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Abstract

LetG be a finite additive abelian group with exponent n > 1, and let a1, . . . , an−1
be elements of G. We show that there is a permutation σ ∈ Sn−1 such that all the
elements saσ(s) (s = 1, . . . , n− 1) are nonzero if and only if∣∣∣{1 6 s < n :

n

d
as 6= 0

}∣∣∣ > d− 1 for every positive divisor d of n.

When G is the cyclic group Z/nZ, this confirms a conjecture of Z.-W. Sun.
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1 Introduction

Let n ∈ Z+ = {1, 2, 3, . . .} and let Sn denote the symmetry group of all permutations
on {1, . . . , n}. A conjecture of G. Cramer stated that for any integers m1, . . . ,mn with∑n

s=1ms ≡ 0 (mod n) there is a permutation σ ∈ Sn such that 1+mσ(1), . . . , n+mσ(n) are
pairwise distinct modulo n. In 1952 M. Hall [2] proved an extension of this conjecture.

In 1999 H. S. Snevily [4] conjectured that if n > 1 is an integer and m1, . . . ,mk are
integers with k 6 n−1 then there is a permutation σ ∈ Sk such that 1+mσ(1), . . . , k+mσ(k)

are pairwise distinct modulo n. This was confirmed by A. E. Kézdy and Snevily [3] in
the case k 6 (n+ 1)/2, and an application to tree embeddings was also given in [3].

Let n > 1 and m1, . . . ,mn−1 be integers. When is there a permutation σ ∈ Sn−1 such
that none of the n− 1 numbers smσ(s) (s = 1, . . . , n− 1) is congruent to 0 modulo n? If
there is such a permutation σ, then for each positive divisor d of n we have

|{1 6 c < d : d - mσ(cn/d)}| >
∣∣∣{1 6 c < d : n -

cn

d
mσ(cn/d)

}∣∣∣ = d− 1,
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and hence the sequence {ms}n−1s=1 has the following property:∣∣{1 6 s < n : d - ms}
∣∣ > d− 1 for any d ∈ D(n), (1)

where D(n) denotes the set of all positive divisors of n.
In 2004 the second author (cf. [7]) made the following conjecture.

Conjecture 1. (Z.-W. Sun) Let n > 1 be an integer. If m1,m2, . . . ,mn−1 are integers
satisfying (1), then there exists a permutation σ on {1, . . . , n − 1} such that n - smσ(s)

for all s = 1, . . . , n− 1.

In this paper we aim to prove an extension of this conjecture for finite abelian groups.
For a finite multiplicative group G, its exponent exp(G) is defined to be the least

positive integer such that xn = e for all x ∈ G, where e is the identity of G. For a finite
abelian group G, exp(G) is known to be max{o(x) : x ∈ G}, where o(x) denotes the
order of x. If G is an additive group, then for k ∈ Z+ and a ∈ G we write ka for the sum
a1 + . . .+ ak with a1 = · · · = ak = a.

Theorem 2. Let G be a finite additive abelian group with exponent n > 1. For any
a1, . . . , an−1 ∈ G, there is a permutation σ ∈ Sn−1 such that all the elements saσ(s) (s =
1, . . . , n− 1) are nonzero if and only if∣∣∣{1 6 s < n :

n

d
as 6= 0

}∣∣∣ > d− 1 for all d ∈ D(n). (2)

Applying Theorem 2 to the cyclic group Z/nZ, we immediately confirm Conjecture 1
of Sun. As an application, we obtain the following result.

Theorem 3. Let m1,m2, . . . ,mn−1 (n > 1) be integers satisfying (1). Then the set{∑
i∈I

mi : I ⊆ {1, . . . , n− 1}

}
contains a complete system of residues modulo n.

Obviously Theorem 3 extends the following result of the second author (cf. the para-
graph following [6, Theorem 2.5]).

Corollary 4. Let n > 1 be an integer and let m1,m2, . . . ,mn−1 be integers all relatively
prime to n. Then the set

{∑
i∈I mi : I ⊆ {1, . . . , n− 1}

}
contains a complete system of

residues modulo n.

As usual, for any a ∈ Z and n ∈ Z+, we write (a, n) for the greatest common divisor
of a and n.

Let n > 1 be an integer. If ms ∈ Z and (ms, n) 6 s for all s = 1, . . . , n − 1, then for
any d ∈ D(n) we have

|{1 6 s < n : d - ms}| > |{1 6 s < n : s < d}| = d− 1,

and hence by Theorem 2 for some σ ∈ Sn−1 we have n - σ(s)ms for all s = 1, . . . , n − 1.
This is equivalent to the following theorem in the case a1 = · · · = an−1.
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Theorem 5. Let m1,m2, . . . ,mn−1 (n > 1) be integers with (ms, n) 6 s for all s =
1, . . . , n−1. For any a1, . . . , an−1 ∈ Z, there is a function f : {1, . . . , n−1} → {1, . . . , n−
1} such that the sums

f(1) + a1, . . . , f(n− 1) + an−1

are pairwise distinct modulo n and also none of the numbers

f(1)m1, . . . , f(n− 1)mn−1

is divisible by n.

Motivated by Theorems 2 and 3, we pose the following conjecture.

Conjecture 6. Let G be a finite abelian group with exponent n > 1. If a1, . . . , an−1 are
elements of G with sas 6= 0 for all s = 1, . . . , n− 1, then we have∣∣∣∣{∑

i∈I

ai : I ⊆ {1, . . . , n− 1}
}∣∣∣∣ > n. (3)

By Theorems 2 and 3, this conjecture holds for finite cyclic groups. For any finite
abelian group G with exponent n > 1, it has a cyclic subgroup H of order n, and hence
for a1, . . . , an−1 ∈ H the set {

∑
i∈I ai : I ⊆ {1, . . . , n− 1}} contains at most n elements

of G.
We will prove Theorem 2 in the next section and Theorems 3 and 5 in Section 3.

2 Proof of Theorem 2

Proof of Necessity. If there is a permutation σ ∈ Sn−1 such that saσ(s) 6= 0 for all s =
1, . . . , n− 1, then for any d ∈ D(n) we have∣∣∣{1 6 s < n :

n

d
as 6= 0

}∣∣∣ > ∣∣∣{1 6 c < d :
cn

d
aσ(cn/d) 6= 0

}∣∣∣ = d− 1.

This concludes the proof of the necessity.

Proof of Sufficiency. Suppose, to the contrary, that there are a1, . . . , an−1 ∈ G satisfying
(2) such that the set

I(σ) := {1 6 i < n : iaσ(i) = 0} = {1 6 i < n : o(aσ(i)) | i}

is nonempty for any σ ∈ Sn−1. Take such a1, . . . , an−1 ∈ G with
∑n−1

s=1 o(as) maximum,
and choose σ ∈ Sn−1 with |I(σ)| minimum.

Claim 1: |I(σ)| = 1.
As n = exp(G), there is an element x of G with o(x) = n. Let j ∈ I(σ), and for

s = 1, . . . , n− 1 define

a∗s =

{
x if s = σ(j),

as otherwise.
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If (n/d)aσ(j) 6= 0 with d ∈ D(n), then d > 1 and (n/d)x 6= 0. As o(aσ(j)) | j, we have

o(aσ(j)) 6 j < n = o(x). Since
∑n−1

s=1 o(a
∗
s) >

∑n−1
s=1 o(as), by our choice of a1, . . . , an−1,

for some τ ∈ Sn−1 we have sa∗τ(s) 6= 0 for all s = 1, . . . , n − 1. For any 1 6 s < n with

τ(s) 6= σ(j), we have saτ(s) = sa∗τ(s) 6= 0. Thus |I(τ)| 6 1 6 |I(σ)|. Combining this with
the choice of σ, we have proved Claim 1.

For π ∈ Sn−1 with |I(π)| = 1, by iπ we denote the unique element of I(π). Without
loss of generality, below we assume that

iσ = min{iπ : π ∈ Sn−1 and |I(π)| = 1}. (4)

For simplicity, now we just write i for iσ. As o(aσ(i)) divides both i and n = exp(G), we
have o(aσ(i)) | in, where in = (i, n).

Claim 2: i | n.
Suppose that i - n. Then in 6= i, in 6∈ I(σ) and hence 0 6= inaσ(in). Thus o(aσ(in)) - in

and hence o(aσ(in)) - i. Therefore

iaσ∗(iin)(i) = iaσ(in) 6= 0 and inaσ∗(iin)(in) = inaσ(i) = 0,

where ∗ is the multiplication in Sn−1 and thus σ ∗ (iin) is the product of σ and the cyclic
permutation (iin). So we get |I(σ ∗ (iin))| = 1 and iσ∗(iin) = in < i = iσ, which contradicts
(4). This proves Claim 2.

Claim 3: If 1 6 j < n and o(aσ(j)) - i, then i < j and i | j.
Assume that 1 6 j < n and o(aσ(j)) - i. Then j 6= i since o(aσ(i)) | i. For any

s = 1, . . . , n− 1 with s 6= i, j, we have

saσ∗(ij)(s) = saσ(s) 6= 0.

Also, iaσ∗(ij)(i) = iaσ(j) 6= 0 since o(aσ(j)) - i. As |I(σ ∗ (ij))| > |I(σ)| = 1, we must have
0 = jaσ∗(ij)(j) = jaσ(i), i.e., o(aσ(i)) | j. Since I(σ∗(ij)) = {j}, we have j = iσ∗(ij) > i = iσ.

Suppose that j is not divisible by i. Then k := (i, j) < i and hence kaσ(k) 6= 0
as I(σ) = {i}. By the last paragraph, we must have o(aσ(k)) | i since k 6> i. For
any s = 1, . . . , n − 1 with s 6= i, j, k, we have saσ∗(kij)(s) = saσ(s) 6= 0. Note that
iaσ∗(kij)(i) = iaσ(j) 6= 0. If 0 6= jaσ(k) = jaσ∗(kij)(j), then we must have I(σ ∗ (kij)) = {k}
and hence iσ∗(kij) = k < i = iσ which leads to a contradiction. Therefore, 0 = jaσ(k), i.e.,
o(aσ(k)) | j. Since o(aσ(k)) also divides i, the number o(aσ(k)) must divide (i, j) = k, which
contradicts the fact that kaσ(k) 6= 0. This proves Claim 3.

In light of Claims 2 and 3, we have i ∈ D(n) and

|{1 6 s < n : o(as) - i}| =|{1 6 j < n : o(aσ(j)) - i}|

6|{i < j < n : i | j}| = n

i
− 2.

Hence, for d = n/i ∈ D(n), we have∣∣∣{1 6 s < n :
n

d
as 6= 0

}∣∣∣ < d− 1,

which contradicts our condition (2). This proves the sufficiency.
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3 Proofs of Theorems 3 and 5

For a real number x, we let {x} = x− bxc be its fractional part. For any real numbers α
and β, we set α + βZ = {α + βq : q ∈ Z}.

We need the following result of the second author [5, Theorem 1].

Lemma 7. Let α1, . . . , αk be real numbers and let β1, . . . , βk be positive reals. If A =
{αs + βsZ}ks=1 covers consecutive∣∣∣∣{{∑

s∈I

1

βs

}
: I ⊆ {1, . . . , k}

}∣∣∣∣
integers, then it covers all the integers.

Proof of Theorem 3. Without loss of generality, we simply assume that m1, . . . ,mn−1 ∈
{1, . . . , n}. Because Conjecture 1 follows from Theorem 2, for some σ ∈ Sn−1 we have
n - smσ(s) for all s = 1, . . . , n− 1. Note that A = {s+ (n/mσ(s))Z}n−1s=1 covers 1, . . . , n− 1
but it does not cover 0. By Lemma 7, the fractional parts{∑

s∈I

1

n/mσ(s)

}
(I ⊆ {1, . . . , n− 1})

must have more than n− 1 distinct values. Thus, the set{∑
i∈I

mi : I ⊆ {1, . . . , n− 1}

}
=

{∑
s∈I

mσ(s) : I ⊆ {1, . . . , n− 1}

}
contains a complete system of residues modulo n. This concludes our proof.

To prove Theorem 5, we need the following lemma.

Lemma 8. (Alon’s Combinatorial Nullstellensatz [1]) Let A1, . . . , An be finite subsets of
a field F with |Ai| > ki for i = 1, . . . , n where k1, . . . , kn are nonnegative integers. If
the coefficient of the monomial xk11 · · ·xknn in P (x1, . . . , xn) ∈ F [x1, . . . , xn] is nonzero and
k1 + · · · + kn is the total degree of P , then there are a1 ∈ A1, . . . , an ∈ An such that
P (a1, . . . , an) 6= 0.

Proof of Theorem 5. Let p be the smallest prime not dividing n. By Euler’s theorem,
pϕ(n) ≡ 1 (mod n), where ϕ denotes Euler’s totient function. Let us consider the finite
field Fq with q = pϕ(n). As F∗q = Fq \{0} is a cyclic group of order q−1, and n is a divisor
of q − 1, there is an element g ∈ F∗q of order n. For i = 1, . . . , n− 1 define

Ai := {gk : 1 6 k 6 n− 1 and (gk)mi 6= 1}.

Then |Ai| = n− (mi, n) > n− i for all i = 1, . . . , n− 1. For the polynomial

P (x1, . . . , xn−1) :=
∏

16i<j6n−1

(gaixi − gajxj) ,
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we clearly have

P (x1, . . . , xn−1) = det
∣∣(gaixi)j−1∣∣16i,j6n−1

=
∑

σ∈Sn−1

sign(σ)
n−1∏
i=1

(gaixi)
σ(i)−1 ,

where sign(σ), the sign of σ, takes 1 or −1 according as the permutation σ is even or odd.
Choose σ0 ∈ Sn−1 with σ0(i) = n − i for all i = 1, . . . , n − 1. Then the coefficient of the
monomial

∏n−1
i=1 x

n−1−i
i in P (x1, . . . , xn−1) coincides with

sign(σ0)
n−1∏
i=1

(gai)n−i−1 6= 0,

and degP =
(
n−1
2

)
=
∑n−1

i=1 (n−1− i). In view of Lemma 8, there are x1 ∈ A1, . . . , xn−1 ∈
An−1 such that P (x1, . . . , xn−1) 6= 0.

Write xi = gf(i) for all i = 1, . . . , n−1, where f(i) ∈ {1, . . . , n−1}. If 1 6 i < j 6 n−1,
then gai+f(i) = gaixi 6= gajxj = gaj+f(j) and hence

f(i) + ai 6≡ f(j) + aj (mod n).

For each i = 1, . . . , n − 1, as (gf(i))mi 6= 1 we have n - f(i)mi. This completes the proof
of Theorem 5.
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