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Abstract

We prove two results for directed strongly regular graphs that have an eigenvalue
of multiplicity less than k, the common out-degree of each vertex. The first bounds
the size of an independent set, and the second determines an eigenvalue of the
subgraph on the out-neighborhood of a vertex. Both lead to new nonexistence
results for parameter sets.
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1 Introduction

Directed strongly regular graphs were defined by Art Duval [4] in 1988, as a directed
version of strongly regular graphs. Starting with results of Klin et al in 2004 [8], there
has been a lot of work on both constructions and nonexistence results. The website [3]
maintains a table of feasible parameters.

In particular, many properties of strongly regular graphs extend to directed strongly
regular graphs: the adjacency matrix is diagonalizable, the eigenvalues are integers ([4]),
and there is a version of the absolute bound ([7], [5]).

In this paper, we find two nonexistence conditions for directed strongly regular graphs
which are related to bounds for strongly regular graphs. One gives a bound on the size of
an independent set, and the second gives information about an eigenvalue of the induced
subgraph of the out-neighborhood of a vertex. For each, we give examples of feasible
parameter sets ruled out by the condition.
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We start with definitions and standard results. For a directed graph Γ and vertices i
and j, write i→ j if there is an edge from i to j (and this will include the case that there
is also an edge from j to i). If there are edges both from i to j and from j to i, we say
that i and j are adjacent vertices and write i ∼ j. As usual, the adjacency matrix of
Γ is the matrix A whose i, j entry is 1 if i→ j and 0 otherwise.

A directed graph Γ on v vertices is a directed strongly regular graph with param-
eters (v, k, t, λ, µ) if 0 < t < k and A satisfies the matrix equations

JA = AJ = kJ
A2 = tI + λA+ µ(J − I − A)

where J is the all 1’s matrix. In this case, we will say that Γ is a DSRG(v, k, t, λ, µ). Note
that if k = t and these matrix conditions are satisfied, then Γ is an (undirected) strongly
regular graph, while if t = 0 then Γ is a doubly regular tournament.

The matrix conditions are equivalent to the following structural conditions (which are
often given as the definition). A digraph Γ is a DSRG(v, k, t, λ, µ) if and only if

(a) Every vertex has in-degree and out-degree k, and is adjacent to t vertices.
(b) Let i and j be distinct vertices. The number of vertices x such that i→ x→ j is

λ if i→ j and µ if i 6→ j.
The adjacency matrix of a directed strongly regular graph is diagonalizable but not

unitarily diagonalizable. However the all 1’s vector j is an eigenvector with eigenvalue
k, and all eigenvectors for other eigenvalues are orthogonal to j. The following theorem
gives basic information about eigenvalues.

Theorem 1. ([4]) Let Γ be a DSRG(v, k, t, λ, µ) with adjacency matrix A. Then the
eigenvalues of A are integers θ0 = k, θ1, θ2 with multiplicities m0 = 1,m1,m2, given by
the following formulas.

θ1 =
1

2

(
λ− µ+

√
(µ− λ)2 + 4(t− µ)

)
θ2 =

1

2

(
λ− µ−

√
(µ− λ)2 + 4(t− µ)

)
m1 = −k + θ2(v − 1)

θ1 − θ2

m2 =
k + θ1(v − 1)

θ1 − θ2
We will use θ, τ for the eigenvalues when we don’t want to order them, and mθ, mτ

for the corresponding multiplicities.
We will also need the following technical lemma about general digraphs. Recall that

an independent set is a set of vertices such that the induced subgraph has no directed
edges.

Lemma 2. Let Γ be a digraph with v vertices, with every vertex of in-degree 1. Then Γ
has an independent set of size at least dv

3
e.
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Proof. It is not hard to see that the strong components of Γ are all directed cycles (in-
cluding those of length 2) or isolated vertices. Each weak component must be an isolated
vertex, a directed cycle, a directed tree (an oriented tree with all directions away from the
root), or a cycle with directed trees rooted at one or more of its vertices. We can take at
least half of the vertices of the directed trees (excluding the root). For a directed cycle of
length c, we can take b c

2
c of the vertices. The worst case occurs when all of the vertices

(save 1 or 2, depending on v (mod 3)) are in directed cycles of length three.

2 Independent Sets

For a strongly regular graph which is not multipartite, interlacing shows that the size of
an independent set is bounded above by the multiplicity of the negative eigenvalue, see
[1], Theorem 9.4.1. We can derive a similar result for directed strongly regular graphs
using the fact that A is diagonalizable. In fact, the proof also works for strongly regular
graphs since the eigenvalues are given by the same formulas.

Theorem 3. Let Γ be a DSRG(v, k, t, λ, µ) with eigenvalues k, θ, τ and multiplicities
1,mθ,mτ . Suppose Γ has an independent set Y of size c. If θ 6= 0, then c 6 mτ .

Proof. Let B = J − I − A (the adjacency matrix of the complement of Γ), and let

Eτ =
1

v(θ − τ)

(
(k + (v − 1)θ)I + (k − v − θ)A+ (k − θ)B

)
.

Using the fact that eigenvectors for τ and θ are orthogonal to j, easy calculations show
that Eτ is the projection onto the eigenspace for τ and hence is an idempotent of rank
mτ .

The principal submatrix of Eτ indexed by Y equals

1

v(θ − τ)

(
(k + (v − 1)θ)I + (k − θ)(J − I)

)
=

1

v(θ − τ)

(
(k − θ)J + vθI

)
.

Since θ 6= 0 and k > 0, this matrix has full rank, namely rank c. Therefore c 6 mτ .

We get the following immediate corollary, which surprisingly rules out parameter sets
whose existence was open.

Corollary 4. Let Γ be a DSRG(v, k, t, λ, µ) with λ = 0 and θ 6= 0. Then k 6 mτ .

The corollary follows from the fact that in such a graph, the out-neighborhood of a
vertex must be an independent set. This result can also be derived from Corollary 7.

We note that this rules out the following parameter sets.

Parameters Spectrum
(70, 15, 9, 0, 4) 151, 155,−514

(78, 19, 13, 0, 6) 191, 165,−712

(128, 25, 13, 0, 6) 251, 1108,−719
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The first of these is listed as unknown in [3], showing that this is a new nonexistence
condition. The second is also ruled out by a condition due to Jørgensen ([7]), and the
third is a feasible parameter set which is not ruled out by any other results (but has too
many vertices to be listed in [3]).

Corollary 5. Let Γ be a DSRG(v, k, t, λ, µ) with λ = 1 and θ 6= 0. Then dk
3
e 6 mτ .

Proof. The out-neighborhood of a vertex has k vertices, and it is easy to see that λ = 1
implies that each of these has in-degree 1. By Lemma 2 this neighborhood must contain
an independent set of size at least dk

3
e. The result then follows from Theorem 3.

It is less clear how to apply Theorem 3 for larger λ. For particular parameters, one
may be able to apply the theorem directly.

The smallest parameter set ruled out by Corollary 5 has 585 points, and is thus too
large to be listed in [3]. Here’s a list of some feasible parameter sets are ruled out by
Corollary 5:

Parameters Spectrum
(585, 119, 92, 1, 30) 1191, 2545,−3139

(672, 134, 101, 1, 330) 1341, 2630,−3441

(703, 112, 42, 1, 21) 1121, 1665,−2137

3 Eigenvalue bound

The work in this paper began as an attempt to extend the Krein conditions to directed
strongly regular graphs. There are many proofs for strongly regular graphs, and the
standard matrix proof using the entrywise matrix product does not extend. However,
Godsil and Royle give a proof which begins by determining an eigenvalue of the first
subconstituent ([6], section 10.7), and this part of the proof can be generalized.

We will use the following notation in the section, for Γ a directed strongly regular
graph. Fix a vertex x, and let X1 be the set of out-neighbors of x. Let A1 be the
adjacency matrix for the induced subgraph on X1, so A1 is a principal submatrix of A.

Theorem 6. Let Γ be a DSRG with mθ < k. Then τ is an eigenvalue of A1, with
geometric multiplicity at least k −mθ.

Note that this does not depend on the choice of vertex x.

Proof. We partition the vertex set V into X0 = {x}, X1 = {w : x→ w}, X2 = V \ (X0 ∪
X1), and order the vertices x0, . . . , xv−1 of Γ so that X1 = {x0}, X1 = {x1, . . . , xk}, and
X2 = {xk+1, . . . , xv−1}.

Let M be a matrix whose columns are a basis for the right τ−eigenspace of A, so M
has mτ = v −mθ − 1 columns. Let N be the (v − k − 1)× v matrix whose rows are the
elementary basis vectors e0, ek+1, . . . ev−2. Then NM is a v− k− 1 by v−mθ − 1 matrix;
since mθ < k, NM has right nullity at least k −mθ.
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For any nonzero vector z in the right nullspace of NM , N (NM), Mz is an eigenvector
of A with eigenvalue τ . Let Mz = w = (wi); we will investigate the entries of w.

Since Nw = NMz = 0, we have that wi = 0 for i ∈ {0, k + 1, . . . , v − 2}. Also,

(Aw)0 = τw0 = 0, and the first row of A is
k∑
i=1

ei, implying that (
k∑
i=1

ei)
Tw = 0. Since

jTw = 0, we obtain

(
k∑
i=1

ei)
Tw + wv−1 = jTw = 0

and hence wv−1 = 0. This shows that the support of w is contained entirely in X1, and
hence restricting w to X1 gives an eigenvector of A1 with eigenvalue τ .

If z1, . . . , zt is a basis for N (NM), then Mz1, . . . ,Mzt are also linearly independent
since M has independent columns. Hence the right τ eigenspace of A1 has dimension
greater than or equal to the nullity of NM , which is greater than or equal to k−mθ.

Corollary 7. Let Γ be a DSRG with mθ < k. Then |τ | 6 λ.

Proof. Use the same notation as Theorem 6, and note that the definition of parameter λ
implies that the column sums of A1 are λ, constant for all columns. Since A is a (0, 1)
matrix, we can apply Perron-Frobenius theory, and hence λ is the spectral radius of A1.
Therefore |τ | 6 λ.

Corollary 7 rules out the following feasible parameter sets. The first of these is also
ruled out by Corollary 4.

Parameters Spectrum
(70, 15, 9, 0, 4) 151, 155,−114

(145, 31, 26, 1, 8) 311, 2115,−918
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