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Abstract

An r-matching in a graph G is a collection of edges in G such that the distance
between any two edges is at least r. This generalizes both matchings and induced
matchings as matchings are 1-matchings and induced matchings are 2-matchings.
In this paper, we estimate the minimum and maximum number of r-matchings in
a tree with fixed order.

Keywords: matching; independent set; tree

1 Introduction

A set of vertices in a graph G is an independent set if no two vertices in the set are adjacent
in G. The number of independent sets in G is denoted by i(G), and it has been studied
extensively. Kleitman and Winston proved an upper-bound on i(G) for graphs G and the
upper-bound has been used to count the number of lattices [12] and graphs without cycles
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of length four [13], and variations of their method were used to prove an upper bound
of i(G) for regular graphs G [1, 18] and to count the number of sum-free sets in abelian
group [1, 14]. Many extremal results on i(G) have been obtained over various families of
graphs such as trees [17], regular graphs [22] and graphs with minimum degree [5]. Also
the parameter i(G) is studied under the name Merrifield-Simmons index in chemistry [15]
and which is related to Hard Models in physics [2, 11, 19].

Instead of independent set of vertices, one can consider a similar concept for edges. A
set of edges in a graph G is a matching if no two edges in the set are incident in G. Again,
the number of matchings has been drawn much attention and results on the number of
matchings or the number of given size matchings have been obtained for various families
of graphs such as trees [20], bipartite graphs [3, 16] and regular bipartite graphs [4]. The
number of matchings is also known as Hosoya index in mathematical chemistry [7, 9] and
is also connected to the monomer-dimer model of statistical physics [8]. There are many
results concerning the number of matchings in several classes of trees or tree-like graphs
(see [21]). In particular, it is well known that the following is true.

Fact 1. [6, 21] The minimum and maximum number of matchings among all n-vertex
trees are attained only by the star and the path, respectively.

For two edges e = uv and e′ = u′v′ in G, let distG(e, e′), the distance between e and e′

be the length of shortest paths between {u, v} and {u′, v′} in G. Here, the length of the
path P is the number of edges in P while we denote |P | the number of vertices in P . In
[10], the following natural generalization of matchings is considered. We say a collection
M of edges of graph G is an r-matching if

distG(e, e′) > r for all distinct edges e, e′ ∈M.

Then 1-matchings are matchings, and 2-matchings are induced matchings. Purpose of this
paper is to generalize Fact 1 from 1-matchings to r-matchings for r > 2. In other words,
we are interested in determining the maximum and the minimum number of r-matchings
in a tree of fixed order. In fact, we show that the generalization of Fact 1 holds for r = 2
while it does not hold for r > 10.

For a graph G, let sr(G) be the number of r-matchings in G. Let Tn be the family of
all trees with n vertices, and Pn be an n-vertex path. The term log denotes the natural
logarithm. For two graphs G and H, G ∪H denotes the vertex disjoint union of G and
H. Note that the following simple observation is easy.

Observation 2. For a positive integer r and two graphs G and H,

sr(G ∪H) = sr(G) · sr(H).

The following observation shows that finding the minimum is easy. Hence, we focus
on estimating the maximum number of r-matchings in a tree of fixed order. Since stars
are exactly the trees with diameter two, the following observation generalizes Fact 1 for
the minimum value.
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Observation 3. For T ∈ Tn, we have min
T∈Tn

sr(T ) = n, and the equality holds only for

trees T with diameter at most r + 1.

Proof. Since the empty set and every set of exactly one edge are r-matchings, we have
sr(T ) > n for all n-vertex trees T . On the other hand, for any tree with diameter at most
r + 1, every r-matching can have at most one edge, we have min

T∈Tn

sr(T ) = n.

Note that a tree T satisfying the equality must have no two edges with distance at
least r, otherwise T contains more than n distinct r-matchings. Thus the tree T with the
equality must have diameter at most r + 1.

In Section 2, we estimate the number of r-matchings in the n-vertex path Pn. In
Section 3, we prove that the path Pn contains the largest number of 2-matchings (induced
matchings) among all n-vertex trees, which generalizes Fact 1 for r = 2. In Section 4, we
analyze maxT∈Tn sr(T ) in terms of r and n for r, n > 2 and prove upper and lower bounds
for maxT∈Tn sr(T ). Throughout the paper, the term o(1) represents a function of r which
approaches to 0 as r → ∞, unless specified otherwise. In Section 5, we prove that there
are n-vertex trees having more r-matchings than Pn when r ∈ N\{1, 2, 3, 4, 5, 7, 9}, which
implies that Fact 1 cannot be extended to r-matchings when r > 10.

2 The number of r-matchings in Pn.

Let [n] be the set {1, . . . , n} for a positive integer n, and |G| be the number of vertices in
a graph G. In this section, we discuss the asymptotic behavior of sr(Pn) as n →∞ for a
positive integer r. For the sake of formality, we let sr(Pn) = 1 for n = 0.

As Pn has a natural linear order of the edges, let e be the first edge of Pn. We have
the following recurrence relation of sr(Pn) by considering r-matchings that contains e and
does not contain e.

sr(Pn) = n for 1 6 n 6 r + 1, (2.1)

sr(Pn) = sr(Pn−1) + sr(Pn−r−1) for n > r + 2. (2.2)

Let pr(x) = xr+1 − xr − 1 ∈ C[x] be the characteristic polynomial for the recurrence
relation (2.2). Since pr(x) and its derivative p′r(x) do not have any common root in C,
the polynomial pr(x) is separable. Let q1, q2, . . . , qr+1 be the r + 1 distinct roots of pr(x)
in C, where |q1| > |q2| > · · · > |qr+1|.

Theorem 4. The polynomial pr(x) has a real root βr, with the following properties.

(i) βr is the only real root of pr(x) bigger than 1, and is bigger than |q| for any other
roots q of pr(x).

(ii) We have βrr = (1 + o(1)) r
log r

. In particular, βr = exp
(
(1 + o(1)) log r

r

)
.
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(iii) There exists a constant Cr > 0 such that

Cr = lim
n→∞

sr(Pn)

βn−1r

=
β2r
r

βrr + (r + 1)
= (1 + o(1))

r

(log r)2
.

Proof. We first claim that pr(x) has only one real root βr bigger than 1. Since pr(1) < 0,
pr(2) > 0, and pr(x) is increasing for x > r

r+1
, there is exactly one root βr of pr(x) in

(1,∞) and βr ∈ (1, 2).
Next, we claim that βr has larger modulus than that of all other roots of Pr(x); in

particular, βr = q1 > |q2| > · · · > |qr+1|, where q1, . . . , qr+1 are r + 1 distinct roots of a
separable polynomial pr(x) ∈ C[x].

For every non-real root q of pr(x) and every negative real root q of pr(x), since q =
qr+1/qr /∈ [0,∞), we have

pr(βr) = βr+1
r − βrr − 1 = |qr+1 − qr| − 1 > |qr+1| − |qr| − 1 = |q|r+1 − |q|r − 1 = pr(|q|).

Since pr(x) is an increasing function for x > 1, this implies that either |q| 6 1 or βr > |q|.
Since βr > 1, in either case, we have βr > |q|. This with the fact that βr is the only
positive real root of pr(x) bigger than 1 implies (i).

Now we prove that

βrr = (1 + o(1))
r

log r
. (2.3)

Note that for large r, both ( r
log r

)1/r and (1 + 1√
log r

) are real numbers between 1 and 2 and

pr(x) is increasing function for x > 1. Thus, in order to show (2.3), it is enough to verify
the following two inequalities for large r.

pr

((
r

log r

)1/r
)
< 0 (2.4)

pr

(((
1 +

1√
log r

)
r

log r

)1/r
)
> 0 (2.5)

We get the inequality (2.4) because the following holds:

log(r)(pr

((
r

log r

)1/r
)

+ 1) = r

((
r

log r

)1/r

− 1

)
= r(e

1
r
(log r−log log r) − 1)

= r

(
log r − log log r

r
+O

(
log2 r

r2

))
= log r − log log r + o(1) < log r.

We also get the inequality (2.5) because the following holds:
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log(r)(pr

(((
1 +

1√
log r

)
r

log r

)1/r
)

+ 1) > r

(
1 +

1√
log r

)((
r

log r

)1/r

− 1

)

= r

(
1 +

1√
log r

)
(e

1
r
(log r−log log r) − 1)

> r

(
1 +

1√
log r

)(
log r − log log r

r

)
> log r +

√
log r − log log r − o(1) > log r.

Thus we obtain (ii).

Now we show that there exists Cr > 0 such that limn→∞
sr(Pn)

βn−1
r

= Cr. We use an

induction on n. Because we have sr(Pm) > 0 for every m > 0, there exists c > 0 such
that the following (2.6) holds for 0 6 m 6 r + 1.

sr(Pm) > cβm−1r . (2.6)

For n > r + 2, we assume that (2.6) holds for 1 6 m 6 n − 1. By the recurrence
relation (2.2),

sr(Pn) = sr(Pn−1) + sr(Pn−r−1) > c(βn−2r + βn−r−2r ) = cβn−1r .

This inductively shows that (2.6) for all natural number m.
Since p(x) is separable, there exist b1, . . . , br+1 ∈ C such that sr(Pn) = b1β

n−1
r +∑r+1

i=2 biqi
n−1 for n > 0. Then we have a real number

Cr = lim
n→∞

sr(Pn)

βn−1r

= b1 > c > 0.

since βr > |qi| for 2 6 i 6 r + 1.
Finally we estimate the value of Cr. For n > 2r + 1, consider an r-matching M in

P2n−1 = v1 . . . v2n−1. Let ei := vivi+1. For 0 6 i 6 r − 1, if M contains an edge en−r+i,
then M does not contain ej for any j such that n−2r+ i 6 j 6 n+ i. Thus M −en−r+i is
an r-matching in the disjoint union of two paths v1 . . . vn−2r+i and vn+i+1 . . . v2n−1. From
this and Observation 2, we conclude that for 0 6 i 6 r− 1 the number of r-matchings in
P2n−1 containing en−r+i is sr(Pn−2r+i ∪ Pn−i−1) = sr(Pn−2r+i)sr(Pn−i−1).

On the other hand, if M does not contain any edge en−r+i for 0 6 i 6 r− 1, then it is
an r-matching in the disjoint union of two paths v1 . . . vn−r and vn . . . v2n−1. Thus by Ob-
servation 2, the number of r-matchings in P2n−1 not containing any edges vn−r+ivn−r+i+1

for 0 6 i 6 r − 1 is sr(Pn−r)sr(Pn). Thus

sr(P2n−1) = sr(Pn−r)sr(Pn) +
r−1∑
i=0

sr(Pn−2r+i)sr(Pn−i−1)
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= (1 + o(1))(Cr
2β2n−r−2

r + rCr
2β2n−2r−3

r ).

Here o(1)→ 0 as n→∞. Then we have

Cr = lim
n→∞

sr(Pn)2

sr(P2n−1)
= lim

n→∞

(1 + o(1))C2
rβ

2n−2
r

(1 + o(1))(Cr
2β2n−r−2

r + rCr
2β2n−2r−3

r )

=
β2r
r

βrr + r

(2.3)
= (1 + o(1))

r

(log r)2
.

Here, o(1) on the first line approaches to 0 as n→∞.

3 Trees with the maximum number of induced matchings

In this section, we prove that the path of order n contains the largest number of induced
matchings among all trees of order n. First of all, we prove the following lemma. Recall
that a tree T is not a path if and only if T contains a vertex of degree at least three.

Lemma 5. Let r > 2 be an integer and T be an n-vertex tree which is not a path. Let
T0 be a minimal subtree of T containing all vertices of degree at least three. For any leaf
v of T0, let P1 and P2 be any two distinct components of T − v such that both P1 and P2

are paths and |P1| > |P2|. One of the following holds.

(P1) |P1| > r + 1

(P2) |P1| 6 r and |P1|+ |P2| > r + 1

(P3) There exists an n-vertex tree T ′ with sr(T
′) > sr(T ) and the number of leaves in

T ′ is less than T . Moreover, if n > r + 3 and T has exactly three leaves, then
sr(Pn) > sr(T ) holds.

Proof. Suppose that (P1) and (P2) does not hold. Let P1 := v1 · · · vp1 and P2 := u1 · · ·up2
such that v1, u1 ∈ NT (v). Let both u0 and v0 denote the vertex v. Note that v, P1 and P2

together induces a path of p1 + p2 + 1 6 r + 2 vertices in T .
We construct a new tree T ′ from T by replacing vu1 with u1vp1 . It is obvious that T ′

contains exactly one less leaf than T . Let

L = E(P1) ∪ E(P2) ∪ {vv1, vu1}.

For each e ∈ E(T ), consider the following bijection f from E(T ) to E(T ′).

f(e) :=

{
e if e 6= vu1
u1vp1 if e = vu1.

For a collection M of edges in E(T ), let f(M) := {f(e) : e ∈ M}. Since v, P1 and P2

together induces a path of p1 + p2 + 1 6 r + 2 vertices in T , any two edges in L have
distance at most r − 1 in T , thus

for any r-matching M of T , |M ∩ L| 6 1. (3.1)
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Note that distT (e, e′) = distT ′(f(e), f(e′)) holds for e, e′ /∈ L. It is also easy to check that
for e ∈ L and e′ ∈ E(T ) \ L, we have distT ′(f(e), f(e′)) > distT (e, e′). This with (3.1)
implies that if M is an r-matching in T , then f(M) is also an r-matching in T ′. Since f
is a bijection between E(T ) and E(T ′), this naturally gives

sr(T
′) > sr(T ).

If n > r + 3 and T has exactly three leaves, then T ′ is a path with at least r + 3
vertices, then we consider an edge e that has distance exactly r from f(up2−1up2) in T ′.
Since any two edges in f(L) has distance at most r − 1, we have e /∈ f(L) and f(e) = e.
Thus

distT (up2−1up2 , e) = distT ′(f(up2−1up2), e)− p1 = r − p1 6 r − 1.

Thus {up2−1up2 , e} is not an r-matching in T while {f(up2−1up2), e} is an r-matching in
T ′. Thus T ′ = Pn has strictly more r-matchings than T and we obtain (P3).

The following claim easily follows from the recurrence relation (2.2).

Claim 6. For a positive integer n > 2, we have s2(Pn) > 2s2(Pn−2), and the equality
holds only for n = 2, 4, 5.

Proof. Since s2(Pk) = k for 1 6 k 6 4 and s2(P5) = 6 = 2s2(P3), it is easy to check that
the equality holds for n = 2, 4, 5. For n > 6, the recurrence relation (2.2) implies that

s2(Pn) = s2(Pn−1) + s2(Pn−3) = s2(Pn−2) + s2(Pn−3) + s2(Pn−4)

> s2(Pn−2) + s2(Pn−3) + s2(Pn−5)

= s2(Pn−2) + s2(Pn−2) = 2s2(Pn−2).

Now we are ready to prove the main theorem of this section.

Theorem 7. For a tree T of order n, we have

s2(T ) 6 s2(Pn)

and the equality holds only for T = Pn or T = K1,3.

Proof. We use induction on n. For the base case, we check all the trees with at most 4
vertices, and conclude that P1, P2, P3, P4 and K1,3 are all possible trees and all of them
have only 2-matchings of sizes at most one.

Assume n > 5 and the theorem holds for all trees with at most n− 1 vertices. Among
all n-vertex trees T which are not paths, we choose one maximizing the number of 2-
matchings and subject to that, we choose one minimizing the number of leaves. Note
that T has at least three leaves since it is not a path. If T has diameter at most three,
then the theorem holds by Observation 3. So we suppose that T is not a star and a
double star. Let T0 be a minimal subtree of T containing all vertices of degree at least
three, and v be a leaf of T0. Then T − v has j > 2 path-components and at most one
component which is not a path. Let P1, . . . , Pj be all those path-components of T − v
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such that Pi = vi1 . . . v
i
pi

and p1 > . . . > pj and vi1 is adjacent to v for i ∈ [j]. By Lemma
5, one of the following three cases holds.

Case 1. p1 > 3.
In this case, v1p1 is a leaf and both v1p1−2 and v1p1−1 has degree two in T . Thus both T − v1p1
and T − v1p1−2 − v

1
p1−1 − v

1
p1

are trees with less than n vertices. Especially, T − v1p1 is not
a path nor K1,3.

For any r-matching M of T , if M does not contain the edge v1p1−1v
1
p1

, then it is an
r-matching of T−v1p1 . If M contains the edge v1p1−1v

1
p1

, then M−v1p1−1v
1
p1

is an 2-matching
of T − v1p1−2 − v

1
p1−1 − v

1
p1

. This together with the induction hypothesis, we have

s2(T ) = s2(T − v1p1) + s2(T − v1p1−2 − v
1
p1−1 − v

1
p1

) < s2(Pn−1) + s2(Pn−3) = s2(Pn).

by the recurrence relation (2.2). Here we get the strict inequality since T − v1p1 is not a
path nor K1,3.

Case 2. p1 6 2 and pi + pi′ > 4 for i 6= i′ ∈ [j].
In this case we have p1 = · · · = pj = 2. Let L := {v, v11, v12, . . . , v

j
1, v

j
2}. For each i ∈ [j], vi2

is a leaf and vi1 has degree two and dT (v) = j + 1. Thus both T − v12 and T − L are trees
with less than n vertices.

For any r-matching M of T , if M does not contain the edge v11v
1
2, then it is an r-

matching of T − v12. If M contains the edge v11v
1
2, then M − v11v

1
2 is an r-matching of

T − v − v11 − v12. The forest T − v − v11 − v12 is the disjoint union of (j − 1) copies of K2

and T − L. By Observation 2 and the fact that s2(K2) = 2, we have

s2(T ) = s2(T − v12) + s2(T − v − v11 − v12) = s2(T − v12) + 2j−1s2(T − L).

Since T − v12 contains a vertex v of degree at least three and a vertex v21 of degree two, it
is not a path or K1,3. Thus the induction hypothesis gives us that s2(T − v12) < s2(Pn−1).
By (2.2), Claim 6 and the induction hypothesis we have

s2(T ) = s2(T − v12) + 2j−1s2(T − L) < s2(Pn−1) + 2j−1s2(Pn−2j−1)

6 s2(Pn−1) + s2(Pn−3) = s2(Pn).

Case 3. There exists an n-vertex tree T ′ with sr(T
′) > sr(T ) such that T ′ has one less

leaf than T .
By the choice of T and the assumption n > 5, this implies that T ′ is a path. Thus
T contains exactly three leaves. By the moreover part of Lemma 5, we have s2(Pn) =
s2(T

′) > s2(T ).

4 The number of r-matchings in a tree

In this section, we estimate the maximum number of r-matchings in a tree T of fixed
order. For a fixed integer r > 2, let s = s(r) be a positive real number such that

r/2 + s = (s+ 1) log(s+ 1).
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Note that by taking a logarithm and then taking derivative of the following function f(x),
it is easy to check that f(x) satisfies the following.

f(x) = (x+ 1)
1

r/2+x has its maximum value at x = s.

We investigate some properties of s = s(r) for r > 2. First of all, we have r > s
since r/2 + x < (x + 1) log(x + 1) for all x > r > 2. We also get s > e − 1 because
(s+ 1) log(s+ 1) = s+ r

2
> s+ 1.

Since h(x) = (x + 1) log(x + 1) − x is increasing for x > 1, s = s(r) is an increasing
function on r for r > 2 as s is a solution of h(x) = r/2.

In particular, s satisfies the following.

s = (1 + o(1))
r

2 log r
and s >

r

2 log(r + 1)
for all r > 2, (4.1)

To see this, note that log(r+1) 6 log(3r
2

) < log( r
2

+s)+log 3 6 log(s+1)+log log(s+
1) + log 3. Hence

s =
(s+ 1) log(s+ 1)− log(s+ 1)

log(s+ 1)
=
r/2 + s− log(s+ 1)

log(s+ 1)
>
r/2 + s− log(s+ 1)

log(r + 1)

>
r

2 log(r + 1)
>

(s+ 1) log(s+ 1)− s
log(s+ 1) + log log(s+ 1) + log 3

= s(1− o(1))

Finally, let αr = f(s(r)) = (s + 1)
1

r/2+s = exp( 1
s+1

) which is the maximum value of
f(x). We prove some inequalities of αr, which is used in the proof of Theorem 10.

Claim 8. (e
1
rαr)

r/2+s/2+1 > (e
1
rαr)

r/2+s/2 + 1

Proof. Consider the following.

(e
1
rαr)

r/2+s/2+1 − (e
1
rαr)

r/2+s/2 = (e
1
rαr − 1)e

r/2+s/2
r αr/2+s−s/2r

= (e
1
r e

1
s+1 − 1)e

r/2+s/2
r (s+ 1)e−

s/2
s+1

>

(
1

s+ 1
+

1

r

)
(s+ 1)e

r/2+s/2
r
− s/2

s+1

=

(
1 +

s+ 1

r

)
e

1
2(s+1) e

s
2r > 1.

Here, we use the fact that ex > 1 + x for x ∈ R. This proves the claim.

Claim 9. For an integer w with 1 6 w 6 s+ 2, we have

(e
1
rαr)

r+w > (e
1
rαr)

r+w−1 + w.
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Proof. Let w = a(s+ 2) with 0 6 a 6 1.

(e
1
rαr)

r+w − (e
1
rαr)

r+w−1 = (e
1
r (s+ 1)

1
r/2+s )r+w−1(e

1
r (s+ 1)

1
r/2+s − 1)

= e1+
w−1
r (s+ 1)2+

w−2s−1
(s+1) log(s+1) (e

1
r e

1
(s+1) − 1)

> e1(s+ 1)2e
w−2s−1

s+1

(
1

s+ 1
+

1

r

)
= e1+

w−2s−1
s+1

(
s+ 1 +

(s+ 1)2

r

)
> ea−1+

a+1
s+1 (s+ 1) >

(
a+

a+ 1

s+ 1

)
(s+ 1) > a(s+ 2) > w.

where the first inequality in the final line follows from 1 + a(s+2)−2s−1
s+1

= a− 1 + a+1
s+1

. This
proves the claim.

The following theorem gives an upper bound of sr(T ) for an n-vertex tree T and r > 2.

Theorem 10. For an integer r > 2 and an n-vertex tree T ,

sr(T ) 6 (s+ 1)(e
1
rαr)

n−1.

Proof. We use induction on n. If T has diameter at most r + 1, then sr(T ) = n by
Observation 3. Since

n 6 (s+ 1)

(
1 +

n− 1

r
+
n− 1

s+ 1

)
6 (s+ 1)(e

1
r e

1
s+1 )n−1 = (s+ 1)(e

1
rαr)

n−1, (4.2)

we conclude that the theorem holds for the trees of diameter at most r+ 1. In particular,
the theorem is true for n 6 r + 2.

Now we assume that n > r + 3, and the theorem holds for trees of order less than n.
Among all n-vertex trees, we choose one with the maximum number of r-matchings, and
subject to that, we choose one with the minimum number of leaves. Let T be the chosen
tree. We may assume that T has diameter at least r+ 2, otherwise we are done by (4.2).

If T is a path, then let P := v1v2 · · · vp with p > r + 3, then we have the following
Case 1. Otherwise let T0 be a minimal subtree of T containing all vertices of degree at
least three, and let u be a leaf of T0. Since u is a leaf of T0, T −u consists of at least three
components and at most one of them is not a path. Let P1 = v1 . . . vp and P2 = u1 . . . uq
be two components of T − u such that both P1 and P2 are paths, both vp and uq are
adjacent to u, and both v1 and u1 are leaves in T . Without loss of generality we may
assume p > q.

By Lemma 5, we have either p > r + 1, p+ q > r + 1, or there exists an n-vertex tree
T ′ such that sr(T

′) > sr(T ) and the number of leaves of T ′ is less than the number of
leaves of T .

The choice of T implies that the third case does not occur. For the rest of the cases,
we have p+ q > r + 1. Let

L1 := {v1, v2, · · · , vmin{p,r+1}}.
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Case 1. T is a path or p > r/2 + s/2 + 1.

Note that both T − v1 and T − L1 are trees since dT (v1) = 1 and dT (vi) = 2 for all
2 6 i 6 p. Consider an r-matching M of T . If M contains v1v2, then M − v1v2 is an
r-matching of T − L1. If M does not contain v1v2, then M is an r-matching of T − v1.
Thus the induction hypothesis and the fact that |L1| > p implies that

sr(T ) 6 sr(T − L1) + sr(T − v1) 6 (s+ 1)(e
1
rαr)

n−1−p + (s+ 1)(e
1
rαr)

n−2.

This together with Claim 8 and the fact that p > r/2 + s/2 + 1, we have

sr(T ) 6 (s+ 1)((e
1
rαr)

n−2 + (e
1
rαr)

n−r/2−s/2−2) 6 (s+ 1)(e
1
rαr)

n−1.

Case 2. q 6 p < r/2 + s/2 + 1.

In this case we have L1 = {v1, v2, · · · , vp}. Let w := p + q − r, then we have w =
p+ q − r < 2(r/2 + s/2 + 1)− r = s+ 2. Let

L2 = {uuq, uquq−1 · · · , uw+1uw}.

Here p+ q > r + 2, thus w > 2. Hence, we have that u1u2 /∈ L2.
Let F be a forest obtained from T by deleting all vertices in L1 and edges in L2,

and removing all isolated vertices. Then F contains exactly two components, i.e. the
component containing u1, say T1, and the component T2 which does not contain u2 but
contains u Then T1 is a w-vertex subpath u1 . . . uw of P2, and T2 = T − V (P1) − V (P2)
is a tree containing n − p − q = n − (w + r) vertices. Since T1 is a w-vertex path with
w < s+ 2 6 r + 2, we have

sr(T1) 6 w. (4.3)

Since v1 is a leaf of T , T − v1 is a tree. Thus the induction hypothesis implies that
the number of all r-matchings in T not containing v1v2 is at most

sr(T − v1) 6 (s+ 1)(e
1
rαr)

n−2. (4.4)

Note that any edge incident to L1 is at distance at most r − 1 from v1v2 and any edge
in L2 is also at distance at most r − 1 from v1v2 by the definition of w. Thus for an
r-matching M containing v1v2 in T , the edge set M − v1v2 is also an r-matching in the
forest F . Thus, the number of all r-matchings in T containing v1v2 is at most sr(F ). By
Observation 2, we have

sr(F ) = sr(T1)sr(T2).

Thus by (4.3) and the induction hypothesis, the number of r-matchings in T containing
v1v2 is at most

sr(F ) = sr(T1)sr(T2) 6 w(s+ 1)(e
1
rαr)

n−w+r−1.
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This together with (4.4) implies that

sr(T ) = sr(T − v1) + sr(F )

6 (s+ 1)((e
1
rαr)

n−2 + w(e
1
rαr)

n−r−w−1)

6 (s+ 1)(e
1
rαr)

n−r−w−1((e
1
rαr)

r+w−1 + w)

6 (s+ 1)(e
1
rαr)

n−1.

where the last inequality follows from Claim 9 with the fact that 1 6 w < s + 2. This
completes the proof.

Now we estimate a lower bound of max
T∈Tn

sr(T ), which is not too far from the upper

bound for sufficiently large r.

Theorem 11. For r > 2 and n ∈ N, there exists an n-vertex tree T with sr(T ) >
1
s+1

(e−6 log(r+1)/r2αr)
n−1.

Proof. Let t := dr/2 + s + 1/2e and let n′ := tb(n− 1)/tc+ 1. Then n′ − 1 is a multiple
of t.

First, since r/2 6 t and t 6 (s+ 1) log(s+ 1) + 1, we have

(e−6 log(r+1)/r2αr)
t−1 6 e−3 log(r+1)/r(s+ 1) 6 s+ 1. (4.5)

We take a copy of K
1,n
′−1
t

and subdivide each edges exactly t − 1 times to obtain an

n′-vertex tree T ′ with n′−1
t

leaves. We consider the forest F obtained from T ′ by deleting

all vertices with distance at most (r− 1)/2 from the vertex of degree n′−1
t

. Then F is the
disjoint union of (n′ − 1)/t paths of t− dr/2e+ 1 vertices.

Note that if e, e′ ∈ E(F ) belong to two different components of F , then distT ′(e, e
′) > r.

This implies that any r-matching in F is also an r-matching in T ′, thus sr(T
′) > sr(F ).

Since the number of r-matchings in each path in F is sr(Pt−dr/2e+1) > t−dr/2e+ 1 >
ds+ 1e, the number of r-matchings in F is at least

sr(T
′) > sr(F ) =

(n′−1)/t∏
i=1

sr(Pt−dr/2e+1) > (ds+ 1e)
n′−1

t > (s+ 1)
n′−1
r/2+s (s+ 1)

n′−1
t
− n′−1

r/2+s

> αn
′−1
r (s+ 1)

− 3(n′−1)

2(r/2+s)2 > αn
′−1
r e−

3(n′−1)
2(r/2+s)(s+1) > (e−

6 log(r+1)

r2 αr)
n′−1.

where the last inequality follows by 3
2(r/2+s)(s+1)

< 3
rs

(4.1)
< 6 log(r+1)

r2
.

Since there exists an n-vertex tree T which contains T ′ as a subtree, there exists an
n-vertex tree T with

sr(T ) > sr(T
′) > (e−6 log(r+1)/r2αr)

n′−1 > (e−6 log(r+1)/r2αr)
n−1(e−6 log(r+1)/r2αr)

−t+1

(4.5)

>
1

s+ 1
(e−6 log(r+1)/r2αr)

n−1.
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Note that the ratio between the upper bound from Theorem 10 and the lower bound

from Theorem 11 is at most (s+ 1)2e(
1
r
+

6 log(r+1)

r2
)(n−1) = e

1+o(1)
r

(n−1) = α
1+o(1)
2 log r

(n−1)
r .

For sufficiently large r, there are n-vertex trees having more r-matchings than an n-
vertex path for infinitely many n’s. To see this, note that we have αr = exp

(
1
s+1

)
=

exp
(
(1 + o(1))2 log r

r

)
. By Theorem 4, we have βr = exp

(
(1 + o(1)) log r

r

)
and the number

of r-matchings in the n-vertex path is

(Cr + o(1))βn−1r = (Cr + o(1))α
( 1
2
+o(1))(n−1)

r .

Theorem 11 implies that there are n-vertex trees having more r-matchings than the n-
vertex path for sufficiently large r and infinitely many n’s.

To analyze this further, let Ta,b be the subdivided star obtained from K1,b by subdivid-
ing each edge a− 1 times. In Section 5, we show that for some positive integer a = a(r)
and every integer n > 2 such that n− 1 is divisible by a,

βr < sr(Ta,(n−1)/a)
1

n−1

for all r /∈ {1, 2, 3, 4, 5, 7, 9}, implying that there are n-vertex trees with more r-matchings
than Pn for r /∈ {1, 2, 3, 4, 5, 7, 9} and infinitely many n’s.

For r = 1, 2, such trees do not exist, and we do not know for r ∈ {3, 4, 5, 7, 9}. It
would be interesting if one can identify the exact value at which such trees exist.

Problem 12. For each r ∈ {3, 4, 5, 7, 9}, determine whether the following holds.

max
Tn∈Tn

sr(Tn) = sr(Pn)

5 Computations

Let Ta,b be the subdivided star obtained from K1,b by subdividing each edge a− 1 times.
We show that for r ∈ N \ {1, 2, 3, 4, 5, 7, 9} and some integer a = a(r),

sr(Pn) < sr(Ta,(n−1)/a).

for every integer n > 2 such that n− 1 is divisible by a.
Recall that s is a positive real number satisfying r/2 + s = (s + 1) log(s + 1) and

pr(x) = xr+1 − xr − 1 and βr is the largest real roots of pr(x) = 0. In the following table,
we indicate the actual example constructed in the same way as in the proof of Theorem
11 with more precise choice of parameter a, rather than t in the proof of Theorem 11.
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r s αr βr a sr(Ta,(n−1)/a)
1

n−1

2 1.7182 . . . 1.4446 . . . 1.4655 . . . 3 > 31/3 = 1.4422 . . .
3 2.1809 . . . 1.3693 . . . 1.3802 . . . 5 > 41/5 = 1.3195 . . .
4 2.5911 . . . 1.3210 . . . 1.3247 . . . 5 > 41/5 = 1.3195 . . .
5 2.9673 . . . 1.2866 . . . 1.2852 . . . 6 > 41/6 = 1.2599 . . .
6 3.3191 . . . 1.2605 . . . 1.2554 . . . 6 > 41/6 = 1.2599 . . .
7 3.6523 . . . 1.2397 . . . 1.2320 . . . 8 > 51/8 = 1.2228 . . .
8 3.9706 . . . 1.2228 . . . 1.2131 . . . 8 > 51/8 = 1.2228 . . .
9 4.2766 . . . 1.2086 . . . 1.1974 . . . 10 > 61/10 = 1.1962 . . .
10 4.5723 . . . 1.1965 . . . 1.1842 . . . 10 > 61/10 = 1.1962 . . .
11 4.8592 . . . 1.1861 . . . 1.1729 . . . 11 > 61/11 = 1.1769 . . .
12 5.1383 . . . 1.1769 . . . 1.1631 . . . 11 > 61/11 = 1.1769 . . .
13 5.4106 . . . 1.1688 . . . 1.1544 . . . 13 > 71/13 = 1.1614 . . .
14 5.6767 . . . 1.1615 . . . 1.1468 . . . 13 > 71/13 = 1.1614 . . .
15 5.9374 . . . 1.1550 . . . 1.1400 . . . 14 > 71/14 = 1.1491 . . .
16 6.1932 . . . 1.1491 . . . 1.1339 . . . 14 > 71/14 = 1.1491 . . .
17 6.4444 . . . 1.1437 . . . 1.1283 . . . 16 > 81/16 = 1.1387 . . .
18 6.6914 . . . 1.1388 . . . 1.1233 . . . 16 > 81/16 = 1.1387 . . .
19 6.9346 . . . 1.1343 . . . 1.1187 . . . 17 > 81/17 = 1.1301 . . .
20 7.1743 . . . 1.1301 . . . 1.1144 . . . 17 > 81/17 = 1.1301 . . .
21 7.4107 . . . 1.1262 . . . 1.1105 . . . 19 > 91/19 = 1.1225 . . .
22 7.6440 . . . 1.1226 . . . 1.1069 . . . 19 > 91/19 = 1.1225 . . .
23 7.8744 . . . 1.1192 . . . 1.1036 . . . 20 > 91/20 = 1.1161 . . .
24 8.1021 . . . 1.1161 . . . 1.1004 . . . 20 > 91/20 = 1.1161 . . .
25 8.3272 . . . 1.1131 . . . 1.0975 . . . 22 > 101/22 = 1.1103 . . .

For r > 25, it is easy to check r/2− s > 4 since r/2− s = (s+ 1) log(s+ 1)− 2s is an
increasing function on s for s > e− 1 and s(r) is also an increasing function on r. Thus
we have

r − 4 > r/2 + s = (s+ 1) log(s+ 1). (5.1)

The proof of Theorem 11 shows that for all r > 2, t = dr/2 + s + 1/2e and integer
n > 2 such that n− 1 is divisible by t, we have

sr(Tt,(n−1)/t)
1

n−1 > αre
− 3

2(r/2+s)(s+1) .

We claim that αre
− 3

2(r/2+s)(s+1) > βr for r > 25. Since βr is a root of pr(x) in (1,∞) and

pr(x) is an increasing function for x > 1, it is enough to show that pr(αre
− 3

2(r/2+s)(s+1) ) > 0.
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Indeed, since αr = e1/(s+1) we have

pr

(
αre

− 3
2(r/2+s)(s+1)

)
= e

r+1
s+1
− 3(r+1)

2(r/2+s)(s+1) − e
r

s+1
− 3r

2(r/2+s)(s+1) − 1

> e
r

s+1
− 3r

2(r/2+s)(s+1)

(
e

1
s+1
− 3

2(r/2+s)(s+1) − 1
)
− 1

> e
r−3
s+1

(
e

1
s+1
− 3

2(r/2+s)(s+1) − 1
)
− 1

> e
1

s+1 e
r−4
s+1

(
1

s+ 1
− 3

2(r/2 + s)(s+ 1)

)
− 1

(5.1)

> e
1

s+1 elog(s+1)

(
1

s+ 1
− 3

2(s+ 1)2 log(s+ 1)

)
− 1

= (1 +
1

s+ 1
)

(
1− 3

2(s+ 1) log(s+ 1)

)
− 1

>
1

s+ 1
− 3

2(s+ 1) log(s+ 1)
− 3

2(s+ 1)2 log(s+ 1)

> 0

We get the final inequality since s > 8 for r > 25. This shows that sr(Tt,(n−1)/t)
1

n−1 >

αre
− 3

2(r/2+s)(s+1) > βr for all r > 25 and every integer n > 2 such that n − 1 is divisible
by t. This with the table above shows that for r ∈ N \ {1, 2, 3, 4, 5, 7, 9} and some integer
a = a(r), we have

sr(Pn) < sr(Ta,(n−1)/a)

for every large enough integer n for which n − 1 is divisible by a. In particular, for
r ∈ N \ {1, 2, 3, 4, 5, 7, 9}, there are n-vertex trees Tn with sr(Pn) < sr(Tn) for infinitely
many n’s.

References

[1] N. Alon. Independent sets in regular graphs and sum-free subsets of finite groups.
Israel J. Math., 73: 247–256, 1991.

[2] R. Baxter, I. Enting and S. Tsang. Hard-square lattice gas. J. Statist. Phys., 22 (4):
465–489, 1980.

[3] L. Brégman. Some properties of nonnegative matrices and their permanents. Soviet
Math. Dokl., 15: 945–949, 1973.
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