
tegers. Moreover, it is known that

h∗0(P ) = 1 , h∗1(P ) = |P ∩ Zd| − (d+ 1) , h∗d(P ) = | int(P ) ∩ Zd| , (7)

where int(P ) denotes the interior of the polytope P .
The definition of mixed Ehrhart polynomials prompts the notion of a mixed h∗-

vector h∗(P) = (h∗0(P), . . . , h∗d(P)) of a collection P = (P1, . . . , Pk) of lattice polytopes,
which is given by

MEP(n) = h∗0(P)

(
n+ d

d

)
+ · · ·+ h∗d(P)

(
n

d

)
, (8)
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where d = dim(P1+ · · ·+Pk). In this section, we study properties of h∗(P) for a collection
of full-dimensional lattice polytopes, i.e., dimPi = d for all i. Though Stanley’s h∗-non-
negativity does not extend to the mixed h∗-vector as we will see below, we show that
for large enough dilates rP := (rP1, . . . , rPk), r � 0, the corresponding mixed h∗-
polynomial

h∗rP(z) = h∗0(rP) + · · ·+ h∗d(rP)zd

has only real roots and hence the mixed h∗-vector is log-concave. This is in line with
results of Diaconis and Fulman [10] for the usual h∗-vector.

Remark 4.1. Note that the contribution of the index set J = ∅ in the discrete mixed
volume (1) is (−1)k. For the mixed Ehrhart series

∑
n>0 MEP1,...,Pk

(n)zn this induces
for the index set J = ∅ the contribution∑

n>0

(−1)kzn = (−1)k
1

1− z
= (−1)k

(1− z)d

(1− z)d+1
= (−1)k

∑d
i=0

(
d
i

)
(−1)izi

(1− z)d+1
. (9)

Since we assume that all polytopes Pi have the same dimension, linearity and Re-
mark 4.1 allow to write the mixed h∗-vector as

h∗i (P) =
∑

∅6=J⊆[k]

(−1)k−|J |h∗i (PJ) + (−1)k+i
(
d

i

)
(10)

for 0 6 i 6 d. The next lemma collects some elementary properties of mixed h∗-vectors.

Lemma 4.2. Let P = (P1, P2, . . . , Pk) ⊆ Rd be a collection of d-dimensional lattice
polytopes. Then:

(i) h∗0(P) = 0.

(ii) If k = 2, then h∗1(P1, P2) = DMV(P1, P2). In particular, h∗1(P1, P2) > 0.

Proof. (i) Since, for any lattice polytope P ⊆ Rd we have h∗0(P ) = 1 (see (7)), it follows
from (10) that

h∗0(P) =
∑

∅6=J⊆[k]

(−1)k−|J | + (−1)k = 0.

(ii) We know from (7) that for a d-dimensional lattice polytope P ⊆ Rd

h∗1(P ) = |P ∩ Zd| − (d+ 1) = EP (1)− (d+ 1).

This fact combined with (10) yields

h∗1(P1, P2) = (EP1+P2(1)− (d+ 1))− (EP1(1)− (d+ 1) + EP2(1)− (d+ 1))− d
= EP1+P2(1)− EP1(1)− EP2(1) + 1

= DMV(P1, P2),

where the last equality follows from (2). For the second claim, it suffices to note that
DMV(P1, P2) is non-negative (see Section 3).
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A natural question when dealing with integer vectors is whether all entries are non-
negative. The previous lemma provides some positive results in this direction. However,
as opposed to the h∗-vector of a single lattice polytope, the next example shows that in
general it is not true that the coefficients of the mixed h∗-vector are non-negative.

Example 4.3. Consider the collection P = (∆d, . . . ,∆d) consisting of k copies of the
standard d-simplex. For (d+1−i)k < d+1 none of the dilates (d+1−i)PJ = (d+1−i)|J |∆d

has interior lattice points. Hence, h∗i (PJ) = 0 so that h∗i (P) = (−1)k+i
(
d
i

)
can be negative

(see (10)). A specific case is h∗(∆3,∆3) = (0, 3, 4,−1).

Though we have just seen that there do exist collections of polytopes with negative
mixed h∗-vector entries, observe that for m > 2 all entries of h∗(m∆3,m∆3) = (0,m3 +
2m, 4m3,m3 − 2m2) are indeed non-negative, and the leading coefficients in m are the
Eulerian numbers (0, 1, 4, 1) (see below).

We therefore propose to study the following question.

Question 4.4. Let P = (P1, . . . , Pk) ⊆ Rd be a collection of d-dimensional lattice poly-
topes. Under which conditions are all (or certain) entries of h∗(P) non-negative? Is it
true that h∗i (P) > (−1)k+i

(
d
i

)
? What can be said if the polytopes are allowed to be of

arbitrary dimension?

In Corollary 4.6 we will show that asymptotically, i.e., if one considers high enough
dilations of d-dimensional polytopes, the mixed h∗-vector h∗(P) always becomes non-
negative. This suggests that it might be enough to require the lattice polytopes to contain
“sufficiently many” interior points.

Before we provide our main result of this section, we recall the definition of the dth

Eulerian polynomial Ad(z) =
∑d

k=1A(d, k)zk. One, out of several, combinatorial ap-
proaches to define Ad(z) is the following:∑

n>0

ndzn =
Ad(z)

(1− z)d+1
.

It is known that the Eulerian polynomials Ad(z) have only simple and real roots and all
roots are negative. The following result, which is a generalization of Theorem 5.1 in [10],
provides a relation between Eulerian polynomials and mixed h∗-polynomials of lattice
polytopes.

Theorem 4.5. Let P = (P1, . . . , Pk) be a collection of d-dimensional lattice polytopes.
Then, as r →∞,

h∗rP(z)

rd
−→

∑
J⊆[k]

(−1)k−|J |vol(PJ)Ad(z).

Note that for k = d, (5) implies the result for r = 1.
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Proof. For a d-dimensional lattice polytope P ⊆ Rd, the Ehrhart polynomial in the usual
basis takes the form

EP (n) = ed(P )nd + ed−1(P )nd−1 + · · ·+ e0(P )

where ed(P ) = vol(P ). For the Ehrhart series we compute

∑
n>0

EP (n)zn =
d∑
i=0

ei(P )
∑
n>0

nizn =

∑d
i=0 ei(P )(1− z)d−iAi(z)

(1− z)d+1
.

By comparing ErP (n) with EP (rn), we see that ei(rP ) = riei(P ) and hence

h∗rP (z) = rdvol(P )Ad(z) +
d−1∑
i=0

riei(P )(1− z)d−iAi(z).

Now from (10) together with the fact that rP∅ = {0} for all r > 0, we infer

h∗rP(z)

rd
=
∑
J⊆[k]

(−1)k−|J |
h∗rPJ

(z)

rd
r→∞−−−−→

∑
J⊆[k]

(−1)k−|J |vol(PJ)Ad(z),

which shows the claim.

For k = 1 this also yields the result of Diaconis and Fulman [10, Theorem 5.1] on the
asymptotic behavior of the usual h∗-polynomial of a lattice polytope. Similar results have
also been achieved by Brenti and Welker [7] and Beck and Stapledon [3].

Before we provide some almost immediate consequences of the previous result, we recall
that a sequence (a0, a1, . . . , ad) of real numbers is called log-concave if a2i > ai−1ai+1 for
all 1 6 i 6 d − 1. The sequence (a0, a1, . . . , ad) is called unimodal if there exists a
0 6 ` 6 d such that a0 6 · · · 6 a` > · · · > ad.

Corollary 4.6. Let P = (P1, P2, . . . , Pk) be a collection of d-dimensional lattice polytopes
in Rd. Then there exists a positive integer R (depending on P) such that for r > R:

(i) the mixed h∗-polynomial h∗rP(z) has only real roots β(1)(r) < β(2)(r) < · · · <
β(d−1)(r) < β(d)(r) < 0 with limr→∞ β

(i)(r) = ρ(i) for 1 6 i 6 d. Here, ρ(1) <
ρ(2) < · · · < ρ(d) = 0 denote the roots of Ad(z).

(ii) h∗i (rP) > 0 for 1 6 i 6 d.

(iii) h∗(rP) is log-concave and unimodal.

Proof. (i) First observe that, by Theorem 4.5, the roots of h∗rP(z) converge to the roots of
Ad(z). Moreover, since the roots of Ad(z) are known to be all distinct and negative, there
exists a positive integer R such that for r > R, h∗rP(z) has only simple and real (negative)
roots. Otherwise, since complex roots come up in pairs (if τ is a complex root, also its
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complex conjugate τ̄ is a root), the Eulerian polynomial Ad(z) would be forced to have a
root of multiplicity 2, which yields a contradiction.

(ii) Using (2) and the fact that ed(P ) = vol(P ) for a d-dimensional lattice polytope P ⊆
Rd, we recognize the right-hand side in Theorem 4.5 as med(P)Ad(z). By Corollary 2.5,
med(P) is a non-negative linear combination of mixed volumes of P1, . . . , Pk and thus
positive. Since the coefficients of the Eulerian polynomials (besides the constant term

which is 0) are all positive as well, Theorem 4.5 then implies that the sequence
(
h∗rP(z)

rd

)
r>1

converges to a polynomial, whose coefficients, except for the constant term (which equals
0), are positive. Hence, there has to exist a positive integer R (depending on P) such
that for r > R all but the constant coefficient of h∗rP(z) are positive. This shows (ii).

(iii) Using the first two parts, we know that there exists a positive integer R such that
for r > R the polynomial h∗rP(z) has, except for the constant term, positive coefficients
and is real-rooted. Theorem 1.2.1 of [6] implies that h∗(rP) is log-concave. Since by
the choice of r, this sequence does not have internal zeros, it is unimodal by [6, Section
2.5].
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