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Abstract

The Ascending Subgraph Decomposition (ASD) Conjecture asserts that every
graph G with

(
n+1

2

)
edges admits an edge decomposition G = H1 ⊕ · · · ⊕Hn such

that Hi has i edges and it is isomorphic to a subgraph of Hi+1, i = 1, . . . , n−1. We
show that every bipartite graph G with

(
n+1

2

)
edges such that the degree sequence

d1, . . . , dk of one of the stable sets satisfies dk−i > n − i, 0 6 i 6 k − 1, admits
an ascending subgraph decomposition with star forests. We also give a necessary
condition on the degree sequence which is not far from the above sufficient one.

1 Introduction

A graph G with
(
n+1

2

)
edges has an Ascending Subgraph Decomposition (ASD) if it admits

an edge–decomposition G = G1 ⊕ · · · ⊕Gn such that Gi has i edges and it is isomorphic
to a subgraph of Gi+1, 1 6 i < n. Throughout this paper we use the symbol ⊕ to denote
edge–disjoint union of graphs. It was conjectured by Alavi, Boals, Chartrand, Erdős and
Oellerman [1] that every graph of size

(
n+1

2

)
admits an ASD. The conjecture has been

proved for a number of particular cases, including forests [5], regular graphs [9], complete
multipartite graphs [8] or graphs with maximum degree ∆ 6 n/2 [6].

In the same paper Alavi et al. [1] conjectured that every star forest of size
(
n+1

2

)
in

which each connected component has size at least n admits an ASD in which every graph
in the decomposition is a star. This conjecture was proved by Ma, Zhou and Zhou [13],
and the condition was later on weakened to the effect that the second smallest component
of the star forest has size at least n by Chen, Fu, Wang and Zhou [4].

The class of bipartite graphs which admit a star forest ASD (an ascending decompo-
sition in which every subgraph is a forest of stars) is clearly larger than the one which
admit a star ASD, see Figure 1 for a simple example. This motivates the study of star
forest ASD for bipartite graphs in terms of the degree sequence of one of the stable sets,
which is the purpose of this paper.
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Figure 1: Bipartite graph with Star forest ASD but with no Star ASD.

Faudree, Gyárfás and Schelp [5] proved that every forest of stars admits a star forest
ASD. These authors mention, in the same paper, that “Surprisingly [this result] is the
most difficult to prove. This could indicate that the ASD conjecture (if true) is a difficult
one to prove”. In the same paper the authors propose the following question: Let G be a
graph with

(
n+1

2

)
edges. Does G have an ASD such that each member is a star forest?

In this paper we address this question for bipartite graphs when the centres of the
stars in the star forest ASD belong to the same stable set. Throughout the paper we
simply call stable sets the two maximum stable sets of a bipartite graph. The degree
sequence of a stable set is the sequence of degrees of its vertices. Our main result is the
following one.

Theorem 1. Let G be a bipartite graph with
(
n+1

2

)
edges and let d1 6 d2 6 · · · 6 dk be

the degree sequence of one of the stable sets of G. If

dk−i > n− i, 0 6 i 6 k − 1,

then there is a star forest ASD of G.

The proof of Theorem 1 is made in two steps. First we prove the result for a class of
bipartite graphs which we call reduced graphs. For this we use a representation of a star
forest decomposition by the so–called ascending matrices and certain multigraphs, and
reduce the problem to the existence of a particular edge–coloring of these multigraphs.
The terminology and the proof of Theorem 1 for reduced graphs is contained in Section
2.

In Section 3 we present an extension lemma, which uses a result of Häggkvist [10]
on list edge–colorings, which allows one to extend the decomposition from reduced to all
bipartite graphs with the same degree sequence on one of the stable sets, completing the
proof of Theorem 1.

The sufficient condition on the degrees given in Theorem 1 is not far from being
necessary as shown by the next Proposition which is proved in Section 4 (we again refer
to Section 2 for undefined terminology.)

Proposition 2. Let G = (X ∪ Y,E) be a reduced bipartite graph with degree sequence
dX = (d1 6 · · · 6 dk). If G admits an edge–decomposition

G = F1 ⊕ F2 ⊕ · · · ⊕ Fn,
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where Fi is a star forest with i edges whose centers belong to X, then

t−1∑
i=0

dk−i >
t−1∑
i=0

(n− i) for each t = 1, . . . , k. (1)

2 Star forest ASD for reduced bipartite graphs

Throughout the section G = G(X, Y ) denotes a bipartite graph with stable sets X =
{x1, . . . , xk} and Y = {y1, . . . , yn}. We denote by dX = (d1 6 · · · 6 dk), di = d(xi), the
degree sequence of the vertices in X. We focus on star forest ASD with the stars of the
decomposition centered at the vertices in X.

We first introduce some definitions.

Definition 3 (Reduced graph). The reduced graph GR = GR(X, Y ′) of G(X, Y ) has
stable sets X and Y ′ = {y′1, . . . , y′dk} and xi is adjacent to the vertices y′1, . . . , y

′
di

, i =
1, . . . , k.

We say that G is reduced if G = GR.

x1

x2

x3

x4

y1

y2

y3

y4

y5

y6

−→

G

x1

x2

x3

x4

y′1

y′2

y′3

y′4

y′5

GR

Figure 2: A bipartite graph and its reduced graph.

Given two vectors c = (c1, . . . , ck) and c′ = (c′1, . . . , c
′
k), we say that c � c′ if, after

reordering the components of each vector in nondecreasing order, the i–th component of c
is not larger than the i–th component of c′. This definition is motivated by the following
remark.

Remark 4. Let F, F ′ be two forests of stars with centers x1, . . . , xk and x′1, . . . , x
′
k respec-

tively. Then F is isomorphic to a subgraph of F ′ if and only if

(dF (x1), . . . , dF (xk)) � (dF ′(x
′
1), . . . , dF ′(x

′
k)).

Given two sequences d = (d1 6 · · · 6 dk) and b = (b1 6 · · · 6 bn) of nonnegative
integers with

∑
i di =

∑
j bj, denote by N (d, b) the set of matrices A = (aij)k×n with non-

negative integer entries such that the row sums and the column sums satisfy respectively,∑
j

aij = di, 1 6 i 6 k,
∑
i

aij = bj; 1 6 j 6 n.
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Definition 5 (Ascending matrix). We say that a matrix A is ascending if,

A1 � A2 � · · · � An,

where Aj denotes the j–th column of A.
We denote by Na(d, b) the class of ascending matrices in N (d, b).

We will use appropriate ascending matrices to define multigraphs which will lead to
star forest ASD as stated in Proposition 7 below.

For convenience we use the following notation for sequences. The constant sequence
with r entries equal to x is denoted by xr and (xr, ys) denotes the concatenation of xr and
ys. Also, for an integer x we denote by x− the ascending sequence x− = (1, 2, . . . , x−1, x).
Sums and differences of sequences of the same length are understood to be componentwise.

We recall that the bipartite adjacency matrix of a bipartite multigraph H with stable
sets X = {x1, . . . , xk} and Z = {z1, . . . , zn} is the matrix A = (aij)k×n where aij is the
number of edges joining xi with zj.

We need a last definition which is borrowed from [10].

Definition 6 (Sequential coloring). A bipartite multigraph H = H(X,Z) with degree
sequence dX = (d1 6 · · · 6 dk) has a sequential coloring for X if there is a proper edge
coloring of H such that the edges incident with xi ∈ X receive colors {1, . . . , di} for each i.

Proposition 7. A reduced bipartite graph G = G(X, Y ) with
(
n+1

2

)
edges and degree

sequence dX = (d1 6 · · · 6 dk) has a star forest ASD with centers of stars in X if and
only if there is an ascending matrix A ∈ Na(dX , n

−) such that the bipartite multigraph
H = H(X,Z) with bipartite incidence matrix A admits a sequential coloring.

Proof. Let X = {x1, . . . , xk} and Y = {y1, . . . , ydk}.
Assume first that G admits a star forest ASD with the centers of the stars in X,

G = F1 ⊕ · · · ⊕ Fn.

See an illustration with dX = (1, 2, 3, 3, 6) and n = 5,

G

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

=

F1

⊕

F2

⊕

F3

⊕

F4

⊕

F5

y1

We define the multigraph H = H(X,Z) with Z = {z1, . . . , zn} by placing dFj
(xi)

parallel edges joining xi with zj, where dFj
(xi) denotes the degree of xi in the forest Fj.
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G =

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

−→

x1 z1

x2 z2

x3 z3

x4 z4

x5 z5

H =

In this way, the bipartite adjacency matrix A of H belongs to N (dX , n
−). Moreover,

since Fj is isomorphic to a subgraph of Fj+1, the matrix A is ascending, A ∈ Na(dX , n
−).

A =


0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
1 0 1 0 1
0 1 1 2 2

.
Next we define an edge–coloring of H as follows. Denote by NFj

(xi) = {yi1 , . . . , yis} the
set of neighbours of xi in the forest Fj. Then xi is joined in H to zj with s parallel edges.
We color these edges with the subscripts {i1, . . . , is} of the neighbours of xi in Fj, by
assigning one of these colors to each parallel edge bijectively.

y6

⊕H =

y5

⊕

y4

⊕

y3

⊕

y2

⊕

y1

Since the original graph G is simple and the star forests F1, . . . , Fn form a decompo-
sition of G, no two edges in H incident to a vertex xi receive the same color. On the
other hand, since each star forest Fj has its stars centered in vertices in X, and therefore
each vertex in Y has degree at most one in each Fj, by the bijections which define the
edge–coloring, no two edges incident to zj receive the same color. Hence, the coloring is
proper. Moreover, since the graph G is reduced, the edges incident to xi receive the colors
{1, . . . , di} and the coloring is sequential. This completes the if part of the proof.

Reciprocally, assume that A ∈ Na(dX , n
−) and that the multigraph H = H(X,Z)

with bipartite adjacency matrix A has a sequential coloring.
Let Z = {z1, . . . , zn}, where vertex zi has degree i (the sum of entries of column i of

A), in H, 1 6 i 6 n. Let c : E → {1, 2, . . . , dk} be a sequential coloring of H, so that the
edges incident to xi receive colors {1, . . . , di}.

Each zj will be associated to the subgraph Fj of G defined as follows. For each edge
xizj of color h, we say that the edge xiyh is in Fj. This way we obtain a subgraph of
G because h 6 d(xi) (the coloring is sequential) and the graph G is reduced. Moreover,
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since the coloring is proper, the degree of every vertex yh in Fj is at most one. Hence Fj

is a forest of stars and it has j edges. Moreover, for j 6= j′, the subgraphs Fj and Fj′ are
edge–disjoint again from the fact that the coloring is proper. Finally, since the matrix A
is ascending, Fi is isomorphic to a subgraph of Fi+1 for each i = 1, · · · , n− 1. Hence,

G = F1 ⊕ · · · ⊕ Fn

is a star forest ASD for G. This completes the proof.

To prove the main result for reduced graphs, we will show the existence of an ap-
propriate ascending matrix such that the multigraph associated to it admits a sequential
coloring.

We recall that Faudree, Gyárfás and Schelp [5] have proved that every star forest with(
n+1

2

)
edges admit a star forest ASD. In view of Remark 4, this result can be reformulated

as the following Lemma:

Lemma 8. For every sequence d = (d1 6 · · · 6 dk) with d1 > 0 and
∑k

i=1 di =
(
n+1

2

)
there is C ∈ Na(d, n

−).

Proof. Let G = S1∪· · ·∪Sk be a forest of stars where Si is a star with di edges and centre
xi, 1 6 i 6 k. If G = F1 ⊕ · · · ⊕ Fn is a star forest ASD of G, let C = (cij) be the matrix
where cij the number of edges in Fj incident with xi. The matrix C clearly belongs to
N (d, n−) and Remark 4 shows that C is ascending as well.

We next show that there exists an ascending matrix A ∈ Na(d, n
−) of a particular

shape that will be useful to prove the existence of star forest ASD for reduced graphs
with that degree sequence.

We note that, if b = (b1 6 · · · 6 bn), each matrix A ∈ N (a, b) with (0, 1) entries is
ascending. The support of a matrix B is the set of positions with nonzero entries.

We observe that if B ∈ Na(a, b) and T ∈ Na(a
′, b′) have disjoint support and the same

dimensions, then B + T ∈ Na(a + a′, b + b′). The last sentence also holds if the support
of T and B intersect in a square submatrix and T has constant entries in this submatrix.
The above observations will be used in the proof of the next Lemma.

Lemma 9. Let d = (d1 6 · · · 6 dk) be a sequence satisfying
∑

i di =
(
n+1

2

)
and

dk−i > n− i, i = 0, . . . , k − 1.

Then, there is A = (aij)k×n in Na(d, n
−) such that aij > 1 for each (i, j) with i+j > k+1.

Proof. Consider the (k×n) matrix T with tij = 1 for i+ j > k+ 1 and tij = 0 otherwise.
Let d′k = dk − n, d′k−1 = dk−1 − (n− 1), . . . , d′1 = d1 − (n− k + 1). Since∑

i

d′i = (n− k) + (n− k − 1) + · · ·+ 2 + 1,

by Lemma 8 for d′ = (d′1, . . . , d
′
k) there is A ∈ Na(d

′, (n − k)−). Extend this matrix to a
k × n matrix A′ by adding zero columns to the left. Since the last (n− k) columns of T
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are the all–one vectors, the matrix A = A′ + T still has the ascending column property
and, by construction, it is in Na(d, n

−) with nonzero entries in the positions (i, j) with
i+ j > k + 1.

Here is an illustration of Lemma 9 with dX = (4, 6, 9, 9) and n = 7.

T =


0 0 0 1

... 1 1 1

0 0 1 1
... 1 1 1

0 1 1 1
... 1 1 1

1 1 1 1
... 1 1 1

 ; A′ =


0 0 0 0

... 0 0 0

0 0 0 0
... 1 0 0

0 0 0 0
... 0 1 2

0 0 0 0
... 0 1 1



A = A′ + T =


0 0 0 1

... 1 1 1

0 0 1 1
... 2 1 1

0 1 1 1
... 1 2 3

1 1 1 1
... 1 2 2


Next Lemma gives a sufficient condition for a degree sequence of a reduced graph to

admit a star forest ASD.

Lemma 10. Let d = (d1 6 · · · 6 dk) with di ∈ N and
∑

i di =
(
n+1

2

)
. If

dk−i > n− i, i = 0, 1, . . . , k − 1,

the reduced graph G = (X, Y ) with degree sequence dX = d admits a star forest ASD.

Proof. Let A = (aij) ∈ Na(d, n
−) such that aij > 1 for each (i, j) with i + j > k + 1,

whose existence is ensured by Lemma 9.
Let H be the bipartite multigraph with stable sets X = {x1, . . . , xk} and Z =

{z1, . . . , zn} whose bipartite adjacency matrix is A. We next show that H admits a
sequential coloring. The result will follow by Proposition 7.

Consider the k matchings of H defined by

M ′
1 ={x1zn} ∪ {x2zn−1} ∪ · · · ∪ {xkzn−k+1}

M ′
2 ={x1zn−k+1} ∪ {x2zn} ∪ · · · ∪ {xkzn−k+2}

...

M ′
k ={x1zn−1} ∪ {x2zn−2} ∪ · · · ∪ {xkzn}.

In general, M ′
i = {xrzs : r + s ∈ {n+ i, n− k + i}, n− k + 1 6 s 6 n}, i = 1, . . . , k.

Such matchings exist in H by the condition aij > 1 for each pair (i, j) with i+j > k+1,
and they are pairwise edge–disjoint.

Let αi = di − (n − k), 1 6 i 6 k. For each j = 1, 2, . . . , k, let Mj ⊆ M ′
j be obtained

by selecting from M ′
j the edge incident to xi whenever αi > j. In this way each xi is
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incident with the matchings M1, . . . ,Mt(i) with t(i) = min{k, αi}. On the other hand,
since αk−i > k−i (by the condition on the degree sequence dX), the vertex zn−i is incident
to at least k − i edges in M1 ⊕ · · · ⊕Mk.

Let H ′ the bipartite multigraph obtained from H by removing the edges in M1⊕· · ·⊕
Mk. Let d′X = (d′1 6 · · · 6 d′k) be the degree sequence of X in H ′, where d′i = di − t(i) >
n− k. Moreover, each vertex zn−i, 0 6 i 6 n− 1 has degree at most n− k in H ′ (because
it has degree n− i in H and at least k − i of its incident edges in M1 ⊕ · · · ⊕Mk.

An example of the matchings Mi (depicted by the incidence matrices) for dX =
(4, 6, 9, 9) and n = 7 is given below.

H
0 0 0 1 1 1 1
0 0 1 1 2 1 1
0 1 1 1 1 2 3
1 1 1 1 1 2 2

=

M1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0

+

M2
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0


M3

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

+

M4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

+

H ′
0 0 0 1 1 1 0
0 0 1 0 2 0 0
0 1 1 0 0 1 2
1 1 1 0 0 1 1


We next define a sequential coloring in H as follows. Let ∆′(X) be the maximum

degree in H ′ of the vertices in X. If ∆′(X) > n−k then there is a matching M ′
∆′(X) in H ′

from the vertices of maximum degree in X to Z. Color the edges of this matching with
∆′(X).

By removing this matching from H ′ we obtain a bipartite multigraph in which the
maximum degree of vertices in X is ∆′(X) − 1. By iterating this process we eventually
reach a bipartite multigraph H ′′ in which every vertex in X has degree n − k while the
maximum degree of the vertices in Z still satisfies ∆′′(Z) 6 n− k. By König’s theorem,
the edge–chromatic number of H ′′ is n − k. By combining an edge–coloring of H ′′ with
n−k colors with the ones obtained in the process of reducing the maximum degree of H ′,
the multigraph H ′ can be properly edge–colored in such a way that vertex xi is incident
in H ′ with colors {1, . . . , d′i}, 1 6 i 6 k. Let H ′1, H

′
2, . . . , H

′
d′k

be the matchings in H ′

induced by these colors.
We finally obtain a sequential coloring of H by combining the sequential coloring of

H ′ with the matchings M1, . . . ,Mk as follows. Recall that each vertex xi is incident with
the matchings M1, . . . ,Mt(i), where t(1) 6 t(2) 6 · · · 6 t(k) = k, and the matchings
H ′1, . . . , H

′
d′i

in H ′, where d′1 6 d′2 6 · · · 6 d′k and d′i + t(i) = di. A sequential coloring of

H can be obtained by combining the two sets of matchings in an ordered list such that
the first di matchings in the list contain precisely M1, . . . ,Mt(i) and H ′1, . . . , H

′
d′i

.

In the above example, one may choose the following decomposition of H ′ (described
by the adjacency matrices)
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H ′
0 0 0 1 1 1 0
0 0 1 0 2 0 0
0 1 1 0 0 1 2
1 1 1 0 0 1 1

=

H ′1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

+

H ′2
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0


H ′3

0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

+

H ′4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

+

H ′5
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0


A sequential coloring of H can be obtained, for instance, with the ordered sequence

H ′1, H
′
2, H

′
3,M1,M2,M3, H

′
4, H

′
5,M4.

Therefore, all conditions of Proposition 7 hold. Hence, G has a star forest ASD. This
completes the proof.

3 An extension lemma

In this section we prove an extension lemma which shows that, if GR admits a star forest
ASD then so does G. This reduces the problem of giving sufficient conditions on the
degree sequence of one stable set to ensure the existence of a star forest ASD to bipartite
reduced graphs. For the proof of our extension lemma we use the following result by
Häggkvist [10] on edge list–colorings of bipartite multigraphs.

Theorem 11. [10] Let H be a bipartite multigraph with stable sets X and Z. If H admits
a sequential coloring, then H can be properly edge–colored for an arbitrary assignment of
lists {L(a) : a ∈ X} such that |L(a)| = d(a) for each a ∈ X.

In other words, Theorem 11 states that if H can be properly edge–colored in such
a way that every vertex a ∈ X is incident with colors {1, 2, . . . , d(a)} then there is an
edge–coloring of H by prescribing an arbitrary list L(a) = {c1, c2, . . . , cd(a)} of colors to
each a ∈ X.

Lemma 12 (Extension Lemma). Let G be a bipartite graph with bipartition

X = {a1, . . . , ak}

and Y and degree sequence dX = (d1 > · · · > dk), di = d(ai). If the reduced graph GR of
G admits a decomposition

GR = F ′1 ⊕ · · · ⊕ F ′t ,
where each F ′i is a star forest, then G has an edge decomposition

G = F1 ⊕ · · · ⊕ Ft

with Fi
∼= F ′i for each i = 1, . . . , t.
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Proof. Let C be the (k × t) matrix whose entry cij is the number of edges incident to ai
in the star forest F ′j of the edge decomposition of GR.

As done in Proposition 7, we consider the bipartite multigraph H with stable sets X
and U = {u1, . . . , ut}, where ai is joined with uj with cij parallel edges. Now, for each pair
(i, j), color the cij parallel edges of H with the neighbors of ai in the forest F ′j bijectively.
Note that in this way we get a proper edge–coloring of H: two edges incident with a
vertex ai receive different colors since the bipartite graph GR has no multiple edges, and
two edges incident to a vertex uj receive different colors since F ′j is a star forest.

By the definition of the bipartite graph GR, each vertex ai ∈ X is incident in the
bipartite multigraph H with edges colored 1, 2, . . . , di.

Let L(ai) be the list of neighbours of ai in the original bipartite graph G. By Theorem
11, there is a proper edge–coloring χ′ of H in which the edges incident to vertex ai ∈ X
receive the colors from the list L(ai) for each i = 1, . . . , k.

Now construct Fs by letting the edge aibj be in Fs whenever the edge aius is colored
bj in the latter edge–coloring of H. In this way, Fs has the same number of edges than F ′s
and the degree of ai in Fs is cis, the same as in F ′s. Moreover, since the coloring is proper,
Fs is a star forest, so that Fs

∼= F ′s, and two forests Fs, Fs′ are edge–disjoint whenever
s 6= s′. Hence we have obtained a star forest decomposition of G. This concludes the
proof.

We are now ready to prove our main result.
Proof of Theorem 1: Let G = G(X, Y ) be a bipartite graph with dX = (d1 6 · · · 6 dk)

satisfying
∑

i di =
(
n+1

2

)
and di > n− i, i = 0, . . . , k − 1.

By Lemma 10 there is a star forest ASD, GR = F ′1⊕· · ·⊕F ′n of the reduced graph GR

with the same degree sequence d. By Lemma 12 there is also a star forest decomposition
G = F1⊕· · ·⊕Fn for G. Since Fi

∼= F ′i for each i, the latter is also an ascending subgraph
decomposition.

4 A necessary condition for star forest decompositions

As mentioned in the Introduction, the sufficient condition in Theorem 1 is not far from
being necessary. This is the statement of Proposition 2 which shows that, if a reduced bi-
partite graph with

(
n+1

2

)
edges can be decomposed into n star forests with sizes 1, 2, . . . , n,

regardless of the fact that it is ascending, then the degree sequence of the graph satisfies
condition (1), which is necessary for the existence of a star forest ASD. We next give the
proof of this Proposition.

Proof of Proposition 2: Let X = {x1, . . . , xk} and Y = {y1, . . . , ydk} be the bipartition
of G where xi is adjacent to y1, . . . , ydi for each i. Since the graph is reduced, the last
dk − dk−1 vertices of Y have degree one, the preceding dk−1 − dk−2 have degree 2 and,
in general, the consecutive dk−j+1 − dk−j vertices ydk−(j−1)+1, . . . , ydk−j

have degree j, j =
1, . . . , k − 1. The first d1 vertices in Y have degree k.

Since Fn has n leaves in Y we clearly have |Y | = dk > n. Thus (1) is satisfied for
t = 1. Moreover, since G has

(
n+1

2

)
edges, (1) is also trivially satisfied for t = k.
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Let 1 6 t 6 k−1. Consider the subgraph Gt of G induced by Fn⊕Fn−1⊕· · ·⊕Fn−(t−1).
Since each vertex in Y has degree at most one in each forest, it has degree at most t in
Gt. By combining this remark with the former upper bound on the degrees of vertices in
Y we have

t−1∑
i=0

(n− i) =

dk∑
i=1

dGt(yi) 6

dk−(t−1)∑
i=1

dGt(yi) +

dk∑
i=dk−(t−1)+1

dG(yi)

6 tdk−(t−1) + (t− 1)(dk−t − dk−(t−1)) + · · ·+ 2(dk−1 − dk−2) + (dk − dk−1)

=
t−1∑
i=0

dk−i,

and (1) is satisfied for t. This concludes the proof.
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