On a permutation problem for finite abelian groups

Fan Ge
Department of Mathematics University of Rochester
Rochester, NY-14627, USA
fange.math@gmail.com

Zhi-Wei Sun*
Department of Mathematics
Nanjing University
210093, People's Republic of China
zwsun@nju.edu.cn

Submitted: Feb 4, 2016; Accepted: Jan 19, 2017; Published: Feb 3, 2017
Mathematics Subject Classifications: 05E15, 11B75, 11A07, 11P70, 20K01.

Abstract

Let G be a finite additive abelian group with exponent $n>1$, and let a_{1}, \ldots, a_{n-1} be elements of G. We show that there is a permutation $\sigma \in S_{n-1}$ such that all the elements $s a_{\sigma(s)}(s=1, \ldots, n-1)$ are nonzero if and only if $$
\left|\left\{1 \leqslant s<n: \frac{n}{d} a_{s} \neq 0\right\}\right| \geqslant d-1 \text { for every positive divisor } d \text { of } n
$$

When G is the cyclic group $\mathbb{Z} / n \mathbb{Z}$, this confirms a conjecture of Z.-W. Sun.
Keywords: combinatorial number theory; abelian group; permutation; subset sum.

1 Introduction

Let $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ and let S_{n} denote the symmetry group of all permutations on $\{1, \ldots, n\}$. A conjecture of G. Cramer stated that for any integers m_{1}, \ldots, m_{n} with $\sum_{s=1}^{n} m_{s} \equiv 0(\bmod n)$ there is a permutation $\sigma \in S_{n}$ such that $1+m_{\sigma(1)}, \ldots, n+m_{\sigma(n)}$ are pairwise distinct modulo n. In 1952 M. Hall [2] proved an extension of this conjecture.

In 1999 H . S. Snevily [4] conjectured that if $n>1$ is an integer and m_{1}, \ldots, m_{k} are integers with $k \leqslant n-1$ then there is a permutation $\sigma \in S_{k}$ such that $1+m_{\sigma(1)}, \ldots, k+m_{\sigma(k)}$ are pairwise distinct modulo n. This was confirmed by A. E. Kézdy and Snevily [3] in the case $k \leqslant(n+1) / 2$, and an application to tree embeddings was also given in [3].

Let $n>1$ and m_{1}, \ldots, m_{n-1} be integers. When is there a permutation $\sigma \in S_{n-1}$ such that none of the $n-1$ numbers $s m_{\sigma(s)}(s=1, \ldots, n-1)$ is congruent to 0 modulo n ? If there is such a permutation σ, then for each positive divisor d of n we have

$$
\left|\left\{1 \leqslant c<d: d \nmid m_{\sigma(c n / d)}\right\}\right| \geqslant\left|\left\{1 \leqslant c<d: n \nmid \frac{c n}{d} m_{\sigma(c n / d)}\right\}\right|=d-1
$$

[^0]and hence the sequence $\left\{m_{s}\right\}_{s=1}^{n-1}$ has the following property:
\[

$$
\begin{equation*}
\left|\left\{1 \leqslant s<n: d \nmid m_{s}\right\}\right| \geqslant d-1 \text { for any } d \in D(n), \tag{1}
\end{equation*}
$$

\]

where $D(n)$ denotes the set of all positive divisors of n.
In 2004 the second author (cf. [7]) made the following conjecture.
Conjecture 1. (Z.-W. Sun) Let $n>1$ be an integer. If $m_{1}, m_{2}, \ldots, m_{n-1}$ are integers satisfying (1), then there exists a permutation σ on $\{1, \ldots, n-1\}$ such that $n \nmid s m_{\sigma(s)}$ for all $s=1, \ldots, n-1$.

In this paper we aim to prove an extension of this conjecture for finite abelian groups.
For a finite multiplicative group G, its $\operatorname{exponent} \exp (G)$ is defined to be the least positive integer such that $x^{n}=e$ for all $x \in G$, where e is the identity of G. For a finite abelian group G, $\exp (G)$ is known to be $\max \{o(x): x \in G\}$, where $o(x)$ denotes the order of x. If G is an additive group, then for $k \in \mathbb{Z}^{+}$and $a \in G$ we write $k a$ for the sum $a_{1}+\ldots+a_{k}$ with $a_{1}=\cdots=a_{k}=a$.

Theorem 2. Let G be a finite additive abelian group with exponent $n>1$. For any $a_{1}, \ldots, a_{n-1} \in G$, there is a permutation $\sigma \in S_{n-1}$ such that all the elements $s a_{\sigma(s)}(s=$ $1, \ldots, n-1)$ are nonzero if and only if

$$
\begin{equation*}
\left|\left\{1 \leqslant s<n: \frac{n}{d} a_{s} \neq 0\right\}\right| \geqslant d-1 \quad \text { for all } d \in D(n) \tag{2}
\end{equation*}
$$

Applying Theorem 2 to the cyclic group $\mathbb{Z} / n \mathbb{Z}$, we immediately confirm Conjecture 1 of Sun. As an application, we obtain the following result.

Theorem 3. Let $m_{1}, m_{2}, \ldots, m_{n-1}(n>1)$ be integers satisfying (1). Then the set

$$
\left\{\sum_{i \in I} m_{i}: I \subseteq\{1, \ldots, n-1\}\right\}
$$

contains a complete system of residues modulo n.
Obviously Theorem 3 extends the following result of the second author (cf. the paragraph following [6 , Theorem 2.5]).
Corollary 4. Let $n>1$ be an integer and let $m_{1}, m_{2}, \ldots, m_{n-1}$ be integers all relatively prime to n. Then the set $\left\{\sum_{i \in I} m_{i}: I \subseteq\{1, \ldots, n-1\}\right\}$ contains a complete system of residues modulo n.

As usual, for any $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$, we write (a, n) for the greatest common divisor of a and n.

Let $n>1$ be an integer. If $m_{s} \in \mathbb{Z}$ and $\left(m_{s}, n\right) \leqslant s$ for all $s=1, \ldots, n-1$, then for any $d \in D(n)$ we have

$$
\left|\left\{1 \leqslant s<n: d \nmid m_{s}\right\}\right| \geqslant|\{1 \leqslant s<n: s<d\}|=d-1 \text {, }
$$

and hence by Theorem 2 for some $\sigma \in S_{n-1}$ we have $n \nmid \sigma(s) m_{s}$ for all $s=1, \ldots, n-1$. This is equivalent to the following theorem in the case $a_{1}=\cdots=a_{n-1}$.

Theorem 5. Let $m_{1}, m_{2}, \ldots, m_{n-1}(n>1)$ be integers with $\left(m_{s}, n\right) \leqslant s$ for all $s=$ $1, \ldots, n-1$. For any $a_{1}, \ldots, a_{n-1} \in \mathbb{Z}$, there is a function $f:\{1, \ldots, n-1\} \rightarrow\{1, \ldots, n-$ 1) such that the sums

$$
f(1)+a_{1}, \ldots, f(n-1)+a_{n-1}
$$

are pairwise distinct modulo n and also none of the numbers

$$
f(1) m_{1}, \ldots, f(n-1) m_{n-1}
$$

is divisible by n.
Motivated by Theorems 2 and 3, we pose the following conjecture.
Conjecture 6. Let G be a finite abelian group with exponent $n>1$. If a_{1}, \ldots, a_{n-1} are elements of G with $s a_{s} \neq 0$ for all $s=1, \ldots, n-1$, then we have

$$
\begin{equation*}
\left|\left\{\sum_{i \in I} a_{i}: I \subseteq\{1, \ldots, n-1\}\right\}\right| \geqslant n \tag{3}
\end{equation*}
$$

By Theorems 2 and 3, this conjecture holds for finite cyclic groups. For any finite abelian group G with exponent $n>1$, it has a cyclic subgroup H of order n, and hence for $a_{1}, \ldots, a_{n-1} \in H$ the set $\left\{\sum_{i \in I} a_{i}: I \subseteq\{1, \ldots, n-1\}\right\}$ contains at most n elements of G.

We will prove Theorem 2 in the next section and Theorems 3 and 5 in Section 3.

2 Proof of Theorem 2

Proof of Necessity. If there is a permutation $\sigma \in S_{n-1}$ such that $s a_{\sigma(s)} \neq 0$ for all $s=$ $1, \ldots, n-1$, then for any $d \in D(n)$ we have

$$
\left|\left\{1 \leqslant s<n: \frac{n}{d} a_{s} \neq 0\right\}\right| \geqslant\left|\left\{1 \leqslant c<d: \frac{c n}{d} a_{\sigma(c n / d)} \neq 0\right\}\right|=d-1 .
$$

This concludes the proof of the necessity.
Proof of Sufficiency. Suppose, to the contrary, that there are $a_{1}, \ldots, a_{n-1} \in G$ satisfying (2) such that the set

$$
I(\sigma):=\left\{1 \leqslant i<n: i a_{\sigma(i)}=0\right\}=\left\{1 \leqslant i<n: o\left(a_{\sigma(i)}\right) \mid i\right\}
$$

is nonempty for any $\sigma \in S_{n-1}$. Take such $a_{1}, \ldots, a_{n-1} \in G$ with $\sum_{s=1}^{n-1} o\left(a_{s}\right)$ maximum, and choose $\sigma \in S_{n-1}$ with $|I(\sigma)|$ minimum.

Claim 1: $|I(\sigma)|=1$.
As $n=\exp (G)$, there is an element x of G with $o(x)=n$. Let $j \in I(\sigma)$, and for $s=1, \ldots, n-1$ define

$$
a_{s}^{*}= \begin{cases}x & \text { if } s=\sigma(j) \\ a_{s} & \text { otherwise }\end{cases}
$$

If $(n / d) a_{\sigma(j)} \neq 0$ with $d \in D(n)$, then $d>1$ and $(n / d) x \neq 0$. As $o\left(a_{\sigma(j)}\right) \mid j$, we have $o\left(a_{\sigma(j)}\right) \leqslant j<n=o(x)$. Since $\sum_{s=1}^{n-1} o\left(a_{s}^{*}\right)>\sum_{s=1}^{n-1} o\left(a_{s}\right)$, by our choice of a_{1}, \ldots, a_{n-1}, for some $\tau \in S_{n-1}$ we have $s a_{\tau(s)}^{*} \neq 0$ for all $s=1, \ldots, n-1$. For any $1 \leqslant s<n$ with $\tau(s) \neq \sigma(j)$, we have $s a_{\tau(s)}=s a_{\tau(s)}^{*} \neq 0$. Thus $|I(\tau)| \leqslant 1 \leqslant|I(\sigma)|$. Combining this with the choice of σ, we have proved Claim 1.

For $\pi \in S_{n-1}$ with $|I(\pi)|=1$, by i_{π} we denote the unique element of $I(\pi)$. Without loss of generality, below we assume that

$$
\begin{equation*}
i_{\sigma}=\min \left\{i_{\pi}: \pi \in S_{n-1} \text { and }|I(\pi)|=1\right\} . \tag{4}
\end{equation*}
$$

For simplicity, now we just write i for i_{σ}. As $o\left(a_{\sigma(i)}\right)$ divides both i and $n=\exp (G)$, we have $o\left(a_{\sigma(i)}\right) \mid i_{n}$, where $i_{n}=(i, n)$.

Claim 2: $i \mid n$.
Suppose that $i \nmid n$. Then $i_{n} \neq i, i_{n} \notin I(\sigma)$ and hence $0 \neq i_{n} a_{\sigma\left(i_{n}\right)}$. Thus $o\left(a_{\sigma\left(i_{n}\right)}\right) \nmid i_{n}$ and hence $o\left(a_{\sigma\left(i_{n}\right)}\right) \nmid i$. Therefore

$$
i a_{\sigma *\left(i i_{n}\right)(i)}=i a_{\sigma\left(i_{n}\right)} \neq 0 \text { and } i_{n} a_{\sigma *\left(i i_{n}\right)\left(i_{n}\right)}=i_{n} a_{\sigma(i)}=0,
$$

where $*$ is the multiplication in S_{n-1} and thus $\sigma *\left(i i_{n}\right)$ is the product of σ and the cyclic permutation $\left(i i_{n}\right)$. So we get $\left|I\left(\sigma *\left(i i_{n}\right)\right)\right|=1$ and $i_{\sigma *\left(i i_{n}\right)}=i_{n}<i=i_{\sigma}$, which contradicts (4). This proves Claim 2.

Claim 3: If $1 \leqslant j<n$ and $o\left(a_{\sigma(j)}\right) \nmid i$, then $i<j$ and $i \mid j$.
Assume that $1 \leqslant j<n$ and $o\left(a_{\sigma(j)}\right) \nmid i$. Then $j \neq i$ since $o\left(a_{\sigma(i)}\right) \mid i$. For any $s=1, \ldots, n-1$ with $s \neq i, j$, we have

$$
s a_{\sigma *(i j)(s)}=s a_{\sigma(s)} \neq 0 .
$$

Also, $i a_{\sigma *(i j)(i)}=i a_{\sigma(j)} \neq 0$ since $o\left(a_{\sigma(j)}\right) \nmid i$. As $|I(\sigma *(i j))| \geqslant|I(\sigma)|=1$, we must have $0=j a_{\sigma *(i j)(j)}=j a_{\sigma(i)}$, i.e., $o\left(a_{\sigma(i)}\right) \mid j$. Since $I(\sigma *(i j))=\{j\}$, we have $j=i_{\sigma *(i j)}>i=i_{\sigma}$.

Suppose that j is not divisible by i. Then $k:=(i, j)<i$ and hence $k a_{\sigma(k)} \neq 0$ as $I(\sigma)=\{i\}$. By the last paragraph, we must have $o\left(a_{\sigma(k)}\right) \mid i$ since $k \ngtr i$. For any $s=1, \ldots, n-1$ with $s \neq i, j, k$, we have $s a_{\sigma *(k i j)(s)}=s a_{\sigma(s)} \neq 0$. Note that $i a_{\sigma *(k i j)(i)}=i a_{\sigma(j)} \neq 0$. If $0 \neq j a_{\sigma(k)}=j a_{\sigma *(k i j)(j)}$, then we must have $I(\sigma *(k i j))=\{k\}$ and hence $i_{\sigma *(k i j)}=k<i=i_{\sigma}$ which leads to a contradiction. Therefore, $0=j a_{\sigma(k)}$, i.e., $o\left(a_{\sigma(k)}\right) \mid j$. Since $o\left(a_{\sigma(k)}\right)$ also divides i, the number $o\left(a_{\sigma(k)}\right)$ must divide $(i, j)=k$, which contradicts the fact that $k a_{\sigma(k)} \neq 0$. This proves Claim 3.

In light of Claims 2 and 3, we have $i \in D(n)$ and

$$
\begin{aligned}
\left|\left\{1 \leqslant s<n: o\left(a_{s}\right) \nmid i\right\}\right| & =\left|\left\{1 \leqslant j<n: o\left(a_{\sigma(j)}\right) \nmid i\right\}\right| \\
& \leqslant|\{i<j<n: i \mid j\}|=\frac{n}{i}-2 .
\end{aligned}
$$

Hence, for $d=n / i \in D(n)$, we have

$$
\left|\left\{1 \leqslant s<n: \frac{n}{d} a_{s} \neq 0\right\}\right|<d-1,
$$

which contradicts our condition (2). This proves the sufficiency.

3 Proofs of Theorems 3 and 5

For a real number x, we let $\{x\}=x-\lfloor x\rfloor$ be its fractional part. For any real numbers α and β, we set $\alpha+\beta \mathbb{Z}=\{\alpha+\beta q: q \in \mathbb{Z}\}$.

We need the following result of the second author [5, Theorem 1].
Lemma 7. Let $\alpha_{1}, \ldots, \alpha_{k}$ be real numbers and let $\beta_{1}, \ldots, \beta_{k}$ be positive reals. If $A=$ $\left\{\alpha_{s}+\beta_{s} \mathbb{Z}\right\}_{s=1}^{k}$ covers consecutive

$$
\left|\left\{\left\{\sum_{s \in I} \frac{1}{\beta_{s}}\right\}: I \subseteq\{1, \ldots, k\}\right\}\right|
$$

integers, then it covers all the integers.
Proof of Theorem 3. Without loss of generality, we simply assume that $m_{1}, \ldots, m_{n-1} \in$ $\{1, \ldots, n\}$. Because Conjecture 1 follows from Theorem 2, for some $\sigma \in S_{n-1}$ we have $n \nmid s m_{\sigma(s)}$ for all $s=1, \ldots, n-1$. Note that $A=\left\{s+\left(n / m_{\sigma(s)}\right) \mathbb{Z}\right\}_{s=1}^{n-1}$ covers $1, \ldots, n-1$ but it does not cover 0 . By Lemma 7, the fractional parts

$$
\left\{\sum_{s \in I} \frac{1}{n / m_{\sigma(s)}}\right\} \quad(I \subseteq\{1, \ldots, n-1\})
$$

must have more than $n-1$ distinct values. Thus, the set

$$
\left\{\sum_{i \in I} m_{i}: I \subseteq\{1, \ldots, n-1\}\right\}=\left\{\sum_{s \in I} m_{\sigma(s)}: I \subseteq\{1, \ldots, n-1\}\right\}
$$

contains a complete system of residues modulo n. This concludes our proof.
To prove Theorem 5, we need the following lemma.
Lemma 8. (Alon's Combinatorial Nullstellensatz [1]) Let A_{1}, \ldots, A_{n} be finite subsets of a field F with $\left|A_{i}\right|>k_{i}$ for $i=1, \ldots, n$ where k_{1}, \ldots, k_{n} are nonnegative integers. If the coefficient of the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ in $P\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ is nonzero and $k_{1}+\cdots+k_{n}$ is the total degree of P, then there are $a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}$ such that $P\left(a_{1}, \ldots, a_{n}\right) \neq 0$.

Proof of Theorem 5. Let p be the smallest prime not dividing n. By Euler's theorem, $p^{\varphi(n)} \equiv 1(\bmod n)$, where φ denotes Euler's totient function. Let us consider the finite field \mathbb{F}_{q} with $q=p^{\varphi(n)}$. As $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$ is a cyclic group of order $q-1$, and n is a divisor of $q-1$, there is an element $g \in \mathbb{F}_{q}^{*}$ of order n. For $i=1, \ldots, n-1$ define

$$
A_{i}:=\left\{g^{k}: 1 \leqslant k \leqslant n-1 \text { and }\left(g^{k}\right)^{m_{i}} \neq 1\right\} .
$$

Then $\left|A_{i}\right|=n-\left(m_{i}, n\right) \geqslant n-i$ for all $i=1, \ldots, n-1$. For the polynomial

$$
P\left(x_{1}, \ldots, x_{n-1}\right):=\prod_{1 \leqslant i<j \leqslant n-1}\left(g^{a_{i}} x_{i}-g^{a_{j}} x_{j}\right)
$$

we clearly have

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n-1}\right) & =\operatorname{det}\left|\left(g^{a_{i}} x_{i}\right)^{j-1}\right|_{1 \leqslant i, j \leqslant n-1} \\
& =\sum_{\sigma \in S_{n-1}} \operatorname{sign}(\sigma) \prod_{i=1}^{n-1}\left(g^{a_{i}} x_{i}\right)^{\sigma(i)-1},
\end{aligned}
$$

where $\operatorname{sign}(\sigma)$, the sign of σ, takes 1 or -1 according as the permutation σ is even or odd. Choose $\sigma_{0} \in S_{n-1}$ with $\sigma_{0}(i)=n-i$ for all $i=1, \ldots, n-1$. Then the coefficient of the monomial $\prod_{i=1}^{n-1} x_{i}^{n-1-i}$ in $P\left(x_{1}, \ldots, x_{n-1}\right)$ coincides with

$$
\operatorname{sign}\left(\sigma_{0}\right) \prod_{i=1}^{n-1}\left(g^{a_{i}}\right)^{n-i-1} \neq 0
$$

and $\operatorname{deg} P=\binom{n-1}{2}=\sum_{i=1}^{n-1}(n-1-i)$. In view of Lemma 8, there are $x_{1} \in A_{1}, \ldots, x_{n-1} \in$ A_{n-1} such that $P\left(x_{1}, \ldots, x_{n-1}\right) \neq 0$.

Write $x_{i}=g^{f(i)}$ for all $i=1, \ldots, n-1$, where $f(i) \in\{1, \ldots, n-1\}$. If $1 \leqslant i<j \leqslant n-1$, then $g^{a_{i}+f(i)}=g^{a_{i}} x_{i} \neq g^{a_{j}} x_{j}=g^{a_{j}+f(j)}$ and hence

$$
f(i)+a_{i} \not \equiv f(j)+a_{j}(\bmod n) .
$$

For each $i=1, \ldots, n-1$, as $\left(g^{f(i)}\right)^{m_{i}} \neq 1$ we have $n \nmid f(i) m_{i}$. This completes the proof of Theorem 5.

Acknowledgement

The authors would like to thank the referee for helpful comments.

References

[1] N. Alon. Combinatorial Nullstellensatz. Combin. Probab. Comput., 8:7-29, 1999.
[2] M. Hall. A combinatorial problem on abelian groups. Proc. Amer. Math. Soc., 3:584-587. 1952.
[3] A. E. Kézdy, and H. S. Snevily. Distinct sums modulo n and tree embeddings. Combin. Probab. Comput., 11:35-42, 2002.
[4] H. S. Snevily. The Cayley addition table of \mathbb{Z}_{n}. Amer. Math. Monthly, 106:584-585, 1999.
[5] Z.-W. Sun. Covering the integers by arithmetic sequences. Acta Arith., 72:109-129, 1995.
[6] Z.-W. Sun. Unification of zero-sum problems, subset sums and covers of \mathbb{Z}. Electron. Res. Announc. Amer. Math. Soc., 9:51-60, 2003.
[7] Z.-W. Sun. A new conjecture in combinatorial number theory. Message to Number Theory Mailing List, November 9, 2009. Available from the website http: //listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;3c0f47f6.0911

[^0]: *Supported by the National Natural Science Foundation (grant 11571162) of China.

