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Abstract

Let hom(H,G) denote the number of homomorphisms from a graph H to a
graph G. Sidorenko’s conjecture asserts that for any bipartite graph H, and a
graph G we have

hom(H,G) > v(G)v(H)

(
hom(K2, G)

v(G)2

)e(H)

,

where v(H), v(G) and e(H), e(G) denote the number of vertices and edges of the
graph H and G, respectively. In this paper we prove Sidorenko’s conjecture for
certain special graphs G: for the complete graph Kq on q vertices, for a K2 with a
loop added at one of the end vertices, and for a path on 3 vertices with a loop added
at each vertex. These cases correspond to counting colorings, independent sets and
Widom-Rowlinson configurations of a graph H. For instance, for a bipartite graph
H the number of q-colorings ch(H, q) satisfies

ch(H, q) > qv(H)

(
q − 1

q

)e(H)

.

In fact, we will prove that in the last two cases (independent sets and Widom-
Rowlinson configurations) the graph H does not need to be bipartite. In all cases,
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we first prove a certain correlation inequality which implies Sidorenko’s conjecture
in a stronger form.

Keywords: Colorings, independent sets, large girth graphs

1 Introduction

Let v(G) and e(G) denote the number of vertices and edges of a graph G. For a graph H
and G let hom(H,G) denote the number of homomorphisms from H to G, i.e., the number
of maps ϕ : V (H)→ V (G) such that (ϕ(u), ϕ(v)) ∈ E(G) whenever (u, v) ∈ E(H).

Sidorenko’s conjecture [22,23] claims that for a bipartite graph H on v(H) = n vertices
and e(H) edges, and an arbitrary graph G (possibly with loops) we have

hom(H,G) > v(G)n
(

hom(K2, G)

v(G)2

)e(H)

.

There has been many work on Sidorenko’s conjecture, see for instance [3, 7, 8, 11, 14–
16,18,19,22,23,25,26]. It is known that Sidorenko’s conjecture holds true if H belongs to
certain classes of graphs, for instance if H is a tree or a complete bipartite graph. In this
paper we follow another route: we prove Sidorenko’s conjecture when G is fixed, namely
when G is a complete graph (counting colorings) or a complete graph on 2 vertices with
a loop added at one of the vertices (counting independent sets), or a path on 3 vertices
with a loop added at each vertex (counting Widom-Rowlinson configurations). The idea
of fixing the target graph is not new, in the paper [18] Lovász also follows the same route.
Lovász proves the continuous version of Sidorenko’s conjecture when the target graphon
(the continuous version of a graph) is sufficiently close to the constant graphon in some
metric, see Theorem 4.1 and 5.1 in [18]. We remark that it is slightly inconvenient in these
theorems that the distance between the target graphon and the constant graphon depends
on the number of edges of the bipartite graph H. We will not assume such condition in
our results.

When G = Kq, the complete graph on q vertices, then hom(H,Kq) = ch(H, q) counts
the proper colorings of H with q colors. In this case Sidorenko’s conjecture states that

ch(H, q) > qn
(
q − 1

q

)e(H)

.

When G is a K2 with a loop added at one vertex then hom(H,G) = i(H) counts the
number of independent sets of the graph H. In this case Sidorenko’s conjecture states
that

i(H) > 2n
(

3

4

)e(H)

.

Note that both colorings and independent sets are related to certain statistical physical
models, the Potts model and the hard-core model. Another notable statistical physical
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model is the so-called Widom-Rowlinson model [4, 27]. This model corresponds to the
case when G is a path on 3 vertices with a loop added at each vertex (see Fig. 1). We
denote this graph by P ◦3 , then hom(H,P ◦3 ) = wr(H) counts the number of 3–colorings of
H with colors white, red and blue such that a red and a blue vertex cannot be adjacent,
but there is no other restriction. Indeed, for a homomorphism φ : V (H) → P ◦3 let us
consider the pre-image sets A = φ−1({a}) (red), B = φ−1({b}) (white) and C = φ−1({c})
(blue) then the only restriction is that a red and a blue vertex cannot be adjacent. This
model has also been extensively studied in extremal graph theory, see the recent work by
Cutler and Radcliffe [12] and by Cohen, Perkins and Tetali [5].

t��
��
a
t��
��
b
t
c
��
��

Figure 1: The graph P ◦3

In the case of Widom-Rowlinson configuration Sidorenko’s conjecture states that

wr(H) > 3n
(

7

9

)e(H)

as v(P ◦3 ) = 3, and hom(K2, P
◦
3 ) = 7.

In this short note we prove all these claims. In fact, in all cases we prove a correlation
inequality from which the claim follows in a stronger form.

Theorem 1.1. Let H = (A,B,E) be a bipartite graph. Let c be a uniform random proper
coloring of H with q colors. Then,

P(c(u) = c(v)) 6
1

q

if u and v are in different parts of the bipartite graph, and

P(c(u) = c(v)) >
1

q

if u and v are in the same part of the bipartite graph. The former part is equivalent with
the statement that for any bipartite graph H with a missing edge e between the two parts
we have

ch(H + e, q)

ch(H, q)
>
q − 1

q
. (1.1)

Corollary 1.2. For any bipartite graph H on n vertices and e(H) edges we have

ch(H, q) > qn
(
q − 1

q

)e(H)

.
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Furthermore, if the graph H contains εn vertex disjoint cycles of length at most `, then
there is some cq(ε, `) > 1 such that

ch(H, q) > cq(ε, `)
nqn
(
q − 1

q

)e(H)

.

We will see that the first inequality in Corollary 1.2 is asymptotically tight for sparse
graphs not containing short cycles if q is (much) larger than the largest degree of the
graph H, see Remark 2.1.

We will prove a very similar result for the number of independent sets. In fact, in the
case of independent sets we can drop the condition of bipartiteness of H. On the other
hand, this result is only asymptotically tight in very trivial cases unlike the bound on the
number of colorings, but at least it shows that Sidorenko’s conjecture holds true in this
case. This result is much simpler than the claim on colorings.

Theorem 1.3. For any graph H and its edge e we have

i(H)

i(H − e)
>

3

4
. (1.2)

Corollary 1.4. For any graph H on n vertices and e(H) edges we have

i(H) > 2n
(

3

4

)e(H)

.

Furthermore, if the graph H is connected then,

i(H) >
3

4

(
1 +
√

5

3

)n

· 2n
(

3

4

)e(H)

.

Finally, we prove an analogous theorem for Widom-Rowlinson configurations.

Theorem 1.5. For any graph H and its edge e we have

wr(H)

wr(H − e)
>

7

9
. (1.3)

Then, as for the independent set case, the above result implies the following extended
version of Sidorenko’s conjecture for the graph P ◦3 .

Corollary 1.6. For any graph H on n vertices and e(H) edges we have

wr(H) > 3n
(

7

9

)e(H)

.

Furthermore, if the graph H is connected then,

wr(H) >
9

10

(
3(1 +

√
2)

7

)n

· 3n
(

7

9

)e(H)

.
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Notation. In this paper all graphs are simple unless otherwise specified. For a graph H =
(V (H), E(H)) and an edge set E ′ ⊆ E(H), the graph H−E ′ is the graph (V (H), E(H)\
E ′). Similarly, if V ′ ⊆ V then H − V ′ denotes the subgraph of H induced by the vertex
set V (H) \ V ′.

This paper is organized as follows. In the next section we study colorings of bipartite
graphs, we will prove Theorem 1.1 and Corollary 1.2. In Section 3 we study the number of
independent sets, we will prove Theorem 1.3 and Corollary 1.4. In Section 4 we study the
number of Widom-Rowlinson configurations, we will prove Theorem 1.5 and Corollary 1.6.
Finally, we conclude the paper with an interesting open problem.

2 Colorings

In this section we prove Theorem 1.1.

Proof of Theorem 1.1. Note that by the symmetry of colors we have

P(c(u) = c(v) = 1) =
1

q
P(c(u) = c(v)),

and

P(c(u) = 1, c(v) = 2) =
1

q(q − 1)
P(c(u) 6= c(v)).

Hence the claim

P(c(u) = c(v)) 6
1

q

is equivalent with
P(c(u) = c(v) = 1) 6 P(c(u) = 1, c(v) = 2)

if u and v are in different parts of the bipartite graph. Equivalently,

P(c(u) = c(v) = 1) + P(c(u) = c(v) = 2) 6 P(c(u) = 1, c(v) = 2) + P(c(u) = 2, c(v) = 1).

Now let us conditioning on every colors different from colors 1 and 2. So assume that
we know the colors of every vertex except the colors of those who gets color 1 or 2. Let
us consider the partial colorings c in which the color of a vertex is fixed if it is not 1
or 2, and the uncolored vertices will be assigned color 1 or 2. Note that when we color
the uncolored vertices by 1 and 2 we only have to make sure that the components of the
induced subgraph of uncolored vertices must be properly colored. Now if u and v are
in different components then by flipping the coloring on the component of u we see that
the color of u and v will be the same or different in the same number of colorings which
extends the partial coloring. On the other hand, if they are in the same component then
u and v must have different color. Hence the claim follows.

The claim when u and v are in the same part works exactly the same way, only this
time if u and v are in the same component then their color is the same.

the electronic journal of combinatorics 24(1) (2017), #P1.2 5



Now if H is a bipartite graph with a missing edge e = (u, v) ∈ E(H) between the two
parts. Then the probability that in a proper coloring of H, the vertices u and v will get
different colors is

ch(H + e, q)

ch(H, q)
> 1− 1

q
>
q − 1

q
.

So this is just rephrasing the first claim.

Proof of Corollary 1.2. Let e(H) = m, and let E(H) = {e1, e2, . . . , em} then by the last
claim we have

ch(H, q)

ch(H − {e1, . . . , em}, q)
=

ch(H, q)

ch(H − e1, q)
ch(H − e1, q)

ch(H − {e1, e2}, q)
. . .

ch(H − {e1, . . . , em−1}, q)
ch(H − {e1, e2, . . . , em}, q)

>

(
q − 1

q

)m
.

Note that H − {e1, e2, . . . , em} is simply the empty graph on |V (H)| = n vertices so
ch(H − {e1, e2, . . . , em}, q) = qn. Hence

ch(H, q) > qn
(
q − 1

q

)m
.

To prove the second statement, let S be the union of εn vertex disjoint cycles of
length at most ` together with the remaining isolated vertices. In other words, S =
C1 ∪ C2 ∪ · · · ∪ Ck ∪ (n− e(S))K1, where Ci is a cycle of even length ti 6 `, and k = εn.
Let E(H) \ E(S) = {e1, e2, . . . , er}, so r = e(H)− e(S). Then,

ch(H, q)

ch(S, q)
=

ch(H, q)

ch(H − e1, q)
ch(H − e1, q)

ch(H − {e1, e2}, q)
. . .

ch(H − {e1, . . . , er−1}, q)
ch(H − {e1, e2, . . . , er}, q)

>

(
q − 1

q

)r
.

We will need the fact that if C` is a cycle of length ` then

ch(C`, q) = (q − 1)` + (−1)`(q − 1).

This can be seen by induction on ` by using the recursion

ch(G, q) = ch(G− e, q)− ch(G/e, q), for any e ∈ E(G).

Alternatively, if the Reader is familiar with spectral graph theory then we can use the
observation that ch(C`, q) = hom(C`, Kq). In general, hom(C`, G) counts the number of
closed walks of length ` in a graph G. This is also

∑n
i=1 λ

`
i , where λi’s are the eigenvalues

of the graph G. The eigenvalues of Kq is q− 1 and −1 with multiplicity q− 1. This gives
that hom(C`, Kq) = (q − 1)` + (q − 1)(−1)`. In our case, the cycles have even lengths so
we can omit the term (−1)`.

Note that e(S) = |C1|+ · · ·+ |Ck|, and as we have seen

ch(Ci, q) = (q− 1)ti + (q− 1) = (q− 1)ti
(

1 +
1

(q − 1)ti−1

)
> (q− 1)ti

(
1 +

1

(q − 1)`−1

)
.
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Hence

ch(S, q) > qn−e(S)(q − 1)e(S)
(

1 +
1

(q − 1)`−1

)k
.

Then

ch(H, q) > ch(S, q)

(
q − 1

q

)r
> qn−e(S)(q − 1)e(S)

(
1 +

1

(q − 1)`−1

)εn(
q − 1

q

)r
.

Hence

ch(H, q) > cq(ε, `)
nqn
(
q − 1

q

)e(H)

,

where

cq(ε, `) =

(
1 +

1

(q − 1)`−1

)ε
.

Remark 2.1. So we see that for a bipartite graph H on v(H) vertices and e(H) edges
we have

ln ch(H, q)

v(H)
> ln(q) +

e(H)

v(H)
ln

(
q − 1

q

)
.

It is known that it is asymptotically tight in the following sense: let G be a graph with
girth g (i.e., the length of the shortest cycle is g), and assume that q > 8d, where d is the
largest degree of the graph G. Then Abért and Hubai [1] proved that∣∣∣∣ ln ch(G, q)

v(G)
−
(

ln(q) +
e(G)

v(G)
ln

(
q − 1

q

))∣∣∣∣ 6 2
(8d/q)g−1

1− 8d/q
.

This is true for any graph G, not just bipartite. The constant 8 comes from a theorem
of Sokal [24] which asserts that the chromatic polynomial of a graph G has no zero of
absolute value bigger than Cd, where C is a constant less than 8. Sokal [24] actually
proved C to be 7.96 . . ., which was improved to 6.91 . . . by Fernandez and Procacci [13].
It is conjectured that C can be taken to be 2.

In the particular case when G is d-regular, it was proved by Bandyopadhyay and
Gamarnik [2] that for q > d+ 1 we have

lim
g→∞

sup
G∈G(n,g,d)

∣∣∣∣ ln ch(G, q)

n
−
(

ln(q) +
d

2
ln

(
q − 1

q

))∣∣∣∣ = 0,

where G(n, g, d) is the set of d–regular graphs on n vertices with girth at least g. So in the
special case of regular graphs we can improve the constant 8 to 1. This theorem shows
that even for regular graphs our inequality is asymptotically tight if q > d + 1. In other
words, for q > d+ 1 we have

inf
G∈Gbd

ch(G, q)1/v(G) = q

(
q − 1

q

)d/2
,
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where Gbd denotes the family of d–regular bipartite graphs. If d > 2 the infimum is not
achieved by a finite graph.

Another related result is about colorings of random graphs. Let Gn = G(n, c
n
) be an

Erdős-Rényi random graph. Then it is known [6, 9] that for a fixed q and for small c we
have

lim
n→∞

E
ln ch(Gn, q)

v(Gn)
= ln(q) +

c

2
ln

(
q − 1

q

)
.

Interestingly, there is a phase transition at some cq, where the left hand side starts to be
strictly smaller than the right hand side, see for instance [9, 28] for details. Now we see
that for bipartite Erdős-Rényi random graphs this cannot happen. On the other hand,
if H = (A,B,E) is a balanced bipartite graph, i.e., |A| = |B| then even for a very dense
bipartite graph we have

ch(H, q) >

{
(q/2)n if q is even,

((q − 1)(q + 1)/4)n/2 if q is odd.

So if we introduce the function

f(q) =

{
ln
(
q
2

)
if q is even,

1
2

ln
(

(q−1)(q+1)
2

)
if q is odd;

then it is a natural question whether for balanced bipartite Erdős-Rényi random graphs
we have

lim
n→∞
2 | n

E
ln ch(Gn, q)

v(Gn)
= max

(
ln(q) +

c

2
ln

(
q − 1

q

)
, f(q)

)
.

3 Number of independent sets

In this section we prove Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Let i(H | condition on I) be the number of independent sets I of
H satisfying the given condition. For e = (u, v) ∈ E(H) we have

i(H) = i(H | u, v /∈ I) + i(H | u ∈ I, v /∈ I) + i(H | u /∈ I, v ∈ I) + i(H | u, v ∈ I).

Note that

i(H | u, v /∈ I) = i(H − {u, v}), i(H | u ∈ I, v /∈ I) = i(H − {u, v} −N(u))

and
i(H | u /∈ I, v ∈ I) = i(H − {u, v} −N(v)), i(H | u, v ∈ I) = 0.

Similarly,

i(H − e) = i(H − e | u, v /∈ I) + i(H − e | u ∈ I, v /∈ I)

+ i(H − e | u /∈ I, v ∈ I) + i(H − e | u, v ∈ I).
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Note that

i(H − e | u, v /∈ I) = i(H − {u, v}), i(H − e | u ∈ I, v /∈ I) = i(H − {u, v} −N(u)),

i(H − e | u /∈ I, v ∈ I) = i(H − {u, v} −N(v)),

and
i(H − e | u, v ∈ I) = i(H − {u, v} −N(u)−N(v)).

Clearly,

i(H−{u, v}−N(u)−N(v)) 6 min(i(H−{u, v}), i(H−{u, v}−N(u)), i(H−{u, v}−N(v)),

whence inequality (1.2) follows.

Proof of Corollary 1.4. The proof of this statement follows the same way from Theo-
rem 1.3 as Corollary 1.2 followed from Theorem 1.1. Indeed,

i(H) > 2n
(

3

4

)e(H)

immediately follows from the fact that the empty graph on n vertices has 2n independent
sets and inequality (1.2).

If H is connected then let Tn be a spanning tree of H. Similarly, inequality (1.2)
implies

i(H) > i(Tn)

(
3

4

)e(H)−(n−1)

.

Note that among trees on n vertices the path Pn has the smallest number of independent
sets, for a proof see for instance [10,20]. Hence

i(H) > i(Pn)

(
3

4

)e(H)−(n−1)

.

It is easy to see that i(Pn) = i(Pn−1) + i(Pn−2) and i(P1) = 2, i(P2) = 3, whence i(Pn) =
Fn+2, where F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 if n > 2, the sequence of Fibonacci-
numbers. It is easy to see by induction (or by the explicit formula for Fn) that

i(Pn) >

(
1 +
√

5

2

)n

.

Hence

i(H) >

(
1 +
√

5

2

)n(
3

4

)e(H)−(n−1)

=
3

4

(
1 +
√

5

3

)n

· 2n
(

3

4

)e(H)

.

Remark 3.1. For bipartite graphs a much better lower bound follows from the work
of N. Ruozzi [21]. This lower bound connects the number of independent sets with the
so-called Bethe partition function of the hard-core model.

the electronic journal of combinatorics 24(1) (2017), #P1.2 9



4 Widom-Rowlinson model

The purpose of this section is to prove Theorem 1.5, we will use a similar approach as in
the proof of Theorem 1.3 with an extra crucial lemma.

Proof of Theorem 1.5. For each φ ∈ Hom(H,P ◦3 ) and a vertex u of H let us write u ∈ A,B
or C if and only if φ(u) = a, b or c, respectively. Then, for each e = (u, v) ∈ E(H) we
have

wr(H) = wr(H | u, v ∈ A) + wr(H | u ∈ A, v ∈ B) + wr(H | u ∈ A, v ∈ C)

+ wr(H | u ∈ B, v ∈ A) + wr(H | u, v ∈ B) + wr(H | u ∈ B, v ∈ C)

+ wr(H | u ∈ C, v ∈ A) + wr(H | u ∈ C, v ∈ B) + wr(H | u, v ∈ C).

In view of the symmetry of P ◦3 , the above expression reduces to

wr(H) = 2wr(H | u, v ∈ A) + 2wr(H | u ∈ A, v ∈ B) + 2wr(H | u ∈ A, v ∈ C)

+ 2wr(H | u ∈ B, v ∈ A) + wr(H | u, v ∈ B)

= 2

(
wr(H | u, v ∈ A) + wr(H | u ∈ A, v ∈ B) + wr(H | u ∈ B, v ∈ A)

)
+ wr(H | u, v ∈ B),

since (u, v) is an edge of H and so wr(H | u ∈ A, v ∈ C) must vanish. On the other hand,
we have

wr(H − e) = 2wr(H − e | u, v ∈ A) + 2wr(H − e | u ∈ A, v ∈ B)

+ 2wr(H − e | u ∈ A, v ∈ C) + 2wr(H − e | u ∈ B, v ∈ A)

+ wr(H − e | u, v ∈ B).

It is easy to see that

wr(H | u, v ∈ A) = wr(H − e | u, v ∈ A),

wr(H | u ∈ A, v ∈ B) = wr(H − e | u ∈ A, v ∈ B),

wr(H | u ∈ B, v ∈ A) = wr(H − e | u ∈ B, v ∈ A),

wr(H | u, v ∈ B) = wr(H − e | u, v ∈ B)

and

wr(H | u, v ∈ A) 6 min{wr(H | u ∈ A, v ∈ B),wr(H | u ∈ B, v ∈ A),wr(H | u, v ∈ B)}.

These inequalities imply the desired inequality (1.3) if we take the following lemma into
account.

Lemma 4.1. For each e = (u, v) ∈ E(H) we have

wr(H − e | u, v ∈ A) > wr(H − e | u ∈ A, v ∈ C).
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Proof. An equivalent way of phrasing the above lemma is that for a uniformly chosen
random Widom-Rowlinson configurations of H − e we have

P(v ∈ A|u ∈ A) > P(v ∈ C|u ∈ A).

Now let us condition not only on u ∈ A, but also on the knowledge of the set B. Once we
know the set B, all connected components of V (H − e) \B must be monochromatic. If u
and v are in different connected components of V (H − e) \B then with equal probability,
the color of v is red or blue. If u and v are in the same component of V (H − e) \B then
with probability 1 they have the same color so that in all cases we have

P(v ∈ A|u ∈ A;B) > P(v ∈ C|u ∈ A;B).

Hence
P(v ∈ A|u ∈ A) > P(v ∈ C|u ∈ A),

which finishes the proof of the lemma.

The proof of Theorem 1.5 is thus completed.

Proof of Corollary 1.6. The first statement follows as before. So we only prove the second
statement. If H is connected then let Tn be a spanning tree of H. Then, it follows from
inequality (1.3) that

wr(H) > wr(Tn)

(
7

9

)e(H)−(n−1)

.

Now we use Theorem 4.3 of [11] for G = P ◦3 , that is the following lower bound on the
number of homomorphisms of a tree Tn on n vertices into a given graph G:

hom(Tn, G) > exp(Hλ(G))λn−1,

where λ is the largest eigenvalue of G, in our case it is 1 +
√

2, and Hλ(G) is defined as
follows: if y is the positive eigenvector of unit length corresponding to the eigenvalue λ,
then qi = y2i is a probability distribution Q on the vertices, its entropy is

Hλ(G) =
n∑
i=1

qi log
1

qi
.

In our case y =
(

1
2
, 1√

2
, 1
2

)
so Q =

(
1
4
, 1
2
, 1
4

)
, its entropy is 3

2
log 2. Hence

wr(Tn) = hom(Tn, P
◦
3 ) > 2

√
2(1 +

√
2)n−1.

Therefore,

wr(H) > 2
√

2(1 +
√

2)n−1
(

7

9

)e(H)−(n−1)

.
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We have

2
√

2(1 +
√

2)n−1
(

7

9

)e(H)−(n−1)

= 2
√

2 · 7

9

1

1 +
√

2

(
3(1 +

√
2)

7

)n

· 3n
(

7

9

)e(H)

>

>
9

10

(
3(1 +

√
2)

7

)n

· 3n
(

7

9

)e(H)

and the desired inequality follows.

5 Concluding remarks

It is a very natural question that for which graphs G the inequality

hom(H,G)

hom(H − e,G)
>

hom(K2, G)

v(G)2

holds true for every (bipartite) graph H. It is known that one cannot handle Sidorenko’s
conjecture only using this tool: London [17] showed a counterexample even when H = P4,
a path on 4 vertices. We remark that in London’s counterexample G was a weighted
graph in this case as London was interested in an inequality for matrices, not graphs.
Unfortunately, one can show that it implies that there are counterexamples when G is a
simple graph. If the Reader is familiar with graphon theory then we can offer the following
argument: consider the graphon corresponding to the weighted matrix (maybe one needs
to renormalize it to make the values between 0 and 1), and then approximate the graphon
with a large graph. If the approximation is sufficiently good then the obtained graph
will also violate the above inequality. Of course, it only means that the above inequality
cannot be true for every graph G, but it is still a meaningful problem to identify and
study graphs for which the above inequality is true.
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