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Abstract

Let G be a connected graph; denote by τ(G) the set of its spanning trees.
Let Fq be a finite field, s(α,G) =

∑
T∈τ(G)

∏
e∈E(T ) αe, where αe ∈ Fq. Kontsevich

conjectured in 1997 that the number of nonzero values of s(α,G) is a polynomial in q
for all graphs. This conjecture was disproved by Brosnan and Belkale. In this paper,
using the standard technique of the Fourier transformation of Feynman amplitudes,
we express the flow polynomial FG(q) in terms of the “correct” Kontsevich formula.
Our formula represents FG(q) as a linear combination of Legendre symbols of s(α,H)
with coefficients ±1/q(|V (H)|−1)/2, where H is a contracted graph of G depending

on α ∈
(
F∗q
)E(G)

, and |V (H)| is odd.

Keywords: flow polynomial, Kontsevich’s conjecture, Laplacian matrix, Feynman
amplitudes, Legendre symbol, Tutte 5-flow conjecture

1 Introduction. The statement of the main result

Let q be a positive integer and let Aq be an arbitrary abelian group consisting of q
elements; we usually use the additive group of the field Fq for Aq; in this case q = pd,
where p is prime and d ∈ N. Let G(V,E) be a connected multigraph without loops; let
V (G) denote the set of its vertices and E(G) do the set of its edges. When considering the
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initial graph, we sometimes omit the symbol G in denotations. In certain cases we need
to indicate the orientation of graph edges, so we denote the origin of an edge e ∈ E(G)
by i(e) and denote its terminus by f(e).

Recall that the chromatic polynomial PG(q) counts the number of proper vertex col-
orings with q colors. Define the norm of an element y of the group Aq as

||y|| =
{

0, y = 0,
1, y 6= 0,

where the symbol 0 in the right-hand side of the equality y = 0 is the neutral element of
the group. Let us associate each vertex v with its color xv. Evidently, a coloring is proper
if and only if ∏

e∈E(G)

||xi(e) − xf(e)|| = 1,

and otherwise the product equals 0.
Using this fact, we get

PG(q) =
∑

xv∈Aq

∀v∈V (G)

∏
e∈E(G)

||xi(e) − xf(e)||.

This representation allows us to treat chromatic polynomials as vacuum Feynman ampli-
tudes in the coordinate space (see Section 2 for details).

Let us define the delta function on an abelian group (x ∈ Aq) by the formula

δ(x) =

{
0, x 6= 0,
1, x = 0,

i.e., in our case δ(x) = 1− ||x||. Let (εve)v∈V,e∈E be the incidence matrix of an arbitrary
orientation of the graph G; it obeys the formula

εve =


−1, if i(e) = v,
1, if f(e) = v,
0, if e is nonincident to v.

Let us associate each edge e of the graph G with an element ke of the group Aq so that∑
e∈E εveke = 0. This association is called a flow. The number of everywhere nonzero

flows is a polynomial in q; it is called the flow polynomial [10, 25]. Therefore, the flow
polynomial obeys the formula

FG(q) =
∑

ke∈A∗q
∀e∈E(G)

∏
v∈V (G)

δ

 ∑
e∈E(G)

εveke

, (1)
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(here A∗q is the collection of nonzero elements of the group Aq). Another variant of
formula (1) takes the form

FG(q) =
∑

ke∈Aq

∀e∈E(G)

∏
e∈E(G)

||ke||
∏

v∈V (G)

δ

 ∑
e∈E(G)

εveke

 . (2)

Formula (2) allows us to treat flow polynomials as vacuum Feynman amplitudes in the
momentum space (see Section 2). Using the technique of Feynman amplitudes, we can
get a new representation for the flow polynomial. Let us now state the main result of this
paper.

The main theorem considers the case when q = pd, p is an odd prime, and d ∈ N.
Denote by η the multiplicative quadratic character of the field Fq: η(0) = 0, in other
cases η(x) = 1 or η(x) = −1 depending on whether x is a square in the field Fq or not.
For d = 1 the function η coincides with the Legendre symbol of the residue field modulo
prime p. Denote by g(q) the quadratic Gaussian sum of the field Fq. It obeys the formula

g(q) =

{
(−1)d−1

√
q, if p mod 4 = 1,

(−1)d−1id
√
q, if p mod 4 = 3,

(3)

here i is the imaginary unit.
Let all edges of the graph G be associated with nonzero weights αe: αe ∈ F∗q (F∗q is the

collection of nonzero elements of the field).
Let W ⊆ V , W 6= ∅, V ′ = (V \W ) ∪ {w} and ϕ : V → V ′ such that ϕ(v) = w, if

v ∈ W ; ϕ(v) = v, if v ∈ V \W . Denote the graph with the contracted vertex set W by
G/W : G/W = (V ′, E ′), where E ′ equals

{(ϕ(i(e)), ϕ(f(e))) : e ∈ E(G), ϕ(i(e)) 6= ϕ(f(e))}.

Evidently, if G has no loops then neither does G/W . Weights αe of edges of the graph
G/W are equal to weights of corresponding edges of the graph G.

Let τ(G) be the set of spanning trees of the graph G. Consider sums

s(α,G) =
∑

T∈τ(G)

∏
e∈E(T )

αe, (4)

which, evidently, are elements of the field Fq; if the graph G consists of one vertex, then
by definition we put s(α,G) = 1.

Denote byW ∗(α) any nonempty minimum cardinality subsetW of the vertex set V (G),
for which the sum s(α,G/W ) differs from zero. Evidently, if |W | = 1 then G/W ≡ G.
Note also that the number of edges in each tree T ∈ τ(G/W ∗(α)) equals |V | − |W ∗(α)|.
Denote this difference by r∗(G,α).

Theorem 1 (The main theorem). Let G be an arbitrary connected multigraph and let
q = pd with odd prime p and d ∈ N. Then

FG(q) =
∑

α∈(F∗q)
E(G)

η (s(α,G/W ∗(α)))

[
g(q)

q

]r∗(G,α)
. (5)
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Note that s(α,G) equals any cofactor of the weighted Laplacian matrix L of the
graph G. As we prove in Section 4, s(α,G/W ∗(α)) coincides with the largest dimension
nondegenerate principal minor of the matrix L. Therefore, one can interpret our theorem
as a representation of the flow polynomial as a linear combination of Legendre symbols
of minors of the Laplacian matrix.

Note that in what follows we assume that the multigraph has no loops, though this is
not explicitly stated in Theorem 1. The fact is (as one can easily see) that by removing a
loop from the graph we make the left- and right-hand sides of equality (5) exactly q − 1
times less. So the proof of the theorem for an arbitrary multigraph is reduced to the proof
for a multigraph without loops.

Consider the graph K3 as a simplest illustration of Theorem 1. Its flow polynomial
obeys the formula FK3(q) = q − 1. One can prove (see Propositions 9–10 in Section 7)
that in sum (5) the terms that correspond to the case r∗(G,α) = 1 cancel each other out,
and this sum contains no terms that correspond to the case r∗(G,α) = 0 in the case of
the graph K3. Therefore, the assertion of Theorem 1 for K3 is equivalent to the equality

q − 1 =
∑

α1,α2,α3∈F∗q

η(α1α2 + α1α3 + α2α3)

[
g(q)

q

]2
. (6)

Note that the question on the generalization of Theorem 1 for arbitrary matroids
remain open. A natural generalization of the notion of a flow polynomial for the case of
an arbitrary matroid is the notion of the characteristic function of the dual matroid [1].
Thus, for example, the matroid U2,4 is dual to itself and its characteristic function obeys
the formula χU2,4(q) = (q − 1)(q − 3). In the case of an arbitrary matroid M , in the
generalization of Kontsevich’s conjecture instead of the set of spanning trees τ(G) one
considers the set of bases of the matroid B(M). Thus, for the matroid U2,4 the linear
combination ∑

α1,α2,α3,α4∈F∗q

η(α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4)

[
g(q)

q

]2
. (7)

is an analog of the right-hand side of formula (6). Really, for all (considered by us) odd
characteristic fields Fq with q 6 25 the linear combination (7) equals an integer number.
However, we have not succeeded in answering the question of how to include the terms that
correspond to the case r∗ = 0 to this linear combination so as to result in (q− 1)(q− 3).1

The paper has the following structure. In Section 2 we give a brief information on
Feynman amplitudes and motivate our interest to flow polynomials. This section is not
necessary for a formal understanding of the proof of Theorem 1, but it is useful for the
comprehension of its sources and of prospects for the use of the mentioned technique. In
Section 3 we recall some properties of the Fourier transformation over a finite field and
prove the key lemma which represents FG(q) as a double sum, namely, the sum that is first
taken over α and then over k. In Section 4 we prove that the matrix of the quadratic form

1Note in the revised paper: the correct formula for the α-representation for U2,4 was obtained in [14].
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in the exponent of the function summed with respect to k is the Laplacian matrix and
recall its combinatorial properties related to the evaluation of its minors. In Section 5 we
learn to calculate multidimensional Gaussian sums over a finite field. Finally, in Section 6
by using the obtained results we prove Theorem 1. Note that the proof is one paragraph
long. In Section 7 we simplify formula (5), using the fact that, in particular, its terms
that correspond to odd values of r∗(G,α) cancel each other out. We also discuss possible
applications of this formula for proving the Tutte 5-flow conjecture and give results of
calculations for some graphs with q = 5.

2 Some properties of Feynman amplitudes

The simplest case when we are faced with vacuum Feynman amplitudes (FA) consists in
the calculation of mean values

〈exp(−
n∑
x=1

ε φ4(x))〉µ0 , (8)

where µ0 is the Gaussian measure with the binary correlation function (the so-called
propagator) ρ(x, y), in formula (8) x, y ∈ {1, . . . , n} and φ(x) ∈ R. As is known (see,
for example, [18, section 2.2]), one can use the so-called pairing technique for calculating
the mean value with respect to the Gaussian measure, for example, 〈φ2(x)φ2(y)〉µ0 =
ρ(x, x)ρ(y, y) + 2ρ(x, y)2 (just for this reason 2nth moments of the standard Gaussian
distribution equal (2n− 1)!!).

Expanding the exponent in (8) in a series, in the nth order with respect to ε we get
homogeneous graphs with n vertices of degree 4 labeled with variables like x, y (over
which we calculate the sum), whose edges contribute the value ρ(x, y) to the product of
propagators (which is to be summed up).

Actually, Feynman used this technique in the case of a functional measure, when
the index x itself took on values in a continual set like R4 rather than in a finite one,
and instead of the summation with respect to x there was the integration. In the so-
called scalar models in the quantum field theory [20] the propagator (in the coordinate
representation) is set to ||x − y||λ (here x, y ∈ R4). We can get the definition of PG(q)
proposed by us above by exactly transferring all definitions given for variables that take
on values in R4 to the case of a finite group (a finite field).

Note that we do not consider results of the evaluation of the vacuum variant of real FA
with the propagator ||x− y||λ because the integral diverges with all λ for any graph G. It
seems to be possible to avoid this obstacle by performing the integration in all variables,
except one. Namely, since ρ(x, y) depends only on the difference x− y, the result of the
integration in |V | − 1 variables is independent of the value of the rest one. Just such
an integral is called a vacuum FA in the case of other transitive invariant propagators
in the coordinate space, which explains the used terminology. However, actually, in the
quantum field theory with the propagator ||x− y||λ considered here the vacuum integral
is always set to infinity.
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Nonvacuum FA with such propagators are less trivial. Several variables are fixed there,
and the integration is performed over all the rest ones. An analog of a nonvacuum FA for
a finite field gives the number of proper colorings of the graph G, provided that some of its
vertices have got colors yv already. Note also that the graph precoloring extension problem
is well known [4], its complexity for various types of graphs is studied rather thoroughly.
However, properties of the polynomial that define the number of proper colorings in this
case are studied less.

We need these polynomials and their flow analogs for deducing explicit formulas for
FA of a p-adic argument; see section 3 in the paper [13] for the corresponding explicit
formulas that take into account the specificity of the transfer of the known properties of
chromatic and flow polynomials to the mentioned case. Note that here, on the contrary,
we consider the application of the FA technique in combinatorics.

FA in the momentum space have been used from the very beginning of the develop-
ment of this technique. If in the coordinate representation we consider a propagator in
the form ρ(x, y) = f(x−y), then in the momentum representation each edge is associated

with the function f̂(k), where f̂ is the Fourier transformation of f . Since in R4 it holds

|̂| · ||λ = c(λ)|| · ||−4−λ (one can easily verify this property; note that the Fourier transfor-
mation in the real-valued case is understood in the sense of generalized functions, though
in what follows such details are inessential), each edge in the diagram of the momentum
representation in the real-valued case also corresponds to some degree of the norm. For-
mula (2) is a formal calque of definitions of vacuum FA accepted in the so-called real
scalar theory (in view of remarks on the convergence analogous to those given above for
the coordinate space).

In a nonvacuum case, in the momentum representation some variables (some real-
valued analogs of variables ke introduced by us) are fixed and the result of the integration
with respect to all the rest variables depends on them. The fact that nonvacuum FA in the
momentum and coordinate representations are connected with each other by the Fourier
transformation explains the terms “momentum/coordinate representation”. In Lemma 2
given below this connection is considered in the simplest case of finite fields.

Note that in the theory of FA it has long been discovered that when formally asso-
ciating one and the same propagators with edges of the graph of an FA in coordinate
and momentum spaces, the vacuum amplitude in the coordinate space for the planar
graph G coincides with the corresponding amplitude in the momentum space for the dual
graph G̃ [5]. But if propagators are connected with each other by the Fourier trans-
formation, then vacuum amplitudes (if they are defined) in coordinate and momentum
representations coincide.

In combinatorics the coincidence of chromatic and flow polynomials of dual graphs has
also long been known, namely, from the very inception of the concept of a flow polynomial.
However, in a finite field the Fourier transformation of a norm is not a norm. For this
reason the connection between flow and chromatic polynomials of one and the same graph,
which is a result of the Fourier transformation of a norm, is more complex. We discuss
this connection in a separate paper.

Let us return to real FA. If all propagators have the same degrees, then even in the
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nonvacuum case there arises a difficulty with the convergence of all finite-dimensional inte-
grals that define amplitudes. This difficulty can be eliminated by labeling each edge with
“its own” complex-valued degree of the propagator and the subsequent analytic continu-
ation of the integration result. This approach implies the estimation of the convergence
domain in the space λe, which is also problematic. Moreover, in the quantum field theory,
it is important to be able to find poles of the analytic continuation. This can be done
with the help of the so-called α-representation.

In the theory with a homogeneous propagator, the technique of the α-representation
consists in the following steps. One represents each function in the form ||ke||−4−λ asso-
ciated with the edge e in the momentum space as ||k2e ||(−4−λ)/2 and replace it with the
value of the Fourier transformation result of the norm of αe raised to the corresponding
degree at the point k2e . When calculating an FA in the momentum space, changing the
integration order (we first integrate with respect to k and then do with respect to α), we
get a multidimensional Gaussian integral with respect to variables ke, e ∈ E with a special
matrix depending on α (the weighted Laplacian matrix of the graph G). The Gaussian
integral equals the square root of the matrix determinant; the latter obeys formula (4)
(for real α). As a result we get a notation for the FA in the momentum space as the
integral with respect to α of a function whose behavior can be studied easily (just this is
called the α-representation).

Formula (5) gives an analogous representation (in the vacuum variant) for FG(q) in
the case of a finite field Fq. Instead of the integral we get the sum over all nonzero values
of αe in Fq, and the result is expressed via the Legendre symbol of minors of the same
Laplacian matrix as in the real-valued case.

The α-representation of FA was also mentioned in earlier papers in combinatorics.
In December 1997, when giving a talk at the Gelfand seminar in Rutgers University,
Maxim Kontsevich proposed a conjecture that for any connected multigraph G the number
N(G, q) of nonzero values of s(α,G) for α ∈ (Fq)E(G) is a polynomial in q. Though the
conjecture was never published, it has aroused the interest of experts in combinatorics
(see [21, 9]). In particular, Kontsevich’s conjecture has been proved for all graphs with
no more than 12 edges in [23]. Against expectations, sometime later this conjecture was
refuted in a nonconstructive way [3]. Kontsevich’s conjecture is discussed in a more detail
in [19] (see also references therein).

Note that in [19] Kontsevich’s conjecture has been proved for all graphs with no more
than 13 edges. Moreover, in the mentioned paper, Oliver Schnetz gives examples of the
graphs with 14 edges for which the conjecture is not satisfied. In [6] Francis Browm
and Oliver Schnetz prove Kontsevich’s conjecture for graphs whose vertex-width does
not exceed 3 and give a planar counter-example to Kontsevich’s conjecture for graphs
whose vertex-width equals 4. In addition, in [19, 6] one considers the renormalizability
problem in the Quantum Field Theory over Fq. FA with propagators such that both their
arguments and values belong to Fq are considered therein.

It is important to mention that in this paper we take into consideration only real-
valued propagators. Considered FA correspond to random fields, whose renormalization
is necessary for constructing automodel random fields. However, these issues are outside
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this paper, we will discuss them in further works.
Note that if formula (5) contains only those terms that correspond to the maximal

value of the rank r∗(G,α) of the Laplacian matrix of the graph G (i.e., r∗(G,α) = |V |−1),
then (up to the coefficient) it allows the representation∑

α∈(F∗q)
E(G)

η (s(α,G)) .

We need to impose no additional constraint on the rank in the sum, because terms such
that s(α,G) = 0 contribute nothing to the sum. Note also that the value N(G, q) men-
tioned in Kontsevich’s conjecture is, evidently, representable as

N(G, q) =
∑

α∈(Fq)
E(G)

η2 (s(α,G)) .

The main result of this paper (the α-representation) is a “proper” notation of Kontse-
vich’s conjecture. The linear combination obtained with the help of the technique of FA
is really a polynomial in q, more precisely, it is the flow polynomial of G. This polynomial
is a source of many unsolved questions “dual” to the map coloring problem.

3 The Fourier transformation and flow polynomials

The Fourier transformation in the finite group Aq is defined with the help of the notion
of an additive character χ(x), x ∈ Aq. Recall that an additive character [17, chapter 5] is
a complex-valued function χ(x), x ∈ Aq, such that χ(x+y) = χ(x)χ(y) for any x, y ∈ Aq.
Evidently, for the neutral element of the group it holds that χ(0) = 1, therefore the value
of the complex module of the character identically equals one. Evidently, for the neutral
group element it holds that χ(0) = 1, therefore |χ(x)| = 1 for any x ∈ Aq.

The character that identically equals one is said to be trivial. One can easily prove
([17, theorem 5.4]) that for any nontrivial character it holds∑

x∈Aq

χ(x) = 0. (9)

In what follows, for Aq we choose only an additive group of the finite field Fq, q = pd. It
is well known that ([17, theorem 5.7]) any character of this group Fq takes the form χk(x) =

χ1(kx), where k ∈ Fq and χ1(x) = exp (2πi Tr(x)/p), while Tr(x) = x+xp+xp
2
. . .+xp

d−1
.

One can easily prove that formula (9) in this case allows the form∑
k∈Fq

χ1(kt) = q δ(t). (10)

For any function f(x) whose argument x takes on values in Fq we define the Fourier

transformation f̂(k), k ∈ Fq, as

f̂(k) =
∑
x∈Fq

f(x)χ1(kx).
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Formula (10) easily implies the equality

f(x) =
1

q

∑
k∈Fq

f̂(k)χ1(−kx)

(the inverse Fourier transformation formula). Note that formula (10) means that (up
to the multiplier) the delta-function and the unit are connected with each other by the
Fourier transformation.

Lemma 2. Let G be a multigraph without loops. Then the product of characters has the
following property:

∑
x∈(Fq)

V (G)

∏
e∈E(G)

χ1((xi(e) − xf(e))ke) =
∏

v∈V (G)

q δ

 ∑
e∈E(G)

εveke

 . (11)

Proof. Evidently, ∏
e∈E(G)

χ1((xi(e) − xf(e))ke) = χ1(
∑

e∈E(G)

(xi(e) − xf(e))ke).

Note that the argument of the additive character is representable as∑
e∈E(G)

(xi(e) − xf(e))ke =
∑

v∈V (G)

xv
∑

e∈E(G)

εveke.

Certain insignificant transformations give∑
xv∈Fq

∀v∈V (G)

∏
e∈E(G)

χ1((xi(e) − xf(e))ke) =
∑

xv∈Fq

∀v∈V (G)

∏
v∈V (G)

χ1(xv
∑

e∈E(G)

εveke) =

=
∏

v∈V (G)

∑
xv∈Fq

χ1(xv
∑

e∈E(G)

εveke)

 .

Applying formula (10), we get

∏
v∈V (G)

∑
xv∈Fq

χ1(xv
∑

e∈E(G)

εveke) =
∏

v∈V (G)

q δ

 ∑
e∈E(G)

εveke

.

We can interpret Lemma 2 as follows. Consider an FA in the coordinate space with
the propagator δ(x− y) with “external variables” ze, i.e.,∑

x∈(Fq)V (G)

∏
e∈E(G)

δ(xi(e) − xf(e) − ze).

Then the Fourier transformation (with respect to variables ze, e ∈ E) coincides (up
to a constant coefficient) with the FA in the momentum representation with the unit
propagator.
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Lemma 3 (The Key lemma). Let G be a connected multigraph without loops. Then

FG(q) = q−|V (G)|
∑

α∈(F∗q)E(G)

∑
xv∈(Fq)V (G)

χ

 ∑
e∈E(G)

(xi(e) − xf(e))2αe

 , (12)

Proof. Let us apply Lemma 2 for ke = αe and calculate the sum over all nonzero αe. We
get ∑

αe∈F∗q
∀e∈E(G)

∑
xv∈Fq

∀v∈V (G)

∏
e∈E(G)

χ1((xi(e) − xf(e))αe)

q|V (G)| =
∑

αe∈F∗q
∀e∈E(G)

∏
v∈V (G)

δ

 ∑
e∈E(G)

εveαe

 . (13)

By the definition of a flow polynomial (1) the right-hand side of the latter equality coin-
cides with FG(q).

Let us now change the summation order in the left-hand side of formula (13). We get∑
xv∈Fq

∀v∈V (G)

∏
e∈E(G)

∑
αe∈F∗q

χ1((xi(e) − xf(e))αe).

One can easily see that∑
αe∈F∗q

χ1((xi(e) − xf(e))αe) =

{
q − 1, if xi(e) = xf(e),
−1, if xi(e) 6= xf(e).

(14)

(Let xi(e) − xf(e) = ye. In view of (10) with ye 6= 0 we get
∑

αe∈Fq
χ1(yeαe) = 0, otherwise∑

αe∈Fq
χ1(yeαe) = q. In (14) we calculate the sum over all αe, except αe = 0, which

corresponds to the term that equals 1.)
The right-hand side of formula (14) is a function of ||ye|| = h(||ye||), namely,

h(z) =

{
q − 1, if z = 0,
−1, otherwise.

This is the key moment in our proof. Using this fact, we replace xi(e) − xf(e) in the
left-hand side of (13) with (xi(e)−xf(e))2, while the value ||xi(e)−xf(e)|| remains the same.
We get the assertion of the lemma.

4 The matrix tree theorem

In Lemma 3 we have represented a flow polynomial as the sum of characters of a quadratic
form with respect to variables x, namely,∑

e∈E(G)

(xi(e) − xf(e))2αe.

The matrix of this quadratic form is the weighted Laplacian matrix of the graph G.
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Lemma 4. Let G be a multigraph without loops. Then the following correlation takes
place: ∑

e∈E(G)

(xi(e) − xf(e))2αe = xtVLxV ,

where xV is the vector column of all variables associated with vertices; the superscript t is
the transposition sign; L is the so-called weighted Laplacian matrix of the graph G, i.e.,

`kj =

{
−
∑

e: {i(e),f(e)}={k,j} αe, k 6= j,∑
e: k∈{i(e),f(e)} αe, k = j.

(15)

Formula (15) means that each nondiagonal element of the Laplacian matrix equals
the sum of weights of all edges connecting the corresponding vertices multiplied by (−1);
each diagonal element equals the sum of weights of all edges incident to the corresponding
vertex. Therefore, the Laplacian matrix is symmetric and degenerate, the sum of elements
in each row of this matrix equals zero.

Since Lemma 4 is well known, we do not give its proof here. The case of a simple
graph with αe ≡ 1 is studied in [2, lemma 4.3]. In what follows, in order to indicate
the dependence of the matrix L on αe, e ∈ E(G), we denote this matrix by L(G,α); its
determinant equals zero. Below we also need principal minors of the matrix L(G,α) of
lesser orders. Let us discuss their combinatorial sense.

Let us first consider minors of the order |V | − 1. This result is classical; it goes back
to works by R.Kirchhoff, J.J.Sylvester, and A.Cayley published in the middle of the 19th
century (see details in [22, section 5.6, remarks to chapter 5], [21]). Recall that the symbol
s(α,G) denotes sum (4).

Theorem 5 (the matrix tree theorem, [22, 2]). Let G be a connected multigraph without
loops, let L′(G,α) be obtained from L(G,α) by deleting the ith row and the ith column,
i ∈ V (G). Then with any i it holds

detL′(G,α) = s(α,G),

where the sum s(α,G) obeys formula (4).

Let us now consider minors of lesser orders.

Theorem 6. Let G be a connected multigraph without loops. The principal minor of
the matrix L(G,α) that is formed by deleting rows and columns with numbers {i1, . . . ik}
coincides with s(α,G/W ), where W = V \ {i1, . . . ik}.

Proof. Really, all vertices of the graph G/W , except one “contracted” vertex w, corre-
spond to vertices i1, . . . ik of the initial graph. The submatrix of the matrix L(G,α) that
is formed by rows i1, . . . ik coincides with the submatrix obtained by deleting from the
matrix L(G/W,α) the row and the column that correspond to the vertex w. Applying
the previous theorem for the graph G/W , we get the assertion of Theorem 6.
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The idea of using trees of the graph G/W for calculating minors of the Laplacian
matrix of the graph G goes back to works of Alexander Kelmans [12]. The following
proposition, which is equivalent to the Theorem 6, is better known.

Theorem 7 (see “all minors matrix tree theorem” in [7] and [8]). Let G be a connected
multigraph without loops. Then the principal minor of the matrix L(G,α) that is formed
by deleting rows and columns with numbers i1, . . . ik equals∑

{T1,...,Tk}

∏
e∈∪jE(Tj)

αe;

here the sum is taken over all forests of the graph G that consist of k trees such that each
tree Tj in it contains exactly one vertex from the set {i1, . . . ik}.

5 Calculation of multidimensional Gaussian sums over a finite
field

Let us explicitly evaluate the expression
∑

xV ∈FV
q
χ1(x

t
VBxV ). Here B is an arbitrary

symmetric matrix of the dimension |V | × |V | with elements in the field Fq, where q is
odd. In this section for convenience we identify the finite set V with the starting point
of some part of the set of natural numbers. As is well known, any symmetric matrix of
the rank r has a nondegenerate principal minor of the order r. This fact is used in the
following lemma.

Lemma 8. Let q = pd with odd prime p, rank B = r. Then∑
xV ∈FV

q

χ1(x
t
VBxV ) = q|V |η(detBr)

[
g(q)

q

]r
,

where g(q) obeys formula (3), detBr is an arbitrary nonzero principal minor of the order r.

Before proving Lemma 8 let us recall some properties of its one-dimensional variant [11,
17].

The value
∑

k∈F∗q
η(k)χ1(kt) is called the Gaussian sum. According to elementary

properties of quadratic residues of a finite field, the Gaussian sum vanishes with t = 0.
Otherwise, by summing it up with equality (10) and performing certain elementary trans-
formations, we find its value as ∑

k∈Fq

χ1(k
2t).

For t 6= 0 we can change the variable x = kt in the initial definition of the Gaussian
sum and thus find its value as η(t)g(q), where

g(q) =
∑
x∈F∗q

η(x)χ1(x).
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It is well known that [17, theorem 5.15] the value g(q) obeys formula (3). As a result we
get ∑

k∈Fq

χ1(k
2t) =

{
q, if t = 0,
η(t)g(q), if t 6= 0.

(16)

Proof of Lemma 8.
1. Let us first consider a particular case, namely, let B be diagonal. This means that

the left-hand side of the desired equality is representable as follows:

∑
x∈FV

q

χ1

 |V |∑
i=1

biix
2
i

 .

Let us represent the latter value as the sum of two terms. Namely, let the first term
represent the sum of elements with coefficients bii which are either equal to zero or not
(without loss of generality we assume that nonzero coefficients occupy the first places).
We get

|V |∏
i=r+1

∑
xi∈Fq

χ1(biix
2
i )

 r∏
i=1

∑
xi∈Fq

χ1(biix
2
i )

 .

Let us apply formula (16). Represent the latter expression as

q|V |−r
r∏
i=1

(η(bii)g(q)) = q|V |η (detBr)

[
g(q)

q

]r
.

2. The general case can be reduced to the diagonal one. Any nondegenerate symmet-
ric r × r-matrix Br over the field Fq is diagonalizable. This means that there exists a
nondegenerate matrix Qr of the same dimension such that

Qt
rBrQr = Λ, where Λ =

 λ1 · · · 0
...

. . .
...

0 · · · λr

 and λi 6= 0 for all i.

Determinants of these matrices satisfy the correlation

det Λ = (detQr)
2 detBr . (17)

In what follows without loss of generality we assume that the matrix Br is formed by
first r rows and columns of the matrix B. Let us now construct two more nondegenerate
matrices; let their dimension equal |V | × |V |. We get

Q̂ =


Qr 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , Q̂t =


Qt
r 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
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Let D = Q̂tBQ̂. Note that properties of the rank imply that rank D = r. Here the
matrix D takes the form

D =

(
Λ D12

D21 D22

)
,

where D12, D21 and D22 are some (rectangular) matrices obtained as a result of the trans-
formation.

The bijective change of variables xV = QyV gives∑
xV ∈FV

q

χ1(x
t
VBxV ) =

∑
yV ∈FV

q

χ1(y
t
V Q̂

tBQ̂yV ) =
∑
yV ∈FV

q

χ1(y
t
VDyV ).

Applying the formula proved in item 1 for the matrix D of the rank r, we get∑
yV ∈FV

q

χ1(y
t
VDyV ) = q|V |η(detDr)

[
g(q)

q

]r
;

here detDr is a nonzero principal minor of the matrix D of the order r (we use det Λ as
this minor). On the other hand, we know (see (17) that it obeys the formula

detDr = (detQr)
2 det(Br).

Using properties of the quadratic character η, we get

η (detDr) = η
(
(detBr) (detQr)

2) = η (detBr) .

This means that ∑
xV ∈FV

q

χ1(x
t
VBxV ) = q|V |η(detBr)

[
g(q)

q

]r
.

6 Proof of the main theorem

In this section we prove the main theorem treating it as a corollary of results obtained in
three previous sections.

Proof of Theorem 1. Let us transform formula (12) given in the Key lemma 3. Applying
Lemma 4 to the inner sum of characters of this expression, we represent this sum as
follows: ∑

xV ∈FV
q

χ1

 ∑
e∈E(G)

(xi(e) − xf(e))2αe

 =
∑
xV ∈FV

q

χ1(x
t
VL(G,α)xV ).

By using Lemma 8 we deduce

FG(q) =
∑

α∈(F∗q)
E(G)

η (detLr(G,α))

[
g(q)

q

]r
, (18)

where r is the rank of the Laplacian matrix L(G,α) and detLr(G,α) is its nonzero
principal minor of the order r. Finally, using Theorem 6 for detLr(G,α), we come to the
assertion of Theorem 1.
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7 Simplifications and applications of the main theorem

7.1 A simplified variant of the main formula and the Tutte conjecture

In this item we simplify formula (5) given in the main theorem and briefly discuss various
related conjectures.

According to Tutte’s 3-flow conjecture, for any 4-edge-connected graph G it holds
FG(3) > 0. This conjecture remained completely inaccessible for a long time, moreover,
nothing was known even about k-edge-connected graphs. Recently Carsten Thomassen
(see [24]) has succeeded in proving the existence of a 3-flow for 8-edgeconnected graphs.
Sometime later this result was strengthened by a group of authors [15], namely, it was
proved that the same is true for 6-edge-connected graphs (in this connection see the es-
say [16]). However, there are still no arguments in favor of the most intriguing Tutte con-
jecture, according to which for any connected graph G without bridges it holds FG(5) > 0.
As far as we know, there are no methods that take into account the specificity of the prime
odd number q or its degree when calculating FG(q).

Evidently, one can graduate the sum mentioned in the assertion of the main theorem
with respect to values r∗(G,α), namely,

FG(q) =

|V |−1∑
r=0

[
g(q)

q

]r
S(r, q), where S(r, q) =

∑
α:α∈(F∗q)

E(G)
,

r∗(G,α)=r

η (s(α,G/W ∗(α))).

Proposition 9. For any odd r it holds S(r, q) = 0.

Proof. Really, let γ be an arbitrary element of the field Fq such that η(γ) = −1. Let
us associate an arbitrary collection αe, e ∈ E(G) with a collection βe, e ∈ E(G), where
αe = γβe. Evidently, this correspondence is bijective. The number of vertices in the
contracted graph G/W equals |V | − |W |+ 1. Therefore in any tree T in this graph the
number of edges equals |V | − |W |, consequently,

∏
e∈E(T ) βe =

∏
e∈E(T ) αeγ

|V |−|W |. Thus,

we get s(α,G/W ) = s(β,G/W )γ|V |−|W |. In view of the multiplicativity of the symbol η
we obtain∑

α:α∈(F∗q)
E(G)

,

r∗(G,α)=r

η (s(α,G/W ∗(α))) = η(γ)r
∑

β:β∈(F∗q)
E(G)

,

r∗(G,β)=r

η (s(β,G/W ∗(α))) = −S(r, q),

consequently, in this case S(r, q) = −S(r, q) = 0.

Therefore, the main formula obtained in this paper is representable as follows:

FG(q) =
∑

r: r mod 2=0,
r6|V |−1,

[
g(q)

q

]r
S(r, q). (19)
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In the remaining part of the paper we discuss various conjectures connected with values
S(r, q) when q = 5. Note that coefficients of the linear combination S(r, q) in formula (19)
with q = 5 are always positive (q = 5 is the first prime number with this property). Really,

let r = 2r′, then with prime q such that q mod 4 = 1 we get
[
g(q)
q

]2r′
= 1

qr′
.

Consequently, the flow polynomial FG(q) is automatically positive with q = 5, if at
least one value of r in formula (19) ensures that S(r, 5) > 0, while with the rest values of
r it holds S(r, 5) > 0. Unfortunately, (as we see in examples given in subsection 7.3) this
is not necessarily true for an arbitrary graph. In the next item we give some facts that
are useful in calculations.

7.2 The rank of the Laplacian matrix over a finite field

Here we study some easy properties of the Laplacian matrix which enable us to estimate
the value r∗(G,α). Let us first pay attention to one simple property of formula (18).

Proposition 10. If a graph G contains at least one nonmultiple edge (in particular, if the
graph G is simple and nontrivial), then formula (19) contains no terms that correspond
to r = 0.

Proof. Really, the rank of the matrix differs from zero if the matrix has at least one
nonzero element. If the graph G has at least one nonmultiple edge e = (i(e), f(e)), then
the element of the matrix L(G,α) with indices i(e), f(e) equals αe 6= 0.

In what follows we assume that q ≡ p is an odd prime number. The easy property
given below allows us to estimate possible values of |W ∗(α)| (or, equivalently, to estimate
r∗(G,α)), using the known integer value of the Laplacian determinant.

Lemma 11. Let p be a prime number and let B be an n× n integer matrix of the rank r
considered as a matrix over the residue field modulo p. Then the determinant of any
minor of the matrix of the order r+ i, i ∈ N, i 6 n− r, considered as an integer number,
is a multiple of pi.

Proof. If the rank of the matrix B over the field Fp equals r, then any its minor M of the
order r+ i contains no more than r independent basic rows over the field Fp. Then each of
all the rest rows in this minor is representable as a linear combination of these rows. The
addition to some row of a linear combination of the rest ones does not affect the value of
the determinant over any field. Consequently, when evaluating the determinant we can
assume that all elements in these row equal zero modulo p, i.e., they are multiples of p.
Then the determinant of the minor M (over the field R) is a multiple of pj, where j is
the number of the mentioned rows.

Corollary 12. Let G be a connected multigraph without loops and let q = p be an odd
prime number. Assume that the determinant of the matrix L(G,α) is not a multiple of
pk+1, k ∈ N. Then |W ∗(α)| 6 k and r∗(G,α) > |V | − k, respectively.
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Proof. Really, by definition the principal minor of the matrix L(G,α) that corresponds
to vertices in V −W ∗(α) differs from zero and W ∗(α) is the minimal cardinality set with
such a property. Therefore rankL(G,α) = |V | − |W ∗(α)|. Consequently, by Lemma 11,
if |W ∗(α)| > k, then L(G,α) would be a multiple of pk+1.

7.3 Examples of calculations for q=5

We have considered various graphs, which are basic in Tutte’s conjecture. Evidently, if the
degree of some vertex v of the graph G equals 2, then the evaluation of the flow polynomial
FG(q) in this graph is reduced to the evaluation of FG′(q), where G′ is obtained from G
by contracting the vertex v and an adjacent one. For this reason we have considered only
those graphs where the degree of vertices is not less than three.

It is well known (see [16]) that with q > 3 an example of a graph without bridges such
that FG(q) < 0 and the sum |E|+ |V | takes on the minimal value is a simple cubic graph
(provided that such an example exists). Thus, for q = 3 the graph K4 serves as such an
example, and for q = 4 the Petersen graph does. According to the Tutte conjecture, for
q = 5 such an example does not exist. Therefore, for proving this conjecture it suffices to
consider simple cubic graphs.

We have considered S(r, 5) for all such graphs with no more than 10 vertices. As
appeared, all such graphs with less than 10 vertices satisfy the condition S(r, 5) > 0 for
all r. However, we have found several graphs with 10 vertices for which S(6, 5) < 0.
In particular, for the Petersen graph we have S(2, 5) = S(4, 5) = 0, S(6, 5) = −384,
S(8, 5) = 151 920, and FG(5) = S(6, 5)/125 + S(8, 5)/625 = 240.

Moreover, one can find such examples even for simple noncubic graphs with lesser
numbers of vertices. Thus, for the graph K5 with one added vertex of the degree 3
we have obtained the following values: S(2, 5) = −180, S(4, 5) = 513 300, and FG(5) =
S(2, 5)/5+S(4, 5)/25 = 20 496. One may think that the last nonzero term of the sequence
S(i, 5), i = 2, 4, . . ., is positive for any simple graph all whose vertices have degrees greater
than 2. However, this is not true. For the graph K3,4 it holds S(2, 5) = 612, S(4, 5) =
244 860, S(6, 5) = −8 100, and FG(5) = S(2, 5)/5 + S(4, 5)/25 + S(6, 5)/125 = 9 852.

Therefore, the reason, for which for any connected graph without bridges (in accor-
dance with the Tutte conjecture) the sum of Legendre symbols with coefficients 1

5
, 1
25

, etc.
given in Theorem 1 equals a positive (integer) number, remains unknown.
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