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Abstract

Given an abelian group G, it is natural to ask whether there exists a permutation
π of G that “destroys” all nontrivial 3-term arithmetic progressions (APs), in the
sense that π(b)− π(a) 6= π(c)− π(b) for every ordered triple (a, b, c) ∈ G3 satisfying
b − a = c − b 6= 0. This question was resolved for infinite groups G by Hegarty,
who showed that there exists an AP-destroying permutation of G if and only if
G/Ω2(G) has the same cardinality as G, where Ω2(G) denotes the subgroup of all
elements in G whose order divides 2. In the case when G is finite, however, only
partial results have been obtained thus far. Hegarty has conjectured that an AP-
destroying permutation of G exists if G = Z/nZ for all n 6= 2, 3, 5, 7, and together
with Martinsson, he has proven the conjecture for all n > 1.4 × 1014. In this
paper, we show that if p is a prime and k is a positive integer, then there is an
AP-destroying permutation of the elementary p-group (Z/pZ)k if and only if p is
odd and (p, k) 6∈ {(3, 1), (5, 1), (7, 1)}.

1 Introduction

Let G be an abelian group, and let π : G → G be any permutation. Following the
terminology of Hegarty and Martinsson (see [3]), we say that π destroys all nonconstant
arithmetic progressions (henceforth, APs) in G if there is no ordered triple (a, b, c) ∈ G3

such that b−a = c−b 6= 0 and π(b)−π(a) = π(c)−π(b) (i.e., (a, b, c) and (π(a), π(b), π(c))
are never both APs; note that this condition holds for π if an only if it holds for
π−1). It is natural to seek a complete classification of abelian groups G that have such
an AP-destroying permutation.

For G infinite, it was shown by Hegarty in [2] that there exists an AP-destroying
permutation of G if and only if G/Ω2(G) has the same cardinality as G, where Ω2(G)
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denotes the subgroup of all elements in G whose order divides 2. On the other hand, in the
case when G is finite, such a classification has not yet been obtained. Hegarty conjectured
in [2] that there exists an AP-destroying permutation of Z/nZ for all n 6= 2, 3, 5, 7 (in these
four cases, one readily checks that there is no AP-destroying permutation of Z/nZ). It was
shown by Hegarty and Martinsson in [3] that there exists an AP-destroying permutation
of Z/nZ for all n > n0 = (9 · 11 · 16 · 17 · 19 · 23)2 ≈ 1.4 × 1014. Moreover, the following
lemma, proved by Hegarty in [2], shows that one can find AP-destroying permutations of
larger groups given AP-destroying permutations of smaller groups:

Lemma 1 (Hegarty). Let G be an abelian group and H ⊂ G a subgroup. If there exists an
AP-destroying permutation of H and an AP-destroying permutation of G/H, then there
exists an AP-destroying permutation of G.

It follows from Lemma 1 that the set of all finite abelian groups G that have AP-
destroying permutations is closed under taking direct sums, and that the set of all positive
integers n for which Z/nZ has an AP-destroying permutation is closed under multiplica-
tion. This last implication motivates a closer study of the case when n = p is a prime, and
in this regard, it was shown in [3] that there is an AP-destroying permutation of Z/pZ for
all primes p > 3 such that p ≡ 3 (mod 8). In this paper, we prove a result that includes
Hegarty’s conjecture for Z/pZ where p > 7 is any prime. Our main theorem is stated as
follows:

Theorem 2. Let p be a prime and k be a positive integer. Then there is an AP-destroying
permutation of (Z/pZ)k if and only if p is odd and (p, k) 6∈ {(3, 1), (5, 1), (7, 1)}.

Remark. Although one can use Lemma 1 to show that there is an AP-destroying permu-
tation of (Z/pZ)k for all k > 3 given the existence of such a permutation for (Z/pZ)k

where k = 1 or where k ∈ {2, 3}, our approach yields such a permutation directly for
all elementary p-groups of odd order greater than 7. Using this result, together with
Lemma 1 and the result of [3], we then see that to prove Hegarty’s conjecture for finite
cyclic groups, it suffices to find AP-destroying permutations of Z/nZ for all n such that
n ∈ {2p, 3p, 5p, 7p : p prime} and n < n0.

The proof of Theorem 2 occupies the remainder of this paper. We first construct a
permutation f that destroys all but O(1) APs in (Z/pZ)k. We then show that if pk is
large enough, say pk > n1, then a small modification of f destroys all APs. This n1, unlike
the bound n0 of [3], is small enough that we can deal with the remaining cases qk 6 n1

by exhibiting an AP-destroying permutation in each case. This concludes the proof.

2 Proof of Theorem 2

Let p be any prime, let k be any positive integer, and let G denote the elementary p-group
(Z/pZ)k. If π is a permutation of G, then for any a, r ∈ G with r 6= 0, the permutation π
destroys the AP (a− r, a, a+ r) if and only if π destroys the reversed AP (a+ r, a, a− r).
Moreover, if p = 3, then all six permutations of the AP (a − r, a, a + r) are APs, and if
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π destroys one of them then π destroys them all. Thus, in the remainder of our proof,
we will somewhat loosely use the notation “(a − r, a, a + r)” to refer to both the AP
(a − r, a, a + r) and the reversed AP (a + r, a, a − r), and when p = 3, the notation
“(a− r, a, a+ r)” will refer to any permutation of this AP.

If p = 2 then no permutation of G destroys any AP, so we need only consider the case
when p is odd. We identify (Z/pZ)k with the additive group of the finite field Fq of order
q = pk. We shall construct an AP-destroying permutation of (Z/pZ)k as a permutation
of Fq, by applying small modifications to the fixed permutation f : Fq → Fq defined by

f(x) ··=


1 if x = 0,

0 if x = 1,
1
x

else.

(1)

The next lemma shows that f is indeed very close to being an AP-destroying permutation:

Lemma 3. The permutation f destroys all APs in Fq other than (−1, 0, 1) when p = 3
and (0, 3

2
, 3), (1

3
, 2
3
, 1) when p > 3.

Proof. Let (a− r, a, a+ r) be an AP in Fq such that {a− r, a, a+ r} ∩ {0, 1} = ∅. Then
f sends the AP (a− r, a, a+ r) to

(
1
a−r ,

1
a
, 1
a+r

)
, which is an AP when

2

a
=

1

a− r
+

1

a+ r
=⇒ 2(a2 − r2) = 2a2 =⇒ 2r2 = 0,

but this cannot hold since p > 2. Thus, all APs disjoint from {0, 1} are destroyed by f .
The remaining cases are handled as follows:

(a) First, consider APs of the form (−r, 0, r). If r 6= ±1, then f sends (−r, 0, r)
to (−1

r
, 1, 1

r
), which is not an AP because p > 2. However, f sends (−1, 0, 1) to

(−1, 1, 0), which is an AP if and only if p = 3.

(b) Next, consider APs of the form (0, r, 2r). If {r, 2r}∩{1} = ∅, then f sends (0, r, 2r)
to (1, 1

r
, 1
2r

), which is an AP if and only if 2
r

= 1 + 1
2r

, and this happens if and only
if p > 3 and r = 3

2
. If r = 1, then f sends (0, r, 2r) to (1, 0, 1

2
), which is an AP if

and only if p = 3. If 2r = 1, then f sends (0, r, 2r) to (1, 2, 0), which is again an AP
if and only if p = 3.

We may now restrict our attention to APs containing 1 but not 0.

(c) Consider APs of the form (1− r, 1, 1 + r), where r 6= ±1. The permutation f sends
this AP to

(
1

1−r , 0,
1

1+r

)
, which is not an AP because p > 2.

(d) Finally, consider APs of the form (1, 1 + r, 1 + 2r) with r /∈ {−1,−1
2
}. Then f sends

(1, 1 + r, 1 + 2r) to
(
0, 1

1+r
, 1
1+2r

)
, which is an AP if and only if 2

1+r
= 1

1+2r
+ 0, and

this happens if and only if p > 3 and r = −1
3
.
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Remark. Because f is an involution, it also acts as an involution on the set of APs that
are not destroyed by f .

Our strategy is to modify f by composing it with a permutation τ that is a simple
transposition if p = 3 and a product of two transpositions τ1, τ2 if p > 3, with each
transposition moving exactly one term in each of the APs not destroyed by f . The
resulting permutation f ′ then destroys those APs but may restore others. However, if we
choose τ at random then the expected number of restored APs is O(1), so once q is at all
large there should be some choices of τ for which no AP is restored and thus f ′ destroys
all APs. We will prove this by counting how many τ or τi move a given AP term and
introduce no new APs, and showing that the count is positive. Because our f is given by
an algebraic rule, each of the needed enumerations reduces to estimating the number of
points on certain algebraic curves over Fq. The estimates suffice with few enough small
exceptions (each with p > 3) that we can dispose of each remaining q computationally. In
most cases we find some τi that works (even though the estimate was not strong enough
to guarantee its existence). In the remaining cases, q is prime and small enough that
an AP-destroying permutation of Z/pZ was already exhibited by Hegarty in [2]; we also
construct such permutations by starting from the τi that come closest to destroying all
APs and then composing with further transpositions until the number of surviving APs
drops to zero.

In what follows, we consider the cases of p = 3 and p > 3 separately, because we saw
in the proof of Lemma 3 that the APs not destroyed by f are different in each case.

2.1 The Case p = 3

By hypothesis k > 1, so q = 3k > 3; hence there exists y in Fq \ {0,±1}. Consider the
permutation f ′ obtained by switching the images of −1 and y under f (i.e. f ′(−1) = 1/y,
f ′(y) = −1, and f ′(x) = f(x) otherwise). The AP (−1, 0, 1) is clearly destroyed by f ′,
because y 6= −1. Thus, by Lemma 3, if an AP is not destroyed by f ′, it must either
(A) contain −1 but not y or (B) contain y. We treat the cases (A) and (B) separately as
follows.

(A) If {−1 + r,−1 + 2r} ∩ {0,±1, y} = ∅, then f ′ sends the AP (−1,−1 + r,−1 + 2r)

to
(

1
y
, 1
−1+r ,

1
−1+2r

)
, which is an AP when

2

−1 + r
=

1

y
+

1

−1 + 2r
=⇒ r2 = y + 1.

Otherwise, if {−1 + r,−1 + 2r}∩{0,±1} 6= ∅, then we observe that f ′ destroys the
AP (−1,−1 + r,−1 + 2r) if and only if f ′ destroys the AP (−1, 0, 1), but this holds
by the construction of f ′. (We intersected with {0,±1}, not {0,±1, y}, because
y ∈ {−1 + r,−1 + 2r} belongs in case (B).)

(B) If {y + r, y + 2r} ∩ {0,±1, y} = ∅, then f ′ sends the AP (y, y + r, y + 2r) to
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(
−1, 1

y+r
, 1
y+2r

)
, which is an AP when

2

y + r
= −1 +

1

y + 2r
=⇒ r2 = y2 + y.

Also, one readily checks that if {y+r, y+2r}∩{0,±1} 6= ∅, the AP (y, y+r, y+2r)
is destroyed by f ′. To verify this claim, note that there are 6 cases to consider,
depending on which of y + r and y + 2r belongs to the set {0,±1}. For the sake of
clarity, we shall work out the case where y+ r = 0; the remaining five cases may be
handled analogously. If y + r = 0, then because y 6∈ {0,±1}, we have that f ′ sends
the AP (y, y+r, y+2r) = (−r, 0, r) to (−1, 1, 1

r
), which is an AP if and only if 1

r
= 3,

but this is of course impossible modulo 3. Thus, f ′ destroys the AP (y, y+ r, y+2r)
when y + r = 0.

Now, let χ denote the Legendre symbol over Fq. It follows from the above case analysis
that if y 6∈ {0,±1} is chosen so that(

1− χ(y + 1)
)
·
(
1− χ(y(y + 1))

)
> 0,

then f ′ destroys all APs in Fq. Such a y exists if and only if the sum

Aq(y) ··=
∑

y∈Fq\{0,±1}

(
1− χ(y + 1)

)
·
(
1− χ(y(y + 1))

)
(2)

is positive. To compute Aq(y), we use the following well-known elementary formula:

Lemma 4. Let Fq be a finite field of odd characteristic, and let χ be the Legendre symbol
on Fq. If q is odd and g ∈ Fq[x] is a polynomial of degree at most 2 such that g 6= c · h2
for any c ∈ Fq and h ∈ Fq[x], then∑

y∈Fq

χ(g(y)) = −χ(a), (3)

where a is the coefficient of the degree-2 term in g.

Now, taking the sum in (2) over all of Fq and applying the result of Lemma 4,
we find that ∑

y∈Fq

(
1 + χ(y)− χ(y + 1)− χ(y(y + 1))

)
= q + 1.

Because ∑
y∈{0,±1}

(
1 + χ(y)− χ(y + 1)− χ(y(y + 1))

)
= 3− χ(−1) 6 4,

we conclude that Aq(y) > 0 provided q + 1 > 4, which happens once k > 2. Thus, there
exists y ∈ Fq \ {0,±1} such that f ′ destroys all APs in Fq for q = 3k and k > 2.
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Remark. Alternatively, note that we can handle the case p = 3 by simply exhibiting
AP-destroying permutations of F9 and F27, for it would then follow by Lemma 1 that
there is an AP-destroying permutation of F3k for each k > 1. Making the identification
F9 ' F3[α]/(α2 + 2α + 2), one readily checks that the permutation f ′ of F9 obtained
by taking y = α + 1 destroys all APs in F9. Similarly, making the identification F27 '
F3[β]/(β3 + 2β+ 1), one readily checks that the permutation f ′ of F27 obtained by taking
y = β2 destroys all APs in F27. Nonetheless, this ad hoc argument does not readily
generalize to primes p > 3, while the proof provided prior to the present remark extends
quite naturally to primes p > 3, as we demonstrate in Sections 2.2 and 2.3.

2.2 Destroying (0, 3
2
, 3) in the Case p > 3

This case takes more work than the case p = 3, but the strategy is similar. We begin
by constructing a permutation f ′ of Fq that destroys all but one AP. Take y ∈ Fq \
{0, 1

3
, 2
3
, 1, 3

2
, 3} (note that this already requires q > 5), and let f ′ be the permutation

obtained by switching the images of 3 and y under f ; that is, f ′(3) = 1
y
, f ′(y) = 1

3
, and

f ′(x) = f(x) otherwise. The AP (0, 3
2
, 3) is clearly destroyed by f ′, because y 6= 3. Thus,

by Lemma 3, if an AP other than (1
3
, 2
3
, 1) is not destroyed by f ′, it must either (A) contain

3 but not y or (B) contain y. The cases (A) and (B) each have two subcases depending
on the position of 3 or y in the AP; we study each of these subcases separately as follows.

(A) (a) If {3 + r, 3 + 2r} ∩ {0, 1, 3, y} = ∅, then f ′ sends the AP (3, 3 + r, 3 + 2r) to(
1
y
, 1
3+r

, 1
3+2r

)
, which is an AP when

2

3 + r
=

1

y
+

1

3 + 2r
=⇒ 2r2 + (9− 3y)r + (9− 3y) = 0.

If r = −3 and 3 + 2r = −3 6= y, then f ′ does not destroy the AP (3, 3 +
r, 3 + 2r) = (3, 0,−3) when y = 3

7
. One readily checks that f ′ destroys all

other APs of the form (3, 3 + r, 3 + 2r) that do not contain y and satisfy
{3 + r, 3 + 2r} ∩ {0, 1, 3} 6= ∅. (Note that there are 3 cases left to consider,
making a total of four cases in all, according as 3 + r or 3 + 2r belongs to
{0, 1}.)

(b) If {3 − r, 3 + r} ∩ {0, 1, 3, y} = ∅, then f ′ sends the AP (3 − r, 3, 3 + r) to(
1

3−r ,
1
y
, 1
3+r

)
, which is an AP when

2

y
=

1

3− r
+

1

3 + r
=⇒ r2 = 9− 3y.

If r = 3 and 3 + r = 6 6= y, then f ′ does not destroy the AP (3− r, 3, 3 + r) =
(0, 3, 6) when y = 12

7
. If r = 2 and 3 + r = 5 6= y, then f ′ does not destroy the

AP (3− r, 3, 3 + r) = (1, 3, 5) when y = 10. There are no cases that remain to
be considered for the AP (3− r, 3, 3 + r).
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(B) (a) If {y + r, y + 2r} ∩ {0, 1, 3, y} = ∅, then f ′ sends the AP (y, y + r, y + 2r) to(
1
3
, 1
y+r

, 1
y+2r

)
, which is an AP when

2

y + r
=

1

3
+

1

y + 2r
=⇒ 2r2 + (3y − 9)r + (y2 − 3y) = 0.

If y+r = 0 and y+2r 6∈ {0, 1, 3}, then f ′ does not destroy the AP (y, y+r, y+
2r) = (y, 0,−y) when 5y = −3. If y+r = 1 and y+2r 6∈ {0, 1, 3}, then f ′ does
not destroy the AP (y, y + r, y + 2r) = (y, 1, 2 − y) when y = 5. If y + r = 3
and y + 2r 6∈ {0, 1, 3}, then f ′ does not destroy the AP (y, y + r, y + 2r) =
(y, 3, 6 − y) when y = 12. If y + 2r = 1 and y + r 6∈ {0, 1, 3}, then f ′ does
not destroy the AP (y, y + r, y + 2r) =

(
y, y+1

2
, 1
)

when y = 11. One readily
checks that f ′ destroys all other APs of the form (y, y + r, y + 2r) that satisfy
{y + r, y + 2r} ∩ {0, 1, 3} 6= ∅. (Note that the remaining cases here are when
y + 2r ∈ {0, 3} and y + r 6∈ {0, 1, 3} and when both y + r and y + 2r are in
{0, 1, 3}.)

(b) If {y − r, y + r} ∩ {0, 1, 3, y} = ∅, then f ′ sends the AP (y − r, y, y + r) to(
1
y−r ,

1
3
, 1
y+r

)
, which is an AP when

2

3
=

1

y − r
+

1

y + r
=⇒ r2 = y2 − 3y.

If y−r = 0 and y+r 6∈ {0, 1, 3}, then f ′ does not destroy the AP (y−r, y, y+r) =
(0, y, 2y) when y = −3

2
. If y − r = 1 and y + r 6∈ {0, 1, 3}, then f ′ does not

destroy the AP (y − r, y, y + r) = (1, y, 2y − 1) when y = 5
4
. If y − r = 3 and

y+r 6∈ {0, 1, 3}, then f ′ does not destroy the AP (y−r, y, y+r) = (3, y, 2y−3)
when y = 3

4
. The only remaining AP of the form (y − r, y, y + r) that satisfies

{y − r, y + r} ∩ {0, 1, 3} 6= ∅ is given by (y − r, y, y + r) = (1, 2, 3), but f ′

evidently destroys this AP.

Now, taking χ to be the Legendre symbol over Fq as before, it follows from the above case
analysis that if

y 6∈ S ··=
{
−3

2
,−3

5
, 0,

1

3
,
3

7
,
2

3
,
3

4
, 1,

5

4
,
12

7
,
3

2
, 3, 5, 10, 11, 12

}
is chosen so that(

1−χ((3−y)(3−9y))
)
·
(
1−χ(3(3−y))

)
·
(
1−χ((3−y)(27−y))

)
·
(
1−χ(−y(3−y))

)
> 0, (4)

then f ′ destroys all APs other than the AP (1
3
, 2
3
, 1) in Fq. Expanding the product on the

left-hand side (LHS) of (4) under the assumption that y 6= 3 (so that χ((3 − y)2) = 1),
we obtain a lengthy expression that we denote by Bq(y) for the sake of readability:

Bq(y) ··=
[
1− χ((3− y)( 1

3
− y))− χ(9− 3y)− χ((3− y)(27− y))− χ(y(y − 3)) + χ(1− 3y)+

χ((27− y)( 1
3
− y)) + χ(y(y − 1

3
)) + χ(3(27− y)) + χ(−3y) + χ(y(y − 27))− χ((3− y)(27− y)(1− 3y))−

χ(y(3− y)(3y − 1))− χ(y(3− y)(27− y)(y − 1
3
))− χ(3y(3− y)(y − 27)) + χ(y(27− y)(3y − 1))

]
.
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Clearly, there exists y ∈ Fq \ S satisfying (4) if and only if∑
y∈Fq\S

Bq(y) > 0. (5)

To estimate the LHS of (5), we first estimate
∑

y∈Fq
Bq(y), for which must invoke not

only Lemma 4 but also the Hasse bound (see [1] for the original paper and Corollary 1.4
of [4] for a more modern reference):

Theorem 5. [Hasse] Let Fq be a finite field of odd characteristic, and let χ be the Legendre
symbol on Fq. If g ∈ Fq[x] is a polynomial of degree 3 or 4 such that g 6= c · h2 for any
c ∈ Fq and h ∈ Fq[x], then ∣∣∣χ(a) +

∑
y∈Fq

χ(g(y))
∣∣∣ 6 2

√
q, (6)

where a is the coefficient of the degree-4 term in g.

The constant term 1 in Bq(y) yields a contribution of q to the sum. Each of the other
terms in Bq(y) is of the form χ(g(y)) for some polynomial g ∈ Fq[x]. Applying Lemma 4 to
the terms of the form χ(g(y)) where g has degree at most 2, we obtain a total contribution
of 0 from such terms. Then, applying Theorem 5 to the remaining terms, which are of
the from χ(g(y)) where g has degree 3 or 4, yields∑

y∈Fq

Bq(y) > q − 10
√
q − 1. (7)

Estimating
∑

y∈S Bq(y) by using the trivial bound |χ(g(y))| 6 1 for each y ∈ S unless

g(y) = 0 (which can occur when y ∈ {0, 1
3
, 3}), we find that∑

y∈S

Bq(y) 6 13 · 16 + 0 + 8 + 8 = 224, (8)

where the term 13 · 16 bounds the contributions of y ∈ S \ {0, 1
3
, 3}, the term 0 is the con-

tribution of y = 0, and the terms 8 + 8 bound the contributions of y ∈ {1
3
, 3}. Combining

the estimates (7) and (8), we deduce that (5) holds if q − 10
√
q > 225, which happens

when q > 434. Thus, there exists y ∈ Fq \ S such that f ′ destroys all APs other than the
AP (1

3
, 2
3
, 1) in Fq for q > 434 a prime power.

2.3 Destroying (1
3
, 2
3
, 1) in the Case p > 3

We now perform an analogous maneuver to construct a permutation that destroys all APs
in Fq for sufficiently large q. With q > 434, take y ∈ Fq \ S so that the permutation f ′

destroys all APs other than the AP (1
3
, 2
3
, 1), and for z ∈ Fq \ {0, 13 ,

2
3
, 1, 3

2
, 3, y}, consider

the permutation f ′′ obtained by switching the images of 1
3

and z under f ′ (i.e. f ′′(1
3
) = 1

z
,

f ′′(z) = 3, and f ′′(x) = f ′(x) otherwise). The AP (1
3
, 2
3
, 1) is clearly destroyed by f ′′, as

z 6= 1
3
. Thus, by Lemma 3, if an AP is not destroyed by f ′′, it must either (A) contain 1

3

but not z or (B) contain z. The cases (A) and (B) each have two subcases depending on
the position of 1

3
or z in the AP; we study each of these subcases separately as follows:
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(A) (a) If {1
3

+ r, 1
3

+ 2r}∩ {0, 1
3
, 1, 3, y, z} = ∅, then f ′′ sends the AP (1

3
, 1
3

+ r, 1
3

+ 2r)

to
(

1
z
, 1

1
3
+r
, 1

1
3
+2r

)
, which is an AP when

2
1
3

+ r
=

1

z
+

1
1
3

+ 2r
=⇒ 2r2 + (1− 3z)r + (1

9
− z

3
) = 0.

We must now deal with the cases where the AP does not contain z but {1
3

+
r, 1

3
+ 2r} ∩ {0, 1

3
, 1, 3, y} 6= ∅; as the computations are more complicated and

numerous in the present situation, we will not be as explicit as we were in
Section 2.2. If 1

3
+ r = 0 and 1

3
+ 2r = −1

3
6= z, then there is at most one value

of z, call it a1, such that f ′′ does not destroy the AP (1
3
, 0,−1

3
). (The value a1,

if it exists, is uniquely determined by the particular field Fq with which we are
working.) Similarly, from the cases where 1

3
+ r ∈ {1, 3, y}, there are at most

three additional values of z, call them a2, a3, a4, such that f ′′ does not destroy
the AP (1

3
, 1
3

+ r, 1
3

+ 2r). From the cases where 1
3

+ 2r ∈ {0, 3, y}, there are at
most three values of z, call them a5, a6, a7, such that f ′′ does not destroy the
AP (1

3
, 1
3

+ r, 1
3

+ 2r). The only remaining case to consider is when 1
3

+ 2r = 1,
but the corresponding AP (1

3
, 1
3

+ r, 1
3

+ 2r) = (1
3
, 2
3
, 1) is, as mentioned before,

destroyed by f ′.

(b) If {1
3
− r, 1

3
+ r} ∩ {0, 1

3
, 1, 3, y, z} = ∅, then f ′′ sends the AP (1

3
− r, 1

3
, 1
3

+ r)

to
(

1
1
3
−r ,

1
z
, 1

1
3
+r

)
, which is an AP when

2

z
=

1
1
3
− r

+
1

1
3

+ r
=⇒ r2 =

1

9
− z

3
.

From the cases where 1
3
− r ∈ {0, 1, 3, y}, there are at most four values of z,

call them a8, a9, a10, a11, such that f ′′ does not destroy the AP (1
3
− r, 1

3
, 1
3

+ r).
By symmetry, we have also taken care of the cases where 1

3
+ r ∈ {0, 1, 3, y}.

There are no cases that remain to be considered for the AP (1
3
− r, 1

3
, 1
3

+ r).

(B) (a) If {z + r, z + 2r} ∩ {0, 1
3
, 1, 3, y, z} = ∅, then the AP (z, z + r, z + 2r) is sent

under f ′′ to
(
3, 1

z+r
, 1
z+2r

)
, which is an AP when

2

z + r
= 3 +

1

z + 2r
=⇒ 6r2 + (9z − 3)r + (3z2 − z) = 0.

The cases where {z+ r, z+ 2r}∩{0, 1
3
, 1, 3, y} 6= ∅ give at most 29 values of z,

call them a12, . . . , a40, such that f ′′ does not destroy the AP (z, z + r, z + 2r).
To see why, observe that there are at most five values of z arising from the
possibility that z+r ∈ {0, 1

3
, 1, 3, y} 63 z+2r, because for each value of z+r 6= 1

3

we obtain a linear equation in z, and when z + r = 1
3
, we obtain a quadratic

equation one of whose solutions is z = 1
3

and must therefore be discarded.
Similarly, we obtain at most five values of z arising from the possibility that
z + 2r ∈ {0, 1

3
, 1, 3, y} 63 z + r. In the cases where z + r, z + 2r ∈ {0, 1

3
, 1, 3, y},
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we can solve for z immediately (without even imposing the condition that
f ′′ destroys the AP (z, z + r, z + 2r)); we obtain at most 20 values of z, one
corresponding to each of the 5·4 = 20 different ordered pairs of distinct elements
of {0, 1

3
, 1, 3, y}. Nevertheless, it is clear that we should discard the case where

z + r = 1
3

and z + 2r = 0, which would imply that z = 2
3
, contradicting our

restriction on the value of z. We therefore end up with at most 5+5+20−1 = 29
values of z. There are no cases that remain to be considered for the AP
(z, z + r, z + 2r).

(b) If {z−r, z+r}∩{0, 1
3
, 1, 3, y, z} = ∅, then the AP (z−r, z, z+r) is sent under

f ′′ to
(

1
z−r , 3,

1
z+r

)
, which is an AP when

6 =
1

z − r
+

1

z + r
=⇒ r2 = z2 − z

3
.

The cases where {z−r, z+r}∩{0, 1
3
, 1, 3, y} 6= ∅ give at most 14 values of z, call

them a41, . . . , a54, such that f ′′ does not destroy the AP (z− r, z, z+ r). To see
why, observe that there are at most five values of z arising from the possibility
that z−r ∈ {0, 1

3
, 1, 3, y} 63 z+r, because for each value of z−r 6= 1

3
we obtain

a linear equation in z, and when z− r = 1
3
, we obtain a quadratic equation one

of whose solutions is z = 1
3

and must therefore be discarded. By symmetry,
we have also taken care of the possibility that z + r ∈ {0, 1

3
, 1, 3, y} 63 z − r.

In the cases where z − r, z + r ∈ {0, 1
3
, 1, 3, y}, we can solve for z immediately

(without even imposing the condition that f ′′ destroys the AP (z−r, z, z+r));
we obtain at most 10 values of z, one corresponding to each of the

(
5
2

)
= 10

different pairs of distinct elements of {0, 1
3
, 1, 3, y}. Nevertheless, it is clear that

we should discard the case where z − r = 0 and z + r = 3, which would imply
that z = 3

2
, contradicting our restriction on the value of z. We therefore end

up with at most 5 + 10 − 1 = 14 values of z. There are no cases that remain
to be considered for the AP (z − r, z, z + r).

As in Section 2.2, we can use the above case analysis to write down a condition on when
f ′′ destroys all APs in Fq. Indeed, if

z 6∈ S ′ ··= {ai : 1 6 i 6 54} ∪
{

0,
1

3
,
2

3
, 1,

3

2
, 3, y

}
is chosen so that we have(
1−χ((1−27z)(1−3z))

)
·
(
1−χ(1−3z)

)
·
(
1−χ((1−3z)(1− z

3
))
)
·
(
1−χ(−3z(1−3z))

)
> 0,

(9)
then f ′′ destroys all APs in Fq. Let w ··= 1

z
for z 6= 0, and define S ′′ ··= { 1x : x ∈

S ′ \ {0}} ∪ {0}. Then, rewriting the above condition in terms of w and S ′′, we obtain the
following “new condition”: if w 6∈ S ′′ is chosen so that(

1−χ((3−w)(3−9w))
)
·
(
1−χ(3(3−w))

)
·
(
1−χ((3−w)(27−w))

)
·
(
1−χ(−w(3−w))

)
> 0, (10)
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then f ′′ destroys all APs in Fq. But upon making the replacements y  w and S  S ′′,
one readily observes that this “new condition” is the same as the analogous condition
obtained in Section 2.2, namely (4). Therefore, there exists w ∈ Fq \ S ′′ satisfying (9) if
and only if ∑

w∈Fq\S′′

Bq(w) > 0. (11)

To estimate the LHS of (11), we first recall the bound (7):∑
w∈Fq

Bq(w) > q − 10
√
q − 1. (12)

Next, estimating
∑

w∈S′′ Bq(w) by using the trivial bound |χ(g(w))| 6 1 for each w ∈ S ′′
unless g(w) = 0 (which can occur when w ∈ {0, 1

3
, 3}), we find that∑

w∈S′′

Bq(w) 6 58 · 16 + 0 + 8 + 8 = 944, (13)

where the term 58 · 16 bounds the contributions of w ∈ S ′′ \ {0, 1
3
, 3}, the term 0 is

the contribution of w = 0, and the terms 8 + 8 bound the contributions of w ∈ {1
3
, 3}.

Combining the estimates (12) and (13), we deduce that (11) holds if q − 10
√
q > 945,

which happens when q > 1307. Thus, there exists w ∈ Fq \ S ′′ such that f ′′ destroys all
APs in Fq for q > 1307 a prime power.

2.4 Remaining Cases

We have now shown that there exists an AP-destroying permutation of (Z/pZ)k if p = 3
and k > 2 and if pk > 1307. To complete the proof of Theorem 2, it remains to check
the finitely many remaining cases, and we do this by resorting to a computer program.
By Lemma 1, it suffices to check that (Z/pZ)k has an AP-destroying permutation for the
following cases: (p, k) ∈ {(p, 1) : 7 < p < 1307 is prime} ∪ {(5, 2), (5, 3), (7, 2), (7, 3)}. In
each of these cases other than p = q = 11, 13, 29, 31, our code relies on the construction
used in the argument of Section 2. Indeed, for these cases, the idea of modifying the values
of f(3) and f(1

3
) actually works to yield an AP-destroying permutation of (Z/pZ)k. For

q ∈ {11, 13, 29, 31}, explicit AP-destroying permutations of Z/pZ were constructed by
Hegarty in [2]. The code required to check these cases, as well as a database listing
the explicit AP-destroying permutations for all of the above exceptional cases, may be
obtained by downloading the source files from the following website: https://arxiv.

org/format/1601.07541v3.
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