
Algebraic properties of chromatic roots

Peter J. Cameron
School of Mathematics and Statistics

University of St Andrews
Scotland, UK

pjc20@st-andrews.ac.uk

Kerri Morgan
Faculty of Information Technology

Monash University
Clayton, Australia

Kerri.Morgan@monash.edu

Submitted: Nov 2, 2016; Accepted: Jan 19, 2017; Published: Feb 3, 2017

Mathematics Subject Classifications: 05C31

Abstract

A chromatic root is a root of the chromatic polynomial of a graph. Any chromatic
root is an algebraic integer. Much is known about the location of chromatic roots
in the real and complex numbers, but rather less about their properties as algebraic
numbers. This question was the subject of a seminar at the Isaac Newton Institute
in late 2008. The purpose of this paper is to report on the seminar and subsequent
developments.

We conjecture that, for every algebraic integer α, there is a natural number n
such that α+n is a chromatic root. This is proved for quadratic integers; an exten-
sion to cubic integers has been found by Adam Bohn. The idea is to consider certain
special classes of graphs for which the chromatic polynomial is a product of linear
factors and one “interesting” factor of larger degree. We also report computational
results on the Galois groups of irreducible factors of the chromatic polynomial for
some special graphs. Finally, extensions to the Tutte polynomial are mentioned
briefly.

1 Chromatic roots

A proper colouring of a graph G is a function from the vertices of G to a set of q colours
with the property that adjacent vertices receive different colours. The chromatic poly-
nomial PG(q) of G is the function whose value at the positive integer q is the number
of proper colourings of G with q colours. It is a monic polynomial in q with integer
coefficients, whose degree is the number of vertices of G.

A chromatic root is a complex number which is a root of some chromatic polynomial.

1.1 Location of chromatic roots

A lot of attention has been paid to the location of chromatic roots in the complex plane,
as we now outline.

the electronic journal of combinatorics 24(1) (2017), #P1.21 1



Integer chromatic roots
An integer m is a root of PG(q) = 0 if and only if the chromatic number of G (the

smallest number of colours required for a proper colouring of G) is greater than m. Hence
every non-negative integer is a chromatic root. (For example, the complete graph Km+1

cannot be coloured with m colours.)
On the other hand, no negative integer is a chromatic root.

Real chromatic roots
Woodall [24] showed that the real chromatic roots of complete bipartite graphs can be

arbitrarily large. The non-trivial parts of the following theorem are due to Jackson [12]
and Thomassen [23].

Theorem 1.

1. There are no negative chromatic roots, none in the interval (0, 1), and none in the
interval (1, 32

27
].

2. Chromatic roots are dense in the interval [32
27
,∞).

Complex chromatic roots
For some time it was thought that chromatic roots must have non-negative real part.

This is true for graphs with fewer than ten vertices. But Sokal [21] showed the following.

Theorem 2. Complex chromatic roots are dense in the complex plane.

This is connected with the Yang–Lee theory of phase transitions. Sokal used theta-
graphs in his proof; these graphs also play a role in our investigation.

1.2 Algebraic integers

An algebraic number is a (complex) root of a polynomial over the integers; an algebraic
integer is a root of a monic integer polynomial. Clearly any chromatic root is an algebraic
integer. Our main question is the converse:

Which algebraic integers are chromatic roots?

Let G + Kn denote the graph obtained by adding n new vertices to G, joined to one
another and to all existing vertices. Then

PG+Kn(q) = q(q − 1) · · · (q − n+ 1)PG(q − n).

We conclude:

Proposition 3. If α is a chromatic root, then so is α + n, for any natural number n.
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However, the set of chromatic roots is far from being a semiring; it is not closed under
either addition or multiplication. This can be seen as follows. By Sokal’s theorem, we can
find a chromatic root α with negative real part and modulus less than 1. Then neither
α+ α nor α · α is a chromatic root: the first is a negative real number, the second lies in
(0, 1).

As partial replacement, here are two conjectures:

Conjecture 4 (The α+n conjecture). Let α be an algebraic integer. Then there exists
a natural number n such that α + n is a chromatic root.

Conjecture 5 (The nα conjecture). Let α be a chromatic root. Then nα is a chromatic
root for any natural number n.

If the α + n conjecture is true, we can ask, for given α, what is the smallest n for
which α + n is a chromatic root?

The α+n conjecture can be reformulated as follows. A monic integer polynomial f(q)
of degree n can be transformed by a substitution x = q + a into a unique monic integer
polynomial in which the coefficient of xn−1 lies between 0 and n − 1 (inclusive). We
call such a polynomial standard. The conjecture asserts that every standard irreducible
monic integer polynomial is the standard form of a factor of a chromatic polynomial. This
formulation lends itself more readily to computation.

1.3 An example

The complex number α = (
√

5−1)/2 is an algebraic integer, since it satisfies α2+α−1 = 0.
It is not a chromatic root, as it lies in (0, 1).

Also, α+ 1 (the golden ratio) and α+ 2 are not chromatic roots, since their algebraic
conjugates are negative or in (0, 1). There are, however, graphs (for example, the trun-
cated icosahedron) which have chromatic roots very close to α + 2, the so-called “golden
root” [2].

Recently, Royle showed that α+3 is a chromatic root [19] (the smallest graphs having
chromatic root α+3 have 11 vertices) and hence so is α+n for any natural number n > 3.
We will see that the smallest graph having chromatic root α + 4 has eight vertices.

Remark We showed that α + 1 and α + 2 are not chromatic roots by showing that
they have conjugates in forbidden regions of the real line. Is there another technique for
proving such negative results?

2 Two reductions

Let G be a graph which is the union of two graphs G1 and G2, whose intersection is a
complete graph of size k. Such a graph is called a clique-sum of G1 and G2.

We have

PG(q) =
PG1(q)PG2(q)

q(q − 1) · · · (q − k + 1)
.
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For, having chosen any colouring of G1 with q colours, a proportion 1/q(q−1) · · · (q−k+1)
of the colourings of G2 agree on this intersection.

So if a graph is a clique-sum of smaller graphs, the irreducible factors of its chromatic
polynomial all occur in these smaller graphs. So we need only consider graphs which
cannot be expressed as clique-sums. In particular, we can take connected graphs.

The argument in Proposition 3 shows that, furthermore, we may assume that there is
no vertex joined to all others.

3 Rings of cliques

Our strategy is to choose certain special graphs for which the chromatic polynomial can
be computed explicitly. The most productive class we found are the rings of cliques,
defined as follows:

Let a0, . . . , ak−1 be positive integers. The graph R(a0, . . . , ak−1) is the disjoint union
of complete subgraphs C0, . . . , Ck−1 with a0, . . . , ak−1 vertices respectively, together with
all edges from Ci to Ci+1 for i = 0, . . . , k − 1 (where indices are taken modulo k).

The following theorem was proved by Read [16].

Theorem 6. The chromatic polynomial of R(1, a1, . . . , ak−1) is a product of linear factors
and the polynomial

1

q

(
k−1∏
i=1

(q − ai)−
k−1∏
i=1

(−ai)

)
of degree k − 2.

We call the displayed polynomial the interesting factor.
Read later found a more complicated formula for the chromatic polynomial of arbitrary

rings of cliques [17].
In connection with the nα conjecture, we make the following observation:

Proposition 7. If α is a root of the interesting factor of R(1, a1, . . . , ak−1), then nα is a
root of the interesting factor of R(1, na1, . . . , nak−1).

Example 1
The graph R(1, 1, . . . , 1) (with k entries 1) is simply an k-cycle. The interesting factor is

(q − 1)k−1 − (−1)k−1

q
=
xk−1 − (−1)k−1

x+ 1
,

where we have put x = q − 1. So the roots have the form 1 + ω, where

• if k − 1 is odd, then ω is a 2(k − 1)th root of unity which is not a (k − 1)th root
and is not −1;

• if k − 1 is even, then ω is a (k − 1)th root of unity which is not −1.
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We conclude that the α+ n conjecture is true for roots of unity (and indeed, if ω is a
root of unity, then ω + 1 is a chromatic root).

Example 2 The interesting factor for R(1, 1, 1, 5) is q2− 7q+ 11, which has a root α+ 4,
where α is the golden ratio. This is the example promised earlier, and is the smallest
graph which has a chromatic root α + 4.

Quadratic integers
In this section, we prove the α + n conjecture for quadratic integers.

Theorem 8. Let α be an integer in a quadratic number field. Then there is a natural
number n such that α + n is a chromatic root.

Proof. If α is irrational, then the set {α + n : n ∈ Z} is the set of all quadratic integers
with given discriminant. So it is enough to show that, for any non-square d congruent to
0 or 1 mod 4, there is a quadratic integer with discriminant d which is a chromatic root.

The interesting factor of R(1, 1, a, b) is x2−(a+b+1)x+(ab+a+b). The discriminant
of this quadratic is

(a+ b+ 1)2 − 4(ab+ a+ b) = (a− b)2 − 2(a+ b) + 1.

Now a+ b and a− b are integers with the same parity. If they are both even, say 2l and
2m with m < l, we want d = 4m2 − 4l + 1. Any number d congruent to 1 mod 4 is of
this form: choose m such that 4m(m − 1) > d − 1, and then l = m2 − (d − 1)/4. The
argument for d congruent to 0 mod 4 is similar.

Rings of k cliques, one of size 1, give “interesting factors” of degree k − 2, whereas
only k−3 independent parameters are theoretically required to prove the α+n conjecture
for algebraic integers of degree k − 2. So it is possible that these graphs would suffice
for the purpose. However, computational evidence in Section 6 suggests that this may
be difficult. We have been unable to find such a polynomial with Galois group C5, for
example.
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Figure 1: Graph 198748
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Figure 2: Graph 10756635

Here is a table of the smallest graphs we found with real quadratic roots of given
discriminant; we give the number of vertices in the graph, the quadratic factor, and the
graph (given by its number in McKay’s list of connected graphs [13], if it is not a ring of
cliques). The graphs that are not rings of cliques are given in Figures 1 and 2.
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Discriminant Polynomial No. of vertices Graph number
5 x2 − 7x+ 11 8 R(1, 1, 1, 5)
8 x2 − 6x+ 7 9 198748
12 x2 − 8x+ 13 9 R(1, 1, 1, 6)
13 x2 − 7x+ 9 10 10756635

4 Bicliques

A biclique is a graph whose vertex set is the union of two cliques C and D, of sizes n
and m, say D = {w1, . . . , wm}. For i = 1, . . . ,m, let Fi be the set of neighbours of wi in
C. We denote this graph by A(F), where F = (F1, . . . , Fm). (Think of m as fixed and n
arbitrary.)

We may assume without loss of generality that:

• The union U of all the sets Fi is the whole of C. For, if not, then the graph is a
clique-sum: the subgraphs D ∪ U and C intersect in the clique U .

• The intersection of all the sets Fi is empty. For a vertex in this intersection is joined
to every other vertex in the graph.

Proposition 9. The chromatic polynomial of a biclique can be computed in terms of n
and the sizes of the m sets Fi and their intersections.

Proof. First, ignore the edges within D. If q colours are available, then C can be coloured
in (q)n = q(q−1) · · · (q−n+1) ways, and so it is enough to count the number of colourings
of the vertices in D; there are q− |Fi| ways to colour wi, and so the number of colourings
is the product of these numbers. We have to count the subset of these colourings in which
all the vertices in D receive different colours. This can be done by Möbius inversion over
the poset of partitions of {1, . . . , n} (whose Möbius function is known, see [18]), if we
can compute, for each such partition, the number of colourings in which vertices with
indices in the same part have the same colour. If I is a part, then there are q − |

⋃
i∈I Fi|

ways to choose this colour, and multiplying these numbers gives the number of colourings
constant on every part of the given partition.

By Inclusion-Exclusion, we can calculate |
⋃

i∈I Fi| for every I ⊆ {1, . . . , n} if we know
|
⋂

i∈I Fi| for every such I.

If m = 2, |F1| = a and |F2| = b, we have a ring of cliques R(a, b, 1, 1). This is a
specialisation of a case we have already considered; but, as we saw, it is general enough
to prove the α + n conjecture for all quadratic integers.

For m = 3, we get a six-parameter family of cubics as the “interesting factors”. Adam
Bohn [3] has used this family to show that the α + n conjecture is also true for cubic
integers.

In general, the “interesting factor” has degree m and has 2m − 2 free parameters
(which must be non-negative integers). Work is proceeding on using this polynomial to
prove further cases of the conjecture. The difficulty is the exponentially large number of
parameters! We hope that this family is general enough to prove the α + n conjecture.

the electronic journal of combinatorics 24(1) (2017), #P1.21 6



5 Other families of graphs

In this section we consider some other families of graphs. Unlike the types considered
above (rings of cliques and bicliques), we do not obtain factors of bounded degree with
several free parameters: the parameters appear in the exponents.

5.1 Complete bipartite graphs

The chromatic polynomial of the complete bipartite graph Km,n can be computed explic-
itly. Think of m as fixed and n as increasing. Now suppose that k colours are used on
the part of size m; the colour classes form a partition with k parts, and there are (q− k)n

ways to colour the other part. So the chromatic polynomial is

m∑
k=1

S(m, k)(q)k(q − k)n = q(q − 1)Fm,n(q),

where S(m, k) is the Stirling number of the second kind (the number of partitions of
{1, . . . ,m} into k parts).

For example, we have

F2,n(q) = (q − 1)n−1 + (q − 2)n,

F3,n(q) = (q − 1)n−1 + 3(q − 2)n + (q − 2)(q − 3)n.

Note that the degree of the “interesting” factor is not bounded by a function of m in this
case.

By computation, we found that, for 3 6 n 6 100, the polynomial F2,n(q) is irreducible
if n is not congruent to 2 mod 6; in the remaining cases, we have F2,n(q) = F2,2(q)Gn(q),
where Gn(q) is irreducible. We now show that at least the factorisation holds in general.

Proposition 10. F2,2(q) divides F2,6k+2(q) for all k > 1.

Proof. Put x = 1 − q. We have F2,2(q) = (x + 1)2 − x = x2 + x + 1, so its roots are
primitive cube roots of unity. If ω is such a root, then ω3 = 1 and (ω + 1)2 = ω. So, if
n = 6k + 2, we have

(ω + 1)n = ω3k+1 = ω6k+1 = ωn−1,

so ω is a root of F2,n(q) = (x+1)n−xn−1. Thus the irreducible polynomial F2,2(q) divides
F2,n(q).

For m,n > 2, the polynomial Fm,n(q) is irreducible for all the values we tested.
We note in passing that the Galois group of each of these irreducible polynomials that

we were able to test is the symmetric group.

the electronic journal of combinatorics 24(1) (2017), #P1.21 7



5.2 Theta-graphs

Let s and p be integers at least 2. The theta-graph Θs,p is the graph with 2 + p(s − 1)
vertices obtained from p disjoint paths of length s by identifying all the left-hand endpoints
and also all the right-hand endpoints.

These graphs were used in Sokal’s proof [21] that chromatic roots are dense in the
complex plane. Their chromatic polynomials are known [21]; the chromatic polynomial
of Θs,p is a product of linear factors and an “interesting” factor

Gs,p(x) =
x(xs − 1)p − (xs − x)p

x(x− 1)p
,

where x = 1− q.
Note that the graph Θ2,p is just the complete bipartite graph K2,p. Note also that

(x− 1)Gs,2(x) = (xs − 1)2 − x(xs−1 − 1)2 = x2s−1 − 1,

so the roots of Gs,2(x) are precisely the (2s − 1)th roots of unity other than 1. Indeed,
Gs,2(x) is the product of the dth cyclotomic polynomials over all d dividing 2s− 1 except
for d = 1.

The result of the preceding section generalises:

Proposition 11. The polynomial Gs,2(x) divides Gs,p(x) if and only if p is congruent to
2 modulo 2(2s− 1).

Proof. Let ω be a (2s− 1)th root of unity other than 1, and let p be congruent to 2 mod
2(2s− 1). Then Gs,2(ω) = 0, so

(ωs − ω)2 = ω(ωs − 1)2,

by the calculation preceding the theorem. Let p = (4s− 2)k + 2, and raise both sides of
this equation to the power (2s− 1)k + 1. Noting that ω2s−1 = 1, we have

(ωs − ω)p = ω(ωs − 1)p.

So every root of Gs,2(x) is a root of Gs,p(x), and the sufficiency is proved.
Now let ω be a primitive (2s−1)th root of unity, and suppose that Gs,p(ω) = 0. Then

(ωs − ω)p = ω(ωs − 1)p.

Suppose that p = (4s− 2)k + 2 = e, where 0 < e < 4s− 2. Then by the first part,

(ωs − ω)(4s−2)k+2 = ω(ωs − 1)(4s−2)k+2,

so (
ωs − ω
ωs − 1

)e

= 1.

But ωs− ω = −ωs(ωs− 1), so ω2se = 1. This implies ωe− 1, contrary to assumption.
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The irreducibility of the interesting factor was proved by Delbourgo and Morgan [8]:

Theorem 12. Let

P (Θs,p; q) = P (Θa,k+1, q) = (−1)k+1q(q − 1)Ha(1− q)

where s = a, p = k + 1 and with a change of variable, X = 1 − q, we have Ha(X) =
Xk+1 −X(k+1)a−1 +Xk − 1. Then the interesting factor Ga, dividing Ha, is given by the
quotient

Ga =

{
(X−1)Ha(X)

(Xk+1−1)(Xd+1)
if k is odd and d = gcd(k − 1, 2a− 1) > 1,

Ha(X)
Xk+1−1

otherwise,

and is irreducible over Q.

5.3 Generalised theta graphs

We denote the theta graph with paths of consecutive lengths ns−n+1, ns−n+2, . . . , ns
by Θc(s,n) where s > 2 and n > 2.

The chromatic roots of Θc(s,n) are closely related to the chromatic roots of the theta
graph Θs,n with n paths of length s. In [8], an explanation for this relationship is given.
In addition, a description of the Galois group in the case n = 3 is provided.

After a variable change x = 1− q, the chromatic polynomial of Θs,n can be expressed
as:

P (Θs,n, x) = (−1)(s+1)nx(x− 1)× f(x)

(x− 1)n
,

where f(x) = (xs − 1)n − xn−1(xs−1 − 1)n.
Similarly, the chromatic polynomial of Θc(s,n) can be expressed

P (Θc(s,n);x) =
P (Cns−n+2;x) . . . P (Cns;x)

P (K2;x)n−1
× (−1)ns+1x× g(x)

where g(x) = xns − xns−1 + xn−1 − 1 and Ci is the cycle of order i.

Proposition 13. If α is a root of the factor g(x) of P (Θc(s,n);x) then αn is a root of the
factor f(x) of P (Θs,n, x).

Proof.

f(αn) = (αns − 1)n − (αn)n−1(αn(s−1) − 1)n

= (αns − 1)n − (αns−1 − αn−1)n.

As g(α) = 0 we have αns − 1 = αns−1 − αn−1 and so

f(αn) = (αns−1 − αn−1)n − (αns−1 − αn−1)n = 0.
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Hence, we have an explanation of the non-trivial relationships between the chromatic
roots of graphs Θs,n and chromatic roots of Θc(s,n). This leads to the following question,
a companion to the earlier α conjectures:

Conjecture 14. If α is a chromatic root, then f(α) = αn is a chromatic root for some
natural number n > 1.

Let λ(u, v) be the number of edge-disjoint paths between vertices u and v in graph
G. The maxmaxflow of G is Λ = maxu,v∈V (G),u6=v λG(u, v). The maxmaxflow Λ of a
generalised theta graph is the maximum number of disjoint paths.

Every chromatic root q of a generalised theta graph lies in the disc |q−1| 6 Λ−1
log 2

= n−1
log 2

[20]. It was shown in [7] that Θ2,n gives the root that maximises |q−1| over all generalised
theta graphs with n 6 8 paths and conjectured this to be true for larger n. Theorem 13
gives some support to this conjecture, as it shows that the interesting chromatic roots of
Θ2,n are larger than the chromatic roots of Θc(s,n).

6 Galois groups

If the α + n conjecture is true, then every transitive permutation group which actually
occurs as a Galois group over the rationals would occur as the Galois group of an irre-
ducible factor of a chromatic polynomial. The Inverse Galois Problem asks whether every
transitive permutation group actually arises in this way; we cannot tackle this question,
but we have investigated which small transitive groups arise as Galois groups in the cases
we have considered.

For the cases of rings of cliques, and graphs built from families of sets, we have
polynomials of degree bounded in terms of the number of cliques in the ring, or sets in
the family. These cases are amenable to computation. We have looked at the rings of
cliques. Note that the computational technique we used involved identifying the Galois
group as a transitive permutation group, and is viable for polynomials of degree up to
fifteen, that is, for rings of at most sixteen cliques.

We note that all cyclotomic polynomials will occur here – the nth cyclotomic poly-
nomial divides the interesting factor of the chromatic polynomial of an (n + 1)-cycle. In
particular, if n is prime, this interesting factor is irreducible, with Galois group cyclic of
order n− 1.

The next table shows what happens for small values.
For given n, we test all non-decreasing n-tuples (a1, . . . , an) of positive integers with

gcd equal to 1 and an 6 l. For each such n-tuple, we test the interesting factor of
R(a1, . . . , an, 1) (a polynomial of degree n− 1). If it is irreducible, we compute its Galois
group. In the table, Sn and An are the symmetric and alternating groups of degree n,
Cn the cyclic group of order n, V4 the Klein group of order 4, Dn the dihedral group of
order 2n, F5 the Frobenius group of order 20 (the affine group over the integers mod 5);
and o denotes the wreath product of permutation groups. Entries in the columns labelled
“red” and “Sn−1” give the number of tuples for which the polynomial was reducible or had
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symmetric Galois group; entries in brackets in the “Other” column give these multiplicities
for other groups (if greater than one). The calculations were performed using GAP [11].

The cyclic groups of order p−1 (for p prime and p > 5) all arise from the (p+1)-cycle,
as explained earlier.

n l red Sn−1 Other
4 30 2581 34471 C3(×15)
5 30 2677 260658 C4(×6), V4(×7),

D4(×1104), A4(×11)
6 30 23228 1555851 D5, F5(×2), A5(×3)
7 20 2685 642636 C6, S2 o S3(×10),

S3 o S2(×145), PGL(2, 5)(×5)
8 10 1132 22630
9 8 152 11054 S4 o S2(×3)
10 8 1061 18089
11 6 29 4248 C10

12 6 592 5492
13 6 33 8415 C12

14 6 884 10609
15 6 307 15045
16 6 1366 18813

Note that we have achieved every transitive permutation group of degree at most 4,
but for degree 5 we are missing the cyclic group. The unique example of the dihedral
group D5 occurs for R(1, 4, 4, 9, 9, 9, 25). For degree 6, we have seen only five of the 16
transitive groups.

If certain groups were never realised as Galois groups of chromatic polynomials of rings
of cliques, then this family would not be general enough to prove the α + n conjecture.

It would be interesting to do similar computation for bicliques.
Further lists of Galois groups of chromatic polynomials can be found in [15, 8].

6.1 Further speculation

The Galois group of a “random” polynomial is typically the symmetric group of its degree.
The chromatic polynomial of a random graph cannot be irreducible, since it will have

many linear factors q −m, for m up to the chromatic number. Bollobás [5] showed that
the chromatic number is almost surely close to n/(2 log2 n).

On the basis of admittedly very limited evidence, we propose the following conjecture:

Conjecture 15. The chromatic polynomial of a random graph is typically a product of
linear factors and one irreducible factor whose Galois group is the symmetric group of its
degree.

Of course, not all graphs have this property; not even all graphs which are not clique-
separable. There are graphs in which all irreducible factors of the chromatic polynomial
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are linear. Chordal graph (graphs in which every cycle of length greater than 3 has
a chord) has this property, and Braun et al. [6] conjectured that there are no others;
this conjecture was refuted by Read, who observed that the graph obtained from K6 by
subdividing an edge has chromatic polynomial

PG(q) = q(q − 1)(q − 2)(q − 3)3(q − 4)

but is not chordal since it contains an induced 4-cycle. However, Dong and Koh [9] showed
that every planar graph that has only integer chromatic roots is chordal; they conjectured
that the same conclusion holds for every graph with chromatic number at most four that
has only integer roots. It seems to be a difficult open problem to characterize graphs with
this property; Dong et al. [10] give some results for rings of cliques.

On the other hand, Morgan [15] found that there is a graph on nine vertices whose
chromatic polynomial has two quadratic factors, one with real roots, and the other with
non-real roots. It is labelled 198748 in the Geng listing [13].

The chromatic polynomial is a specialisation of the two-variable Tutte polynomial,
which itself is a specialisation of the “multivariate Tutte polynomial” which is described
in detail in [22]. This polynomial has a “local” variable for each edge of the graph (or
more generally, element of the matroid), and one global variable. It was shown by de
Mier et al. [14] that, for a connected matroid (in particular, for a 2-connected graph), the
two-variable Tutte polynomial is irreducible. Furthermore, Bohn et al. [4] showed that,
under the same hypotheses, the multivariate Tutte polynomial (regarded as a polynomial
in the global variable over the field of fractions of all the local variables) has Galois group
the symmetric group. Thus, one would expect that “almost all” specialisations of this
polynomial would have symmetric Galois group. However, we are interested in particular
specialisations, where it is not known whether such a result holds. In particular, is the
Galois group of the two-variable Tutte polynomial of a connected matroid (as a polynomial
in one variable over the field of fractions of the other) the symmetric group?
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