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Abstract
Let G be a finite additive abelian group with exponent n > 1, and let a1, ..., a1
be elements of G. We show that there is a permutation o € S,,_1 such that all the
elements saq(s) (s =1,...,n — 1) are nonzero if and only if

Hl <s<n: gas #* OH >d—1 for every positive divisor d of n.
When G is the cyclic group Z/nZ, this confirms a conjecture of Z.-W. Sun.
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1 Introduction

Let n € ZT = {1,2,3,...} and let S, denote the symmetry group of all permutations
on {1,...,n}. A conjecture of G. Cramer stated that for any integers my, ..., m, with
> on_ mg =0 (mod n) there is a permutation o € S, such that 14+mgy(), ..., n+m.q are
pairwise distinct modulo n. In 1952 M. Hall [2] proved an extension of this conjecture.

In 1999 H. S. Snevily [4] conjectured that if n > 1 is an integer and my,...,my are
integers with k& < n—1 then there is a permutation o € Sy, such that 1+mg (1), ..., k+mgp)
are pairwise distinct modulo n. This was confirmed by A. E. Kézdy and Snevily [3] in
the case k < (n+ 1)/2, and an application to tree embeddings was also given in [3].

Let n > 1 and mq,...,m,_1 be integers. When is there a permutation ¢ € S,,_; such
that none of the n — 1 numbers smy(s) (s = 1,...,n — 1) is congruent to 0 modulo n? If
there is such a permutation o, then for each positive divisor d of n we have

cn
Hl<ce<d: dfmoenja)}| = {1<c<d: nfgmg(cn/d)}

—d-1,
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and hence the sequence {m,}"~; has the following property:
{1<s<n: dtmg}|>d—1 forany d € D(n), (1)

where D(n) denotes the set of all positive divisors of n.
In 2004 the second author (cf. [7]) made the following conjecture.

Conjecture 1. (Z.-W. Sun) Let n > 1 be an integer. If my,ms,...,m,_1 are integers
satisfying (1), then there exists a permutation o on {1,...,n — 1} such that n { smy
foralls=1,...,n—1.

In this paper we aim to prove an extension of this conjecture for finite abelian groups.

For a finite multiplicative group G, its exponent exp(G) is defined to be the least
positive integer such that 2" = e for all x € GG, where e is the identity of G. For a finite
abelian group G, exp(G) is known to be max{o(x) : x € G}, where o(z) denotes the
order of . If G is an additive group, then for k¥ € Z* and a € G we write ka for the sum
a1+ ...+ a, witha; =--- =a, = a.

Theorem 2. Let G be a finite additive abelian group with exponent n > 1. For any

ai,...,an—1 € G, there is a permutation o € S,_1 such that all the elements sa,() (s =
1,...,n—1) are nonzero if and only if
){1§s<n: %as#O}‘Ed—l for all d € D(n). (2)

Applying Theorem 2 to the cyclic group Z/nZ, we immediately confirm Conjecture 1
of Sun. As an application, we obtain the following result.

Theorem 3. Let my,ma,...,mu—1 (n > 1) be integers satisfying (1). Then the set

{Zmi: Ig{l,...,n—l}}

iel
contains a complete system of residues modulo n.

Obviously Theorem 3 extends the following result of the second author (cf. the para-
graph following [6, Theorem 2.5]).

Corollary 4. Let n > 1 be an integer and let my, ma, ..., m,_1 be integers all relatively
prime to n. Then the set {Ziel m;: I C{l,...,n— 1}} contains a complete system of
residues modulo n.

As usual, for any a € Z and n € Z", we write (a,n) for the greatest common divisor
of a and n.

Let n > 1 be an integer. If my, € Z and (mgs,n) < sforall s =1,...,n— 1, then for
any d € D(n) we have

Hl<s<n:ditmsg|>2|{l1<s<n: s<d}=d-1,

and hence by Theorem 2 for some o € S,,_1 we have n{ o(s)ms for all s =1,...,n — 1.
This is equivalent to the following theorem in the case a; = -+ = a,,_1.
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Theorem 5. Let my,ma,...,m,—1 (n > 1) be integers with (mg,n) < s for all s =
1,...,n—1. Forany ay,...,an_1 € Z, there is a function f : {1,...,n—1} = {1,...,n—
1} such that the sums

f+ar, ..., fln—1)+am

are pairwise distinct modulo n and also none of the numbers
FUma, - fn—1ma
18 divisible by n.

Motivated by Theorems 2 and 3, we pose the following conjecture.

Conjecture 6. Let G be a finite abelian group with exponent n > 1. If a4,...,a,_1 are
elements of G with sa, # 0 for all s =1,...,n — 1, then we have
‘{Zaizlg{l,...,n—l}}‘En. (3)
iel

By Theorems 2 and 3, this conjecture holds for finite cyclic groups. For any finite
abelian group G' with exponent n > 1, it has a cyclic subgroup H of order n, and hence
for ai,...,a,—y € H the set {d ,.;a;: I C{1,...,n — 1}} contains at most n elements
of G.

We will prove Theorem 2 in the next section and Theorems 3 and 5 in Section 3.

2 Proof of Theorem 2

Proof of Necessity. If there is a permutation o € S,_; such that sa,) # 0 for all s =
1,...,n—1, then for any d € D(n) we have

cn

Eaa(cn/d) ?é 0}’ =d—1.

This concludes the proof of the necessity. m

‘{1<s<n: gas#O}‘>H1<c<d:

Proof of Sufficiency. Suppose, to the contrary, that there are aq,...,a,_; € G satisfying
(2) such that the set

I(o) ={1<i<n:ia, =0} ={1<i<n:o(a,m)|i}
is nonempty for any ¢ € S, ;. Take such a,...,a, ;1 € G with 3" o(a,) maximum,

and choose o € S,_; with |I(0)| minimum.

Claim 1: |I(0)| = 1.
As n = exp(G), there is an element = of G with o(x) = n. Let j € I(0), and for

s=1,...,n—1 define
. {x if s = o(j),

a, = i
as otherwise.
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If (n/d)as;y # 0 with d € D(n), then d > 1 and (n/d) # 0. As o(as(;)) | j, we have
o(aq(j)) < j <n = o(x). Since ZS Lo(ar) > 32" o(a), by our choice of ay, ..., a, 1,
for some 7 € 5,1 we have sa’ 7é Oforalls=1,...,n—1. For any 1 < s < n with
7(s) # o(j), we have sa(s = saT(S # 0. Thus |I(7)] < 1 < |I(0)|. Combining this with
the choice of o, we have proved Claim 1.

For m € S,y with |I(7)| = 1, by i, we denote the unique element of (7). Without
loss of generality, below we assume that

i, = min{i; : ™€ S,—1 and |I(7)| = 1}. (4)
For simplicity, now we just write ¢ for i,. As o0(as(;)) divides both ¢ and n = exp(G), we
have o(ay(;)) | in, where i, = (i,n).

Claim 2: i | n.
Suppose that i { n. Then 4, # i, i, € I(0) and hence 0 # ina0(;,). Thus o(ayg,)) { in
and hence 0(@s(;,)) 1 i. Therefore

1Qo(iin) (i) = 100 (in) 7 0 and  1nGo(iig)(in) = Inlo() = 0,

where * is the multiplication in S,_; and thus o * (ii,) is the product of o and the cyclic
permutation (i7,). So we get [I(0 * (ii,))| = 1 and 444 (4,) = in < ¢ = i, which contradicts
(4). This proves Claim 2.

Claim 3: If 1 < j < n and o(as(;)) 1%, then i < j and i | j.

Assume that 1 < j < n and o(as(;)) 1 . Then j # @ since o(ay(;) | . For any
s-l,...,n—lw1ths7éz j, we have

S (ij)(s) = $o(s) 7 0-

AlS0, g (ij)5) = 1as(j) 7# 0 since o(ay(;)) 1 i. As [I(o * (ij))| = |1(0)] = 1, we must have
0 = Jagu(ij)y) = ]ag(l), i.e., 0(ao(;) | J. Since I(ox(ij)) = {j}, we have j = isu(ijy > @ =i

Suppose that j is not divisible by i. Then k := (i,j) < ¢ and hence kayy # 0
as I(o0) = {i}. By the last paragraph, we must have o(a,u)) | ¢ since k& % 4. For
any s = 1,...,n — 1 with s # 4,j,k, we have Say.(kij)s) = SAo(s) # 0. Note that
1o (kij) (i) = 100() 7 0. If 0 # jaok)y = Jaos(kij) ), then we must have I(o * (kij)) = {k}
and hence igy(rij) = k <@ = i, vvhich leads to a Contradlctlon Therefore, 0 = jay ), i.e.,
0(ao(ry) | j. Since o(aq(r)) also divides ¢, the number o(aq(x)) must divide (4, j) = k, which
contradicts the fact that ka,) # 0. This proves Claim 3.

In light of Claims 2 and 3, we have i € D(n) and
{1 <s<n:olas) tif| ={1<j<n: ofa ')Ti}l

Sli<j<n:ilif="-2
Hence, for d =n/i € D(n), we have
Hl<3<n: %aS#OH<d—1,

which contradicts our condition (2). This proves the sufficiency. O
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3 Proofs of Theorems 3 and 5

For a real number z, we let {x} = x — |z | be its fractional part. For any real numbers «
and 3, we set a + Z ={a+ Bq: q € L}.
We need the following result of the second author [5, Theorem 1].

Lemma 7. Let aq,...,qr be real numbers and let (y,..., 0, be positive reals. If A =
{ag + BsZYE_, covers consecutive

USa) reon)

integers, then it covers all the integers.

Proof of Theorem 3. Without loss of generality, we simply assume that mq,...,m,_1 €
{1,...,n}. Because Conjecture 1 follows from Theorem 2, for some o € S, _; we have
n{ smy(s for all s =1,...,n — 1. Note that A = {s+ (n/m,s))Z}={ covers 1,...,n—1
but it does not cover 0. By Lemma 7, the fractional parts

{Z ! }(1g{1,...,n—1})

= N Mo(s)

must have more than n — 1 distinct values. Thus, the set

{Zmi: ]Q{l,...,n—l}}:{Zma(s): Ig{l,...,n—l}}

sel

contains a complete system of residues modulo n. This concludes our proof. O
To prove Theorem 5, we need the following lemma.

Lemma 8. (Alon’s Combinatorial Nullstellensatz [1]) Let Ay, ..., A, be finite subsets of
a field F with |A;| > k; fori = 1,...,n where ky,...,k, are nonnegative integers. If
the coefficient of the monomial x5 - - - 2% in P(xy, ..., 2,) € Flzy, ..., x,] is nonzero and

ki + --- + k, is the total degree of P, then there are a1 € Ay,...,a, € A, such that
P(ay,...,a,) # 0.

Proof of Theorem 5. Let p be the smallest prime not dividing n. By Euler’s theorem,
p?™ =1 (mod n), where ¢ denotes Euler’s totient function. Let us consider the finite
field F, with ¢ = p#™. As IF; =, \ {0} is a cyclic group of order ¢ — 1, and n is a divisor
of ¢ — 1, there is an element g € F; of order n. For : =1,...,n — 1 define

A =1{¢": 1<k <n—1and (¢")™ # 1}.
Then |A;| =n — (m;,n) 2n—iforalli=1,...,n— 1. For the polynomial

P<x1a"'7xn—1) = H (gaixi_gajxj)v

1<i<j<n—1
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we clearly have

P(z1,...,2,-1) =det |(g“ 2

)
1<i,j<n—1

n—1

= Y sign(o) [ ] (g%,

0c€ESH—-1 =1

where sign(c), the sign of o, takes 1 or —1 according as the permutation o is even or odd.
Choose g € S,,_1 with ¢(i) =n —i for alli =1,...,n — 1. Then the coefficient of the
monomial [['= #7~'""in P(21,..., 2, 1) coincides with

n—1

sign(oo) [ J(g*)" " # 0,

i=1
and deg P = (";1) = Z?:_ll(n —1—14). In view of Lemma 8, there are x; € Ay, ..., 2,1 €
A,,_q such that P(zq,...,2,_1) # 0.

Write z; = ¢f@ foralli = 1,...,n—1, where f(i) € {1,...,n—1}. If 1 <i < j <n—1,
then g% +/() = gz, £ g%z; = g%/ and hence

f(@) +ai # f(j) +a; (mod n).

For eachi =1,...,n — 1, as (¢/®)™ # 1 we have n { f(i)m;. This completes the proof
of Theorem 5. O
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