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Abstract

Using hypergraph transversals it is proved that γt(Qn+1) = 2γ(Qn), where γt(G)
and γ(G) denote the total domination number and the domination number of G,
respectively, and Qn is the n-dimensional hypercube. More generally, it is shown
that if G is a bipartite graph, then γt(G�K2) = 2γ(G). Further, we show that the
bipartiteness condition is essential by constructing, for any k > 1, a (non-bipartite)
graph G such that γt(G�K2) = 2γ(G)− k. Along the way several domination-type
identities for hypercubes are also obtained.

Keywords: domination; total domination; hypercube; Cartesian product of graphs;
covering codes; hypergraph transversal
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1 Introduction

Domination and total domination in graphs are very well studied in the literature, here
we study these concepts in prisms of graphs, in particular in hypercubes. To determine
the domination number γ of the n-dimensional hypercube Qn, is a fundamental problem
in coding theory, computer science, and of course in graph theory. In coding theory, the
problem equivalent to the determination of γ(Qn) is to find the size of a minimal covering
code of length n and covering radius 1. In computer science, different distribution type
problems on interconnection networks can be modelled by domination invariants, where
hypercubes in turn form a central model for interconnection networks.

To determine γ(Qn) turns out to be an intrinsically difficult problem. To date, exact
values are only known for n 6 9. These results are summarized in Table 1.

n 1 2 3 4 5 6 7 8 9 10

γ(Qn) 1 2 2 4 7 12 16 32 62 107-120

Table 1: Domination numbers of hypercubes up to dimension 10

We have checked these values by formulating an integer linear program and solving it
with CPLEX. The result γ(Q9) = 62 due to Österg̊ard and Blass [20] actually presented
a breakthrough back in 2001. The value of γ(Q10) is currently unknown, see [1] for the
present best lower bound as given in Table 1 and [16] for the present best upper bound.

Total domination γt is, besides classical domination, among the most fundamental
concepts in domination theory. It has in particular been extensively investigated on
Cartesian product graphs (cf. [4, 12, 18]), which was in a great part motivated by the
famous Vizing’s conjecture (see the survey [3] and recent papers [2, 7]). Specifically,
γt(Qn) was recently investigated in the thesis [22] under the notion of a binary covering
code of empty spheres of length n and radius 1. In particular, values γt(Qn) for n 6 10
were computed and some bounds established. These exact values intrigued us to wonder
whether there exists some general relation between the domination number and the total
domination number in hypercubes.

From our perspective it is utmost important that Qn can be represented as the nth

power of K2 with respect to the Cartesian product operation � , that is, Q1 = K2

and Qn = Qn−1�K2 for n > 2. Our immediate aim in this paper is to prove that
γt(Qn+1) = 2γ(Qn) holds for all n > 1. For this purpose, we prove the following much
more general result that the total domination number of a bipartite prism of a graph G
is equal to twice the domination number of G.

Theorem 1. If G is a bipartite graph, then

γt(G�K2) = 2γ(G) .

Since Qn, n > 1, is a bipartite graph, as a special case of Theorem 1 we note that
γt(Qn+1) = 2γ(Qn). Our second aim is to show that the bipartiteness condition in the
statement of Theorem 1 is essential. For this purpose, we prove the following result.
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Theorem 2. For each integer k > 1, there exists a connected graph Gk satisfying

2γ(Gk)− γt(Gk�K2) = k.

We proceed as follows. In the next section concepts used throughout the paper are
introduced and known facts and results needed are recalled. In particular, the state of the
art on γ(Qn) is surveyed. In Section 3, Theorem 1 is proved and several of its consequences
listed. A proof of Theorem 2 is given in Section 4. We conclude the paper with some open
problems. In particular we conjecture that the equality in Theorem 1 holds for almost all
graphs.

2 Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). The order of G is denoted by
n(G) = |V (G)|. The open neighborhood of a vertex v in G is NG(v) = {u ∈ V (G) |uv ∈
E(G)} and the closed neighborhood of v is NG[v] = {v} ∪NG(v). The path and the cycle
on n vertices are denoted by Pn and Cn, respectively.

For graphs G and H, the Cartesian product G�H is the graph with vertex set V (G)×
V (H) where vertices (u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and
v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). If (u, v) ∈ V (G�H), then the subgraph of
G�H induced by the vertices of the form (u, x), x ∈ V (H), is isomorphic to H; it is called
the H-layer (through (u, v)). Analogously G-layers are defined. The prism of a graph G
is the graph G�K2. Note that G�K2 contains precisely two G-layers. Further, if G is
a bipartite graph, then we call the prism G�K2 the bipartite prism of G. As already
mentioned in the introduction, Qn is a (bipartite) prism because Qn = Qn−1�K2.

A dominating set of a graph G is a set S of vertices of G such that every vertex in
V (G) \ S is adjacent to at least one vertex in S, while a total dominating set of G is a
set S of vertices of G such that every vertex in V (G) is adjacent to at least one vertex
in S. The domination number of G, denoted by γ(G), is the minimum cardinality of
a dominating set of G and the total domination number of G, denoted by γt(G), is the
minimum cardinality of a total dominating set of G. We refer to the books [10, 14] for more
information on the domination number and the total domination number, respectively.

The values γ(Q7) = 16 and γ(Q8) = 32 also follow from the following result which
gives exact values for two infinite families of hypercubes.

Theorem 3. ([9, 25]) If k > 1, then γ(Q2k−1) = 22k−k−1 and γ(Q2k) = 22k−k.

The first assertion of Theorem 3 is based on the fact that hypercubes Q2k−1 contain
perfect codes, cf. [9]. Since the domination number of a graph with a perfect code is equal
to the size of such a code, the assertion follows. Knowing the existence of such codes,
by the divisibility condition one immediately infers that Qn contains a perfect code if
and only if n = 2k − 1 for some k > 1. Lee [17, Theorem 3] further proved that this
is equivalent to the fact that Qn is a regular covering of the complete graph Kn+1. The
second assertion of Theorem 3 is due to van Wee [25]. Related aspects of domination in
hypercubes were investigated in [24].
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A set S of vertices in G is a paired -dominating set if every vertex of G is adjacent to a
vertex in S and the subgraph induced by S contains a perfect matching (not necessarily
as an induced subgraph). The minimum cardinality of a paired-dominating set of G is
the paired-domination number of G, denoted γpr(G). A survey on paired-domination in
graphs can be found in [5]. By definition every paired-dominating set is a total dominating
set, and every total dominating set is a dominating set. Hence we have the following result
first observed by Haynes and Slater [11].

Observation 4. ([11]) For every isolate-free graph G, γ(G) 6 γt(G) 6 γpr(G).

A total restrained dominating set of G is a total dominating set S of G with the
additional property that every vertex outside S has a neighbor outside S; that is, G[V (G)\
S] contains no isolated vertex. The total restrained domination number of G, denoted
γtr(G), is the minimum cardinality of a total restrained dominating set. The concept of
total restrained domination in graphs was introduced by Telle and Proskurowksi [21] as a
vertex partitioning problem. By definition every total restrained dominating set if a total
dominating set, implying the following observation.

Observation 5. ([11]) For every isolate-free graph G, γt(G) 6 γtr(G).

The open neighborhood hypergraph, abbreviated ONH, of G is the hypergraph HG with
vertex set V (HG) = V (G) and with edge set E(HG) = {NG(x) | x ∈ V (G)} consisting of
the open neighborhoods of vertices in G. The closed neighborhood hypergraph, abbreviated
CNH, of G is the hypergraph Hc

G with vertex set V (Hc
G) = V (G) and with edge set

E(HG) = {NG[x] | x ∈ V (G)} consisting of the closed neighborhoods of vertices in G.
A subset T of vertices in a hypergraph H is a transversal (also called vertex cover or

hitting set) if T has a nonempty intersection with every hyperedge of H. The transversal
number τ(H) of H is the minimum size of a transversal in H. A transversal of size τ(H)
is called a τ(H)-set.

The transversal number of the ONH of a graph is precisely the total domination
number of the graph, while the transversal number of the CNH of a graph is precisely the
domination number of the graph. We state this formally as follows.

Observation 6. If G is a graph, then γt(G) = τ(H
G

) and γ(G) = τ(Hc
G

).

We shall also need the following result from [13] (see also [14]).

Theorem 7. ([13]) The ONH of a connected bipartite graph consists of two components
(which are induced by the two partite sets of the graph), while the ONH of a connected
graph that is not bipartite is connected.

3 Proof of Theorem 1 and its Consequences

In this section, we first present a proof of Theorem 1. Recall its statement.

Theorem 1 If G is a bipartite graph, then γt(G�K2) = 2γ(G).
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Proof. Note first that K1�K2 = K2, hence the assertion of the theorem holds for G = K1.
Since we can apply the result to each component of the bipartite graph G, we may assume
that G is connected. Hence in the rest of the proof, let G be a connected bipartite graph
of order at least 2. Further, for notational convenience let F denote the prism G�K2

throughout the proof; that is, F = G�K2.
Let G1 and G2 be the G-layers of F , and let Vi = V (Gi) for i ∈ [2]. For notational

convenience, for each vertex v in G1 we denote the corresponding vertex in G2 that is
adjacent to v in F by v′. Thus, the set ∪v∈V1{vv′} of edges between V1 and V2 in F forms
a perfect matching in F .

Since G is a bipartite graph, F is bipartite as well. Let X and Y be the partite sets
of F . If w ∈ {v, v′} for some vertex v ∈ V1, then we define the complement of the vertex
w to be the vertex w ∈ {v, v′} \ {w}. We note that if w ∈ V3−i, then w ∈ Vi for i ∈ [2].
Further, we note that w and w belong to different partite sets of F .

Let H be the ONH of F . By Theorem 7, H consists of two components that are
induced by the two partite sets, X and Y , of F . Let H

X
and H

Y
be the two components

of H, where V (H
X

) = X and V (H
Y

) = Y . We note that each hyperedge in H
X

and
H

Y
corresponds to the open neighborhood of some vertex in Y and some vertex in X,

respectively, in F . For each vertex w in F , let ew be the associated hyperedge in H; that
is, ew = NF (w).

We proceed further with the following series of claims.

Claim 8. The hypergraphs H
X
and H

Y
are isomorphic.

Proof. Let f : X → Y be the function that assigns to each vertex x ∈ X the vertex x ∈ Y .
Then, f is a bijection between the vertex set of H

X
and H

Y
. We show that the bijection

f is an isomorphism between the hypergraphs H
X

and H
Y

.
We first show that for every hyperedge e in H

X
, the image f(e) := {f(z) | z ∈ e}

of e in f is a hyperedge in H
Y

, and conversely. Let e be an arbitrary hyperedge in
H

X
. Thus, e = ew = NF (w) for some vertex w ∈ Y . We claim that the image of

e is NF (w); that is, we claim that the image of e = ew is precisely the hyperedge in
H

Y
associated with the vertex w ∈ X. Without loss of generality, we may assume that

w ∈ V1 ∩ Y . For an arbitrary vertex z ∈ e, either z = w or z ∈ NG1(w). If z = w, then
f(z) = w ∈ NF (w). If z ∈ NG1(w), then f(z) = z ∈ NG2(w) ⊂ NF (w). In both cases,
z ∈ NF (w), implying that f(e) ⊆ NF (w). Conversely, interchanging the role of X and Y ,
we have that f(e) ⊇ NF (w). Thus, f(e) = NF (w).

Suppose that e
Y

is a hyperedge of H
Y

. Thus, e
Y

= ex = NF (x) for some vertex x ∈ X.
Analogously as before, f(e

Y
) = NF (x) is precisely the hyperedge in H

X
associated with

the vertex x ∈ Y . Thus, the bijective function f preserves adjacency, implying that H
X

and H
Y

are isomorphic. (�)

Claim 9. γt(F ) = 2τ(H
X

).

Proof. By Observation 6, γt(F ) = τ(H) = τ(H
X

) + τ(H
Y

). By Claim 8, τ(H
X

) = τ(H
Y

),
and so γt(F ) = 2τ(H

X
). (�)

Claim 10. γt(F ) 6 2γ(G).
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Proof. Let D be a minimum dominating set in G, and let D1 and D2 be the copies of
G in G-layers G1 and G2, respectively. Clearly, v ∈ D1 if and only if v′ ∈ D2. The set
D1 ∪D2 is a total dominating set of F , and so γt(F ) 6 |D1 ∪D2| = 2|D| = 2γ(G). (�)

Claim 11. γ(G) 6 τ(H
X

).

Proof. Let Hc be the CNH of G. By Observation 6, γ(G) = τ(Hc). We show that
τ(Hc) 6 τ(H

X
). Let T

X
be a minimum transversal in H

X
, and so |T

X
| = τ(H

X
). We now

define the set T c
X

as follows. For each vertex v ∈ T
X

, we add v to T c
X

if v ∈ V1, otherwise
if v ∈ V2, we add v to T c

X
. We show that T c

X
is a transversal in Hc. Let e be an arbitrary

hyperedge in Hc. Thus, e = NF [w] for some vertex w in F . We may assume without loss
of generality that w ∈ V1. Thus, w = w′ ∈ V2.

Suppose that w ∈ Y . In this case, the hyperedge ew = NF (w) = e\{w} is a hyperedge
of H

X
and is therefore covered by some vertex, say z, of T

X
. If z = w, then w ∈ V2 and

w ∈ T c
X

. If z 6= w, then z ∈ ew \ {w} ⊂ V1 and z ∈ T c
X

. In both cases, the hyperedge e is
covered by a vertex in T c

X
.

Suppose that w ∈ X, and so w ∈ Y ∩ V2. In this case, the hyperedge ew = NF (w) is
a hyperedge of H

X
and is therefore covered by some vertex, say z, of T

X
. If z = w, then

since w ∈ V1, the vertex w ∈ T c
X

. If z 6= w, then z ∈ ew \ {w} ⊂ V2 and z ∈ T c
X

. However,
since z ∈ ew, we note that z ∈ ew. Thus in both cases, the hyperedge e is covered by a
vertex in T c

X
.

Thus, whenever w ∈ X or w ∈ Y , the hyperedge e is covered by a vertex in T c
X

. Since e
is an arbitrary hyperedge of Hc, this implies that T c

X
is a transversal of Hc, and therefore

that τ(Hc) 6 |T c
X
| = |T

X
| = τ(H

X
). (�)

We now return to the proof of Theorem 1 one final time. By Claims 9, 10, and 11, the
following holds.

2τ(H
X

)
Claim 9

= γt(F )
Claim 10

6 2γ(G)
Claim 11

6 2τ(H
X

) .

Consequently, we must have equality throughout the above inequality chain. In par-
ticular, γt(F ) = 2γ(G). This completes the proof of Theorem 1.

As an immediate consequence of Theorem 1 we state that the problems of determining
the domination number and the total domination number of hypercubes are equivalent in
the following sense:

Corollary 12. If n > 1, then γt(Qn+1) = 2γ(Qn).

Combining Corollary 12 with Theorem 3 we also deduce the following result:

Corollary 13. If k > 1, then γt(Q2k+1) = 22k−k+1 and γt(Q2k) = 22k−k.

While the first assertion of Corollary 13 appears to be new, the second assertion goes
back to Johnson [15], see also [23, Theorem 1(b)].

As another consequence of Theorem 1, we have the following result.
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Corollary 14. If G is a bipartite graph, then

γt(G�K2) = γpr(G�K2) = γtr(G�K2) .

Proof. For notational convenience, we let F = G�K2. As shown in the proof of Claim 10
in Theorem 1, if D1 is a minimum dominating set in G1, and D2 = {v′ | v ∈ D1}, then
the set D∗ = D1 ∪D2 is a total dominating set of F . We note that D∗ is also a paired-
dominating set of F . Further, |D∗| = 2γ(G). By Observation 4 and Theorem 1, this
implies that

γt(F ) 6 γpr(F ) 6 |D∗| = 2γ(G) = γt(F ) .

Consequently, we must have equality throughout the above inequality chain. In particular,
γt(F ) = γpr(F ). We note that D∗ is also a total restrained dominating set of F . Thus,
by Observation 5, γt(F ) 6 γtr(F ) 6 |D∗| = 2γ(G) = γt(F ), implying that γt(F ) =
γtr(F ).

As a special case of Theorem 1 and Corollary 14, we have the following result.

Corollary 15. If n > 1, then γt(Qn) = γpr(Qn) = γtr(Qn).

4 Proof of Theorem 2

In this section, we consider general prisms and show that the bipartiteness condition in
the statement of Theorem 1 is essential. First we recall the trivial lower bound on the
total domination number of a graph in terms of the maximum degree of the graph: If G
is a graph of order n and maximum degree ∆ with no isolated vertex, then γt(G) > n/∆,
cf. [14, Theorem 2.11].

Proposition 16. If ` > 1, then γt(C6`+1�K2) = 2γ(C6`+1)− 1.

Proof. Let G ∼= C6`+1 for some integer ` > 1. Then, γ(G) = dn(G)/3e = 2` + 1. For
notational convenience, we let F = G�K2. We show that γt(F ) = 4` + 1. Let G1

and G2 be the G-layers of F , where G1 is the cycle u1u2 . . . u6`+1u1 and G2 is the cycle
v1v2 . . . v6`+1v1, and where uivi ∈ E(G). The set

S =

(
`−1⋃
i=0

{u6i+1, u6i+2, v6i+4, v6i+5}

)
∪ {u6`+1}

is a total dominating set of F , implying that γt(F ) 6 |S| = 4` + 1. Conversely, since
F is a cubic graph of order 12` + 2, the trivial lower bound on the total domination
number of F is given by γt(F ) > (12`+2)/3, implying that γt(F ) > 4`+1. Consequently,
γt(F ) = 4`+ 1. As observed earlier, γ(G) = 2`+ 1. Therefore, γt(F ) = 2γ(G)− 1.

We show next that there are connected, non-bipartite graphs G for which the difference
γt(G�K2)− 2γ(G) can be arbitrarily large. Recall the statement of Theorem 2.

Theorem 2 For each integer k > 1, there exists a connected graph Gk satisfying

2γ(Gk)− γt(Gk�K2) = k.
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Proof. For notational convenience, we let Fk = Gk�K2. For k = 1, let G1
∼= C7. By

Proposition 16, γt(F1) = 2γ(G1) − 1. Hence, we assume in what follows that k > 2.
For i ∈ [k] and ` := i − 1, let Zi be the 5-cycle v5`+1v5`+2v5`+4v5`+5v5`+3v5`+1. Let Gk

be obtained from the disjoint union of the cycles Z1, . . . , Zk by adding the edges v5jv5j+1

for j ∈ [k − 1]. By construction, Gk is a connected graph of order 5k. The following
two claims determine the domination number of Gk and total domination numbers of the
prism Fk.

Claim A For k > 2, γ(Gk) = 2k.

Proof. Every dominating set of Gk contains at least two vertices from V (Zi) in order to
dominate the vertices in V (Zi) for each i ∈ [k], and so γ(Gk) > 2k. Conversely, every set
consisting of two non-adjacent vertices from each set V (Zi) forms a dominating set of Gk,
and so γ(Gk) 6 2k. Consequently, γ(Gk) = 2k. (�)

Claim B For k > 2, γt(Fk) = 3k.

Proof. Let G1
k and G2

k be the two copies of the graph Gk in the prism Fk, where the vertex
in G1

k and G2
k corresponding to the vertex vj in Gk is labeled xj and yj, respectively, for

j ∈ [5k]. Thus, the set ∪5kj=1{xjyj} of edges between V (G1
k) and V (G2

k) in Fk forms a
perfect matching in Fk. For i ∈ [k] and ` := i− 1, let

Vi =
5⋃

j=1

{x5`+j, y5`+j}.

When k = 6, the prism Fk is illustrated in Figure 1, where the vertices in V1 are
labelled. Let S be an arbitrary total dominating set of Fk. For i ∈ [k], let Si = S ∩ Vi.
For i ∈ [k] and ` := i− 1, let

Xi =
4⋃

j=2

{x5`+j} and Yi =
4⋃

j=2

{y5`+j}

In order to totally dominate the vertices in the set Xi, we note that |Si| > 2 for all
i ∈ [k]. Suppose that |Si| = 2 for some i ∈ [k]. If both vertices in Si belong to the same
copy of Gk, say to G2

k, then at least one vertex in Xi is not totally dominated by S. If
the vertices in Si belong to different copies of Gk, then at least two vertices in Xi ∪Yi are
not totally dominated by S. Both cases produce a contradiction, implying that |Si| > 3.
Hence,

|S| =
k∑

i=1

|Si| > 3k.

Since S is an arbitrary total dominating set of Fk, this implies that γt(Fk) > 3k. To prove
the converse, let ` := i− 1 and

X =

bk/2c⋃
i=1

{x10`+1, x10`+2, x10i} and Y =

bk/2c⋃
i=1

{y10`+5, y10`+6, y10`+7}.
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If k is even, let
D = (X ∪ Y ∪ {x5k−1}) \ {y5k−3}.

If k is odd, let
D = X ∪ Y ∪ {x5k−4, y5k−1, y5k}.

For k = 6, the set D is illustrated by the darkened vertices in Figure 1. In both cases,
D is a total dominating set of Fk, and |D ∩ Vi| = 3 for each i ∈ [k], implying that

γt(Fk) 6 |D| =
k∑

i=1

|D ∩ Vi| = 3k.

Consequently, γt(Fk) = 3k. (�)

By Claim A and Claim B, for k > 2, γ(Gk) = 2k and γt(Fk) = 3k. This completes
the proof of Theorem 2.

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Figure 1: The prism G6�K2

5 Concluding Remarks

Let us say that a graph G is γt-prism perfect if γt(G�K2) = 2γ(G). We have seen that
all bipartite graphs are γt-prism perfect. It would certainly be interesting to characterize
γt-prism perfect graphs in general, but this appears to be a challenging problem. Instead,
one could try to characterize γt-prism perfect graphs within some interesting families of
graphs, say triangle-free graphs.

A computation shows that among the 11.117 connected graphs of order 8, precisely
297 graphs are not γt-prism perfect. Similarly, there are 79.638 graphs that are not γt-
prism perfect among the 11.716.571 connected graphs of order 9. These computations led
us to conjecture the following conjecture.

Conjecture 17. Almost all graphs are γt-prism perfect.

With respect to the conjecture we refer to [6] for the investigation of the behavior of
the domination number in random graphs.

Motivated by the construction presented in the proof of Theorem 2 we wonder whether
the following lower bound on the total domination number of prisms holds true. If so,
then the construction implies that the bound is sharp.
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Problem 18. Is it true that for any graph G, γt(G�K2) > 3
2
γ(G)?

One may be tempted to try to extend the presented results to additional Cartesian
product graphs. We note that γ(P3) = 2 and an easy computation gives γt(P3�K3) =
γt(P3�P3) = 4. Similarly, γt(P3�K4) = 4 and γt(P3�P4) = 6, indicating that our result
cannot be extended by a matter of parity. Moreover for all listed Cartesian products
we were able to find pairs of bipartite graphs with the same domination number so that
the total domination number of the respective Cartesian product differs. These examples
give a strong evidence that the identity of Theorem 1 cannot be generalized in “obvious”
directions.
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