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Abstract

The aim of this paper is to provide an affirmative answer to a recent question

by Bubeck and Linial on the local profile of trees. For a tree T , let p
(k)
1 (T ) be the

proportion of paths among all k-vertex subtrees (induced connected subgraphs) of T ,

and let p
(k)
2 (T ) be the proportion of stars. Our main theorem states: if p

(k)
1 (Tn)→ 0

for a sequence of trees T1, T2, . . . whose size tends to infinity, then p
(k)
2 (Tn) → 1.

Both are also shown to be equivalent to the statement that the number of k-vertex
subtrees grows superlinearly and the statement that the (k − 1)th degree moment
grows superlinearly.

1 Introduction

In their recent paper [2], Bubeck and Linial studied what they call the local profile of trees.
For two trees S and T , we denote the number of copies of S in T by c(S, T ) (formally, the
number of vertex subsets of T that induce a tree isomorphic to S). For an integer k > 4,
let T k1 , T

k
2 , . . . be a list of all k-vertex trees (up to isomorphism), such that T k1 = Pk is the

path and T k2 = Sk is the star, and set

p
(k)
i (T ) =

c(T ki , T )

Zk(T )
, where Zk(T ) =

∑
j

c(T kj , T ).
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In words, Zk(T ) is the number of k-vertex subtrees of T (the number of k-vertex subsets

that induce a tree), and p
(k)
i the proportion of copies of T ki among those subtrees. In

particular, p
(k)
1 (T ) is the proportion of paths, and p

(k)
2 (T ) is the proportion of stars. The

vector p(k)(T ) = (p
(k)
1 (T ), p

(k)
2 (T ), . . .) is called the k-profile of T .

Bubeck and Linial study specifically the limit set ∆(k) of k-profiles p(k)(T ) as the
number of vertices of T tends to infinity. Their main result is that ∆(k) is convex for
every k. This contrasts the situation for general graphs, where the analogously defined set
is not convex and even determining the convex hull is computationally infeasible [3]. Even
in special cases, fairly little is known about k-profiles (see [4] for a study of 3-profiles).
We remark that there is also a notable difference in the definitions of k-profiles of general
graphs and trees: for graphs, the proportion is taken among all vertex sets of cardinality
k, while for trees it makes more sense to only consider those k-vertex sets that actually
induce a tree. For general graphs, this would amount to considering only those subsets
that induce a connected graph.

Furthermore, Bubeck and Linial show that the sum of the first two components (cor-
responding to the path and the star respectively) is strictly positive for every point in the
limit set ∆(k) and in fact bounded below by an explicit constant that only depends on k
(see the discussion at the end of Section 2 and in particular Corollary 11 for an equivalent
statement). They also obtain a somewhat stronger inequality in the special case k = 5.

Bubeck and Linial list a number of open problems at the end of their article, and one
of them will be the main topic of this paper. It can be expressed as follows:

Question 1. Let T1, T2, . . . be a sequence of trees such that the number of vertices of Tn
tends to infinity as n → ∞. Given that limn→∞ p

(k)
1 (Tn) = 0, is it necessarily true that

limn→∞ p
(k)
2 (Tn) = 1?

In somewhat more informal terms, this states the following: if only few of the k-vertex
subtrees of a large tree are paths, almost all of those subtrees have to be stars. We remark
that the statement is not true if p

(k)
1 and p

(k)
2 are interchanged. For example, consider the

sequence of caterpillars as shown in Figure 1.

v0 v1 v2 v3 vn vn+1

Figure 1: A caterpillar.

Obviously, p
(5)
2 (Tn) = 0 for every n in this example: the maximum degree is 3, so Tn

does not contain any 5-vertex stars. On the other hand, simple calculations show that
limn→∞ p

(5)
1 (Tn) = 1

2
.

In the following, we will provide an affirmative answer to the question raised by Bubeck
and Linial, and even prove a slight extension involving the total number of k-vertex
subtrees and the degree moments. Here and in the following, we write V (T ) and E(T )
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for the vertex set and edge set of a tree T , |T | is the number of vertices of T , and d(v)
denotes the degree of a vertex v; whenever we speak about the degree of a vertex, we
always mean the degree in the underlying tree T , not a subtree.

Theorem 1. Let T1, T2, . . . be a sequence of trees such that |Tn| → ∞ as n → ∞. For
every k > 4, the following four statements are equivalent:

(M1) lim
n→∞

p
(k)
1 (Tn) = 0,

(M2) lim
n→∞

1

|Tn|
Zk(Tn) =∞,

(M3) lim
n→∞

1

|Tn|
∑

v∈V (Tn)

d(v)k−1 =∞,

(M4) lim
n→∞

p
(k)
2 (Tn) = 1.

Informally, statement (M2) says that Tn contains more than linearly many k-vertex
subtrees. (M3) states that the (k−1)-th degree moment tends to infinity. The implication
(M4) ⇒ (M1) is trivial, so our main task will be to prove the implications (M1) ⇒ (M2)
⇔ (M3) ⇒ (M4).

Shortly after a first version of this paper was published online, the equivalence of (M1)
and (M4) was shown independently by Bubeck, Edwards, Mania and Supko [1], who also

provided an explicit (nonlinear) inequality between p
(k)
1 (T ) and p

(k)
2 (T ) that implies the

equivalence.

2 Proof of the main theorem

Theorem 1 will follow from a sequence of lemmas. As a first step, we estimate the total
number of k-vertex subtrees.

Lemma 2. Let k be a positive integer. The total number of k-vertex subtrees of any tree
T can be bounded above as follows:

Zk(T ) 6 (k − 1)!
∑

v∈V (T )

d(v)k−1.

Proof. For every vertex v of T , we count the number of k-vertex subtrees with the property
that v is contained, and that it has maximum degree (in T , not the subtree!) among all
vertices of the subtree. Every such subtree can be constructed by repeatedly adding a
leaf, starting with the single vertex v. At the j-th such step, there are at most j vertices
to attach a leaf to, and at most d(v) choices for the new leaf (since v was assumed to have
maximum degree). Therefore, there are at most (k− 1)! · d(v)k−1 possible subtrees of this
kind for every fixed vertex v. Summing over all v, we obtain the desired result. Clearly
every subtree is counted at least once in the sum—possibly even several times, but since
we are only interested in an upper bound, this is immaterial.
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Lemma 3. For every integer k > 3, the total number of k-vertex stars contained in a tree
T is

c(Sk, T ) =
∑

v∈V (T )

(
d(v)

k − 1

)
.

Proof. The number of k-vertex stars contained in T whose center is v is given by
(
d(v)
k−1

)
,

the number of ways to choose k − 1 of its neighbors. The desired statement follows
immediately.

In the following, we will distinguish two cases depending on the diameter of our trees.
By the length of a path, we mean the number of edges, and the distance between two
vertices v and w is the shortest length of a path that starts at v and ends at w. The
eccentricity of a vertex v is the greatest distance of v from another vertex. The maximum
eccentricity of a vertex in a graph G is known as the diameter of G, and the minimum
eccentricity is the radius of G. It is well known that the radius rad(G) and the diameter
diam(G) of a graph G satisfy the inequalities rad(G) 6 diam(G) 6 2 rad(G).

Note that p
(k)
1 (Tn) = 0 if the diameter of Tn is at most k − 2 (in this case, there are

certainly no induced k-vertex paths). This observation would provide us with a simple
construction for which condition (M1) holds. We will treat this case separately and show
that it implies (M2):

Lemma 4. Fix an integer k > 3, and let T1, T2, . . . be a sequence of trees whose diameter
is bounded above by some fixed constant D. If |Tn| → ∞ as n→∞, then (M2) holds, i.e.

lim
n→∞

1

|Tn|
Zk(Tn) =∞.

Proof. We prove the slightly stronger statement that

lim
n→∞

1

|Tn|
c(Sk, Tn) =∞,

i.e. the number of induced k-vertex stars grows faster than linearly. To this end, it will
be useful to consider all trees as rooted (at an arbitrary vertex). Clearly, if the diameter
is bounded by D, the height (maximum distance of a vertex from the root) of any rooted
version is also bounded by D. We prove the following by induction on D, from which the
statement of the lemma follows immediately:

Claim. For every positive integer D, there exist positive constants αD, βD with
βD > 1 and a positive integer ND depending only on D and k such that

c(Sk, T ) > αD max(|T | −ND, 0)βD

for every rooted tree T whose height is at most D.
First note that the claim is trivial for D = 1: there is only one possible rooted tree in

this case, namely a star. Thus we have

c(Sk, T ) =

(
|T | − 1

k − 1

)
>
( |T |
k

)k−1
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in this case as soon as |T | > k, which gives us the desired inequality with β1 = k− 1 > 1,
α1 = k−(k−1) and N1 = k.

Now we turn to the induction step. Let r be the root degree, and let T1, T2, . . . , Tr be
the root branches, each endowed with the natural root (the neighbor of T ’s root). The
number of copies of Sk in T for which the root is the centre is given by

(
r

k−1

)
, so

c(Sk, T ) >

(
r

k − 1

)
+

r∑
j=1

c(Sk, Tj).

Each of the branches has height at most D−1, so we can apply the induction hypothesis to
them. In addition, we note that f(x) = αD−1 max(x−ND−1, 0)βD−1 is a convex function,
so Jensen’s inequality gives us

c(Sk, T ) >

(
r

k − 1

)
+ rαD−1 max

( |T | − 1

r
−ND−1, 0

)βD−1

.

If r > |T |2/3 and |T | > (k − 1)3/2, then the first term is(
r

k − 1

)
>

(
|T |2/3

k − 1

)
>
( |T |2/3
k − 1

)k−1
.

If, on the other hand, r < |T |2/3 and |T | > (ND−1 + 2)3, then the second term is

rαD−1 max
( |T | − 1

r
−ND−1, 0

)βD−1

> rαD−1

( |T |
r
−ND−1 − 1

)βD−1

> rαD−1

( |T |
r(ND−1 + 2)

)βD−1

=
αD−1

(ND−1 + 2)βD−1
· r1−βD−1|T |βD−1

>
αD−1

(ND−1 + 2)βD−1
· |T |(βD−1+2)/3.

Thus we obtain the desired inequality with

αD = min
( 1

(k − 1)k−1
,

αD−1
(ND−1 + 2)βD−1

)
,

βD = min
(2(k − 1)

3
,
βD−1 + 2

3

)
,

ND = max
(

(k − 1)3/2, (ND−1 + 2)3
)
.

Since k > 3 and we were assuming βD−1 > 1, we also have βD > 1. This completes the
induction and thus the proof of the lemma.

Lemma 4 shows that (M2) always holds for sequences of trees with bounded diameter,
even without the assumption (M1). On the other hand, if the diameter is sufficiently
large, then it turns out that there must always be at least linearly many paths with k
vertices. In fact, we have the following simple lemma:
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Lemma 5. Let k be a positive integer. If the diameter of a tree T is at least 2k− 2, then
c(Pk, T ) > |T |/2.

Proof. Since the diameter is assumed to be at least 2k − 2, the radius must be at least
k−1. Therefore, for every vertex v of T , there is a k-vertex path (whose length is k−1) in
T starting at v. Since every path has only two ends, no path is counted more than twice
in this argument, thus there must be at least |T |/2 k-vertex paths occurring in T .

Corollary 6. For every integer k > 4, the implication (M1) ⇒ (M2) holds.

Proof. Consider a sequence T1, T2, . . . of trees with |Tn| → ∞ for which (M1) holds. For
the subsequence consisting of trees whose diameter is at most 2k − 3, (M2) follows from
Lemma 4, regardless of whether (M1) is true or not. For the remaining subsequence, we
can simply combine Lemma 5 with the assumption (M1).

As a next step, we show the equivalence of (M2) and (M3), which is quite straightfor-
ward:

Lemma 7. For every integer k > 3, the two statements (M2) and (M3) are equivalent.

Proof. Condition (M2), combined with Lemma 2, implies that

lim
n→∞

1

|Tn|
∑

v∈V (Tn)

d(v)k−1 =∞,

which is exactly (M3). On the other hand, since
(
d

k−1

)
>
(

d
k−1

)k−1
for d > k−1, Lemma 3

gives

c(Sk, Tn) > (k − 1)−(k−1)
∑

v∈V (Tn)

d(v)k−1 − |Tn|, (1)

where the final term stems from vertices whose degree is less than k − 1. Therefore, if
(M3) holds, then we also have

lim
n→∞

c(Sk, Tn)

|Tn|
=∞,

which is (M2).

Now we would like to bound the number of non-star k-vertex subtrees from above to
obtain the implication (M2) ⇒ (M4). To this end, we first introduce the notion of edge
weights: define the weight of an edge e = vu as

ω(e) = max
(d(u)

d(v)
,
d(v)

d(u)

)
.

In words: take the degrees of the two endpoints of e and divide the higher degree by the
lower degree. For some real number a > 1, call a subtree S of a tree T an a-unbalanced
subtree if it contains at least one edge that is not a pendant edge (incident to a leaf) of
S and that has a weight of at least a in T . Denote the total number of a-unbalanced
k-vertex subtrees of T by Zk(T, a). The following lemma is in some sense a refinement of
Lemma 2.
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Lemma 8. For every integer k > 4, every real number a > 1, and every tree T , we have

Zk(T, a) 6
(k − 1)!

a

∑
v∈V (T )

d(v)k−1.

Proof. We can follow the proof of Lemma 2. The only change in the argument is that at
least one vertex of degree at most d(v)/a has to be added to the subtree at some point
so as to include an edge of weight at least a. Since we also require the presence of such
an edge that is not a pendant edge of the subtree, at some stage a neighbor of a vertex
of degree at most d(v)/a has to be added to the subtree as well, for which there are only
at most d(v)/a possibilities. This gives us the same inequality as in Lemma 2, but with
an extra factor a in the denominator.

It remains to bound the number of k-vertex subtrees that are neither stars nor a-
unbalanced; we denote this number by Zk(T, a). Our next lemma provides a suitable
bound:

Lemma 9. For every integer k > 4, every real number a > 1, and every tree T , we have

Zk(T, a) 6 2(k − 1)!a(k−2)
2
∑

v∈V (T )

d(v)k−2.

Proof. Consider any edge e whose weight is at most a. It is not difficult to see that there
exists some nonnegative integer ` such that the degrees of both its endpoints lie in the
interval [a`, a`+2): simply take ` in such a way that the smaller degree of the two lies
in [a`, a`+1). Now consider any subtree S that is not a-unbalanced and contains e as a
non-pendant edge (it automatically follows that S is not a star). Every internal vertex
v of S can be reached from e by a path of non-pendant edges whose length is at most
k−4. Since S was assumed not to be a-unbalanced, none of these edges can have a weight
greater than a, so the degree of v in T is at most a`+2 · ak−4 = a`+k−2.

Now we count all subtrees S that are not a-unbalanced and contain e as a non-pendant
edge. Every such subtree can be obtained by repeatedly adding leaves, starting from e.
This is done k − 2 times. At the j-th step, we have a choice of j + 1 vertices to attach a
leaf to, and at most a`+k−2 possible choices for the leaf by the observation on degrees of
internal vertices in S. It follows that there are no more than

(k − 1)! · a(k−2)(`+k−2)

such subtrees.
The number of edges whose ends both have degrees in [a`, a`+2) is less than the number

of vertices whose degrees lie in this interval, since the edges induce a forest on the set of
these vertices. Therefore, we obtain the following upper bound for the number of k-vertex
subtrees that are neither stars nor a-unbalanced (note that every non-star has at least
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one non-pendant edge):

Zk(T, a) 6
∑
`>0

∑
e=vw∈E(T )

d(v),d(w)∈[a`,a`+2)

(k − 1)! · a(k−2)(`+k−2)

6
∑
`>0

∑
v∈V (T )

d(v)∈[a`,a`+2)

(k − 1)! · a(k−2)(`+k−2)

Now note that d(v) ∈ [a`, a`+2) implies a(k−2)(`+k−2) = a(k−2)` · a(k−2)2 6 d(v)k−2 · a(k−2)2 ,
which gives us

Zk(T, a) 6
∑
`>0

∑
v∈V (T )

d(v)∈[a`,a`+2)

(k − 1)! · d(v)k−2 · a(k−2)2 .

Finally, since every vertex is counted at most twice in the double sum, we end up with

Zk(T, a) 6 2(k − 1)!a(k−2)
2
∑

v∈V (T )

d(v)k−2.

Now we put everything together to obtain the desired implication (M2) ⇒ (M4),
completing the proof of Theorem 1. Let us formulate this explicitly:

Corollary 10. For every integer k > 4, the implication (M2) ⇒ (M4) holds.

Proof. Assume that condition (M2) is satisfied. Combining it with inequality (1) from
the proof of Lemma 7, we see that

1

c(Sk, Tn)

∑
v∈V (Tn)

d(v)k−1

is bounded above by a positive constant (for sufficiently large n).
We combine Lemma 8 and Lemma 9 to find that the total number of k-vertex subtrees

of a tree T that are not stars can be bounded by

Zk(T, a) + Zk(T, a) 6
(k − 1)!

a

∑
v∈V (T )

d(v)k−1 + 2(k − 1)!a(k−2)
2
∑

v∈V (T )

d(v)k−2.

Hölder’s inequality gives us

∑
v∈V (T )

d(v)k−2 6 |T |1/(k−1)
( ∑
v∈V (T )

d(v)k−1
)(k−2)/(k−1)

,
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so putting everything together, we obtain

Zk(Tn)− c(Sk, Tn) = Zk(Tn, a) + Zk(Tn, a)

= O

(
a−1

∑
v∈V (Tn)

d(v)k−1 + a(k−2)
2
∑

v∈V (Tn)

d(v)k−2

)

= O

(
a−1

∑
v∈V (Tn)

d(v)k−1 + a(k−2)
2 |Tn|1/(k−1)

( ∑
v∈V (Tn)

d(v)k−1
)(k−2)/(k−1)

)

= O
(
a−1c(Sk, Tn) + a(k−2)

2|Tn|1/(k−1)c(Sk, Tn)(k−2)/(k−1)
)
.

The O-constant depends on k and the specific sequence of trees, but notably not on a,
which we can still choose freely. Taking

a =
(c(Sk, Tn)

|Tn|

) 1
(k−1)((k−2)2+1)

,

which is greater than 1 for sufficiently large n in view of condition (M2), the two terms
in the estimate balance, and we end up with

Zk(Tn)− c(Sk, Tn) = O
(( |Tn|

c(Sk, Tn)

) 1
(k−1)((k−2)2+1)

c(Sk, Tn)
)
,

so that (M2) now implies

lim
n→∞

c(Sk, Tn)

Zk(Tn)
= 1,

which is exactly (M4).

As we have now shown the implications (M1) ⇒ (M2) (Corollary 6), (M2) ⇔ (M3)
(Lemma 7) and (M2)⇒ (M4) (Corollary 10) and the implication (M4)⇒ (M1) is trivial,
this also completes the proof of Theorem 1.

Our ideas can also be used to re-prove a result of Bubeck and Linial [2, Theorem 2],
even with a slightly improved constant: namely, they showed that

lim inf
n→∞

(
p
(k)
1 (Tn) + p

(k)
2 (Tn)

)
>

1

2k2kNk

for any sequence T1, T2, . . . of trees with |Tn| → ∞, where Nk is the number of noniso-
morphic trees with k vertices.

Making use of the arguments used to prove Theorem 1, we obtain the following:

Corollary 11. For every sequence T1, T2, . . . of trees with |Tn| → ∞, we have

lim inf
n→∞

(
p
(k)
1 (Tn) + p

(k)
2 (Tn)

)
>

1

2(k − 1)k−1(k − 1)!
.

the electronic journal of combinatorics 24(1) (2017), #P1.22 9



Proof. Lemma 2 gives us

Zk(Tn) 6 (k − 1)!
∑

v∈V (Tn)

d(v)k−1.

Combining this inequality with (1) and Lemma 5 (we may assume that the diameter is
not bounded in view of Lemma 4) yields

Zk(Tn) 6 (k− 1)!(k− 1)k−1(c(Sk, Tn) + |Tn|) 6 (k− 1)!(k− 1)k−1(c(Sk, Tn) + 2c(Pk, Tn)).

Therefore,

p
(k)
1 (Tn) + p

(k)
2 (Tn) =

c(Sk, Tn) + c(Pk, Tn)

Zk(Tn)

>
c(Sk, Tn) + c(Pk, Tn)

(k − 1)!(k − 1)k−1(c(Sk, Tn) + 2c(Pk, Tn))
,

and the desired result follows immediately.

With more careful estimates, it is certainly possible to improve further on the lower
bound in Corollary 11.

3 Subtrees of different sizes

So far, we were only comparing subtrees of the same fixed size k. However, it is natural
to assume that limn→∞ p

(k)
1 (Tn) = 0 for some k (in words: the proportion of paths among

k-vertex subtrees goes to 0) should also imply limn→∞ p
(`)
2 (Tn) = 1 (the proportion of stars

among `-vertex subtrees goes to 1) for some ` that is not necessarily equal to k. Indeed
this is true if k 6 `: since we trivially have∑

v∈V (T )

d(v)k−1 6
∑

v∈V (T )

d(v)`−1

in this case, condition (M3) is satisfied for ` if it is satisfied for k. Therefore, we immedi-
ately obtain a slight extension of Theorem 1:

Theorem 12. Let T1, T2, . . . be a sequence of trees such that |Tn| → ∞ as n → ∞. Let
k, ` be integers such that ` > k > 4, and assume that one of the following equivalent
statements holds:

(M1)k lim
n→∞

p
(k)
1 (Tn) = 0,

(M2)k lim
n→∞

1

|Tn|
Zk(Tn) =∞,

(M3)k lim
n→∞

1

|Tn|
∑

v∈V (Tn)

d(v)k−1 =∞,
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(M4)k lim
n→∞

p
(k)
2 (Tn) = 1.

In this case, the following statements hold as well:

(M1)` lim
n→∞

p
(`)
1 (Tn) = 0,

(M2)` lim
n→∞

1

|Tn|
Z`(Tn) =∞,

(M3)` lim
n→∞

1

|Tn|
∑

v∈V (Tn)

d(v)`−1 =∞,

(M4)` lim
n→∞

p
(`)
2 (Tn) = 1.

In heuristic terms: if most k-vertex subtrees are stars, then this is also the case for
`-vertex subtrees, provided ` > k. On the other hand, if only very few of the k-vertex
subtrees are paths, then the same applies to `-vertex subtrees for every ` > k. It is
noteworthy, however, that the converse is not true, and counterexamples are very easy to
construct.

Consider for instance a family of extended stars constructed as follows (Figure 2):
Tn has n vertices, of which the central vertex has degree (approximately) n2/(2k−1) for
some k > 4, while all other vertices have degree 1 or 2. The actual lengths of the paths
around the central vertex are irrelevant. It is easy to see in this example that (M3)k is

not satisfied, and that in fact limn→∞ p
(k)
2 (Tn) = 0, while on the other hand (M3)k+1 is

satisfied, so that limn→∞ p
(k+1)
2 (Tn) = 1.

Figure 2: An extended star.
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