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Abstract

Using methods developed by Coons and Tyler, we give a new proof of a recent
result of Defant, by determining the maximal order of the number of hyper-(b-ary)-
expansions of a nonnegative integer n for general integral bases b > 2.
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1 Introduction

If b > 2 is a positive integer and n > 0 is a nonnegative integer, then a hyper-(b-ary)-
expansion of n is an expansion

n =
∑
i>0

aib
i,

where ai ∈ {0, 1, . . . , b} and ai = 0 for all but finitely many indices i. In contrast, the
standard base-b expansion requires ai ∈ {0, 1, . . . , b− 1}.
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For n > 1, we denote by sb(n) the number of hyper-(b-ary)-expansions of n − 1;
moreover, we define sb(0) = 0. For example, {s2(n)}n>0 is the classical diatomic sequence
of Stern. This sequence satisfies s2(0) = 0, s2(1) = 1, and for n > 0,

s2(2n) = s2(n) and s2(2n+ 1) = s2(n) + s2(n+ 1).

Similarly, for the general sequence {sb(n)}n>0, it is straightforward to verify that sb(0) = 0,
sb(1) = 1, and

sb(bn) = sb(n), sb(bn+ 1) = sb(n) + sb(n+ 1) and sb(bn+ i) = sb(n+ 1)

for n > 0 and i = 2, . . . , b− 1.
Recently, answering a question of Calkin and Wilf [3], Coons and Tyler [4] determined

the maximal order of Stern’s diatomic sequence. Very recently, Defant [5] gave an ex-
tension of their result to the functions sb(n). In this short paper, we use a slight variant
of the method of Coons and Tyler, to give a new (and much shorter) proof of Defant’s
result.

Theorem 1 (Defant). If b > 2 is an integer, then

lim sup
m→∞

sb(m)

mlogb ϕ
=
ϕlogb(b

2−1)
√

5
,

where ϕ = (
√

5 + 1)/2 is the golden ratio.

2 Preliminaries

Let {Fk}k>0 = 0, 1, 1, 2, . . . be the sequence of Fibonacci numbers.

Lemma 2 (Defant). Let k > 2 and n be positive integers. Then

max
bk−26n<bk−1

sb(n) = Fk.

Moreover, if ak denotes the smallest n in the interval [bk−2, bk−1) for which this maximum
is attained, then

ak =
bk − 1

b2 − 1
+

(
1− (−1)k

2

)
b

b+ 1
. (1)

Thus by definition
sb(ak) = Fk.

We note that ak has the base b-expansion ((10)`−11)b for k = 2` and ((10)`−111)b for
k = 2` + 1, therefore this Lemma follows from a result of Defant [5, Proposition 2.1],
however, this lemma can also be proven directly from the corresponding statement for
Stern’s sequence (see Lehmer [6] and Lind [7]). To do so, one need only notice that the
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Stern sequence is a subsequence of {sb(n)}n>0 and that the maximal values occur in this
subsequence first. Explicitly, if we define ψb : N→ N by

ψb : (εd . . . ε0)2 7→ (εd . . . ε0)b,

then setting

A0 =

(
1 0
1 1

)
, A1 =

(
1 1
0 1

)
, and A2 = · · · = Ab−1 =

(
0 1
0 1

)
,

we easily see that for n = (εd . . . ε0)b, we have

sb(n) =
(
1 0

)
Aε0 · · ·Aεd

(
0
1

)
. (2)

From this identity it follows at once that

sb(ψb(n)) = s2(n). (3)

Moreover, the matrices Ai are nonnegative and Ai is bounded componentwise by A1 for
i > 2. Replacing any such matrix Ai with i > 2 by A1 therefore does not decrease the
value of the product in (2). This proves that

sb((εd . . . ε0)b) 6 s2((ε̃d . . . ε̃0)2),

where ε̃i = min(εi, 1). Therefore numbers with only zeros and ones in their base-b expan-
sions dominate the sequence sb(n), that is, for every n there is an m 6 n with only zeros
and ones in its base-b expansion such that sb(m) > sb(n).

Definition 3. For k > 0 set

ãk =
bk − 1

b2 − 1
,

and let h(x) : R>0 → R>0 denote the piecewise linear function connecting the sequence of
points {(ãk, Fk)}k>0 = (0, 0), (1/(b+ 1), 1), (1, 1), . . ..

In the following lemma, we collect some necessary properties of h(x).

Lemma 4. The function h(x) is continuous in [0,∞), monotonically increasing, and
differentiable in the intervals (ãk, ãk+1). Moreover, for all x > 0, we have

h(x) + h(bx+ 1/(b+ 1)) = h(b2x+ 1). (4)

For x ∈ [ãk, ãk+1] we have

h(x) = Fk−1
b+ 1

bk
x− Fk−1

bk − 1

bk(b− 1)
+ Fk. (5)

Moreover the sequence {γk}k>2 = F2(b+1)/b2, F3(b+1)/b3, . . . of slopes of the line segments
is nonincreasing. In particular, the function h is concave in R>1.
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Proof. The statements in the first sentence follow directly from the definition.
To establish the validity of Equation (4), it is enough to realise that on the interval

[ãk, ãk+1], both sides are linear functions, which coincide at the endpoints, since h(ãk) +
h(ãk+1) = Fk + Fk+1 = Fk+2 = h(ãk+2).

The proof of (5) is by inserting the definition of ãk into the equation h(x) = (x −
ãk)(Fk+1−Fk)/(ãk+1− ãk)+Fk. Finally, it is an easy consequence of Binet’s formula that
the sequence of slopes is nonincreasing.

The piecewise linear function h(x) thus satisfies a recurrence relation resembling that
of sb(n). Using this recurrence, we show that h(n) is, in fact, an upper bound for sb(n),
which is the main tool of our proof.

Lemma 5. Assume that b > 2 is an integer. For all m > 0, we have

sb(m) 6 h(m). (6)

Moreover,

lim sup
m→∞

sb(m)

h(m)
= 1. (7)

Proof. The limit result (7) follows from the first statement, which yields the inequality
“6”, together with the equality sb(a2k) = h(a2k) that holds for all k > 0. It is sufficient
to prove the assertion (6) for such m whose b-ary expansion consists only of zeros and
ones, as for each n there is such an m with m 6 n and sb(n) 6 sb(m); see the comments
just before Definition 3 for details.

We prove the lemma using induction, however, we have to strengthen the induction
hypothesis by the additional property that

sb(m) 6 h(m− b/(b+ 1)) for m ≡ b+ 1 mod b2. (8)

(Remark: in fact we are working with a strictly weaker bound than Coons and Tyler [4]
did for the case b = 2. They defined the function h by just connecting the maxima at the
positions ak. Our function h hits only those maxima (ak, Fk) where 2 | k, and the others
lie to the right of h, shifted by b/(b + 1). Therefore our induction hypothesis has to be
stronger, but as an exchange for this additional difficulty the tedious proof of Lemma 2.1
in the cited paper can be dispensed with, since our bound h is easier to work with.)

To get the proof started, we first verify the statement for the sixteen integers m
given by the b-ary expansions (ε3ε2ε1ε0)b, where εi ∈ {0, 1}. The case that εi = 0 for all
i ∈ {0, 1, 2, 3} is trivial. Concerning the other fifteen indices, by monotonicity of h we only
have to consider those positions where a new maximum is attained: we have sb((1)b) = 1,
sb((11)b) = 2, sb((101)b) = 3, sb((1001)b) = 4, sb((1011)b) = 5 and these values do not
appear before. Clearly sb(1) = 1 = h(ã2) = h(1) and sb(b

2 + 1) = 3 = h(ã4) = h(b2 + 1).
Moreover, sb(b + 1) = 2 = h(ã3) = h(b + 1− b/(b + 1)) and sb(b

3 + b + 1) = 5 = h(ã5) =
h(b3 + b+ 1− b/(b+ 1)), so that (8) is satisfied for these latter two positions. Finally, we
have sb(b

3 + 1) = 4 and by (5) it is not difficult to show that h(b3 + 1) = 5− 2/b2 > 4.
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For the induction step, let k > 5 and assume that (6) and (8) hold for all m < bk−1

having only zeros and ones as b-ary digits. Let bk−1 6 m < bk, where m satisfies the same
digit restriction. We distinguish between six cases. If m = bj, where j > 1, then

sb(bj) = sb(j) 6 h(j) 6 h(bj),

where the last inequality is true by the monotonicity of h(x). The case for m = bn + 1
for some n is more involved, and it is this case for which we need the special form of the
function h. We start with the case m ≡ 1 mod b3, that is, m = b3j + 1, where j > b since
m > b4. Using the recurrence for sb, the induction hypothesis, monotonicity of h and the
identity (4), in this order, we obtain

sb(b
3j + 1) = sb(b

2j) + sb(b
2j + 1)

= sb(j) + sb(bj) + sb(bj + 1)

= 2sb(j) + sb(bj + 1)

6 2h(j) + h(bj + 1)

6 h(j) + h(j + 1/(b+ 1)) + h(bj + 1)

= h(j) + h(b2j + b+ 1/(b+ 1)).

The first case m ≡ 1 mod b3 is finished as soon as we prove that this last expression is
bounded from above by

h(bj) + h(b2j + 1/(b+ 1)) = h(b3j + 1).

This estimate follows from the concavity of h in R>2, comparing the arguments of the
function h: we have j > b > 2, and therefore bj−j > b = b2j+b+1/(b+1)−(b2j+1/(b+1)),
which yields the statement.

By a very similar argument we treat the case m = b4j + b + 1, however we consider
the case j = 1 separately. Using (3) and (5), we get in this case

sb(b
4 + b+ 1) = s2(19) = 7 6 8− 3/b2 = h(b4 + b+ 1/(b+ 1)),

as required by (8). Assume now that j > 2. We have (note that the argument leading to
the second row works equally well for b = 2)

sb(b
4j + b+ 1) = sb(b

3j + 1) + sb(b
3j + 2)

= sb(b
3j + 1) + sb(b

2j + 1)

= sb(j) + 2sb(b
2j + 1)

6 h(j) + 2h(b2j + 1)

and an analogous argument as before, using the concavity of h, shows that this can be
estimated by

h(bj) + 2h(b2j + 1/(b+ 1)) = h(b2j + 1/(b+ 1)) + h(b3j + 1)

= h(b4j + b+ 1− b/(b+ 1)).
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The remaining three cases are simpler as we do not need the concavity of h for them.
We have

sb(b
4j + b3 + b+ 1) = sb(b

3j + b2 + 1) + sb(b
3j + b2 + 2)

= sb(b
3j + b2 + 1) + sb(b

2j + b+ 1)

6 h(b3j + b2 + 1) + h(b2j + b+ 1/(b+ 1))

= h(b4j + b3 + b+ 1− b/(b+ 1)),

sb(b
3j + b2 + 1) = sb(bj + 1) + sb(b

2j + b+ 1)

6 h(bj + 1) + h(b2j + b+ 1/(b+ 1))

= h(b3j + b2 + 1)

and

sb(b
3j + b2 + b+ 1) = sb(b

2j + b+ 1) + sb(b
2j + b+ 2)

= sb(b
2j + b+ 1) + sb(bj + 2)

= sb(b
2j + b+ 1) + sb(j + 1)

6 h(b2j + b+ 1/(b+ 1)) + h(j + 1)

6 h(b2j + b+ 1/(b+ 1)) + h(bj + 1)

= h(b3j + b2 + 1)

6 h(b3j + b2 + b+ 1− b/(b+ 1)),

which settles the cases m ≡ b3+b+1 mod b4, m ≡ b2+1 mod b3 and m ≡ b2+b+1 mod b3

respectively. Note that all of these calculations are also valid for b = 2.
The residue classes considered cover the set of nonnegative integers with b-ary expan-

sions containing only zeros and ones, and therefore

sb(m) 6 h(m)

for all m > 0.

Lemma 6. If

H(x) =
(b2 − 1)logb ϕ√

5
xlogb ϕ,

then
lim sup
x→∞

(h−H)(x) = 0,

and specifically,
lim
k→∞
|(h−H)(ak)| = 0.
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Proof. Let h̃(x) be the piecewise linear function satisfying h̃(ãk) = ϕk/
√

5 for k > 0, and
set

H̃(x) =
((b2 − 1)x+ 1)logb ϕ√

5
= H(x+ 1/(b2 − 1)).

Then H̃(x) is a concave function that passes through the points
(
ãk, ϕ

k/
√

5
)
. It follows

that h̃(x) 6 H̃(x) for x > 0, where we have equality when x = ãk. Moreover, if ãk 6 x 6
ãk+1, by Binet’s formula |h̃(x)− h(x)| 6 ϕ−k/

√
5. Furthermore, the mean value theorem

gives |H̃(x)−H(x)| 6 Cx−η for some C and some η > 0. Combining these three estimates
yields the first statement.

We easily get limk→∞ |(h −H)(ãk)| = 0 by a similar argument. Combining this with
|ak − ãk| 6 1, |h(x+ t)− h(x)| → 0, and |H(x+ t)−H(x)| → 0 for x→∞ gives the last
statement of the lemma.

3 Proof of the main result

Proof of Theorem 1. For brevity, we write cb = ϕlogb(b
2−1)/

√
5. By Lemma 6, noting that

h(x) increases to infinity, and applying Lemma 5, we get

lim sup
m→∞

sb(m)

cbmlogb ϕ
= lim sup

m→∞

sb(m)

H(m)
6 lim sup

m→∞

sb(m)

h(m)
6 1.

Similarly, using the second part of Lemma 6 and again applying Lemma 5, we have

lim sup
m→∞

sb(m)

H(m)
> lim sup

k→∞

sb(ak)

H(ak)
= lim sup

k→∞

sb(ak)

h(ak)
= 1,

which proves the theorem.

4 Concluding remarks

In this paper, we gave a short proof determining the maximal order of the number sb(n)
of hyper-(b-ary)-expansions of a nonnegative integer n−1 for general integral bases b > 2.
Our proof was based on considering the finite number of specific recurrences satisfied by
sb(n) over arithmetic progressions bn + i, and constructing a piecewise linear function
approximating those recurrences.

Functions satisfying recurrences like those satisfied by sb(n) are plentiful in the lit-
erature, and often given special attention by number theorists and theoretical computer
scientists; see Allouche and Shallit’s work on b-regular sequences [1, 2] for a general treat-
ment and several specific examples. The recurrences satisfied by b-regular sequences lead
to a matrix classification, which has proven to be very useful; here the usefulness comes
by recognising that the Stern sequence s2(n) is the dominating subsequence of sb(n) (for
each b > 2), and that the growth properties of the Stern sequence determine the growth
properties of sb(n).

We end by pointing the interested reader to the extremely useful result of Allouche
and Shallit [1, Theorem 2.2], which formalises this relationship.
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Theorem 7 (Allouche and Shallit). The integer sequence {f(n)}n>0 is b-regular if and
only if there exist positive integers m and d, matrices A0, . . . ,Ab−1 ∈ Zd×d, and vectors
v,w ∈ Zd such that

f(n) = wTAi0 · · ·Aisv,

where n = (is · · · i0)b.
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