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Abstract

For a general family of graphs on Zn, we translate the edge-isoperimetric prob-
lem into a continuous isoperimetric problem in Rn. We then solve the continuous
isoperimetric problem using the Brunn-Minkowski inequality and Minkowski’s the-
orem on mixed volumes. This translation allows us to conclude, under a reasonable
assumption about the discrete problem, that the shapes of the optimal sets in the
discrete problem approach the shape of the optimal set in the continuous problem
as the size of the set grows. The solution is the zonotope defined as the Minkowski
sum of the edges of the original graph.

We demonstrate the efficacy of this method by revisiting some previously solved
classical edge-isoperimetric problems. We then apply our method to some discrete
isoperimetric problems which had not previously been solved. The complexity of
those solutions suggest that it would be quite difficult to find them using discrete
methods only.

Keywords: discrete isoperimetric problem, continuous isoperimetric problem, in-
finite graphs, lattices

1 Introduction

For a space with some notion of “volume” and “boundary”, an isoperimetric inequality
gives an upper bound on the volume of a set of fixed boundary. For example, one can
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consider Euclidean space Rn where “volume” is the usual notion of Lebesgue measure,
and “boundary” is the usual notion of the boundary. That is, for X ⊂ Rn, the boundary
of X is defined:

lim
ε→0+

Vol (X + εB)− Vol(X)

ε

where B is the Euclidean ball of radius 1 and X + εB refers to the Minkowski sum:

B = {x ∈ Rn : ||x||2 6 1}
X + εB = {x+ εy : x ∈ X, y ∈ B}

The well-known Euclidean isoperimetric inequality states that among all sets with
a fixed boundary, the corresponding Euclidean ball has the greatest volume. This is
equivalent to saying that among all sets with a fixed volume, the corresponding Euclidean
ball has the smallest boundary.

One can similarly define an isoperimetric inequality for any graph. Given a simple
undirected graph G = (V,E), we say that the volume of a set S ⊂ V is simply the number
of vertices in that set: |S|. The boundary of that set can be calculated in one of two ways:
using the edge boundary or the vertex boundary.

Definition 1. The vertex boundary ∂(S) of a set S ⊂ V is the set of vertices in V \S
which are adjacent to some vertex in S:

∂(S) = {v ∈ V \S : (v, u) ∈ E for some u ∈ S}

Thus, the size of the vertex boundary is |∂(S)|.
The edge boundary ∂e(S) of a set S ⊂ V is the set of edges (u, v) ∈ E “exiting” the

set S:
∂e(S) = {(u, v) ∈ E : |{u, v} ∩ S| = 1}

Thus, the size of the edge boundary is |∂e(S)|.

In the discrete case, the isoperimetric inequality is usually stated in terms of fixing
the volume and finding the set of smallest boundary. In general, the set of vertices of size
n achieving the minimum vertex boundary is not the same as the set of vertices of size
n achieving the minimum edge boundary. For example, let G = (Z2, E∞) be the graph
whose vertex set is Z2 and edge set is all pairs x, y ∈ Z2 whose `∞ distance is 1:

E∞ =
{
x, y ∈ Z2 : ||x− y||∞ = 1

}
=
{

(x1, x2), (y1, y2) ∈ Z2 : max{|x1 − y1|, |x2 − y2|} = 1
}

The following figure gives two different sets of vertices of size n = 12. Graph 1(a) rep-
resents a set of minimum edge boundary, and graph 1(b) represents a set of minimum
vertex boundary.

Both vertex and edge-isoperimetric inequalities on graphs have been studied for various
families of graphs. Vertex-isoperimetric inequalities are studied, for example, in [2, 4, 12,
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(a) Vertex Boundary: 20, Edge
Boundary:36

(b) Vertex Boundary: 18, Edge
Boundary:38

Figure 1: The blue points represent the vertices in the set of size 12, and the red points
are their vertex neighbors in (Z2, E∞).

15, 16, 20] and edge-isoperimetric inequalities in [9, 17, 3, 5, 14]. Some general techniques
for solving discrete isoperimetric inequalities have been developed, including compression
and stabilization [13].

While most of the papers on discrete isoperimetric inequalities study the discrete
problems directly, in [3] the authors use a continuous formulation of the discrete question
to solve the discrete problem. In this paper, we discuss a general method which can be
used to translate a discrete isoperimetric inequality into a continuous one. We then solve
the continuous isoperimetric inequality, and apply this technique to both graphs whose
isoperimetric inequality was previously known and graphs whose isoperimetric inequality
was not previously known.

More specifically, we introduce the following definition:

Definition 2. A simple graph G = (V,E) is called a PL graph (Primitive Lattice graph)
if it satisfies the following:

• V = Zn

• There exist integer vectors v1, v2, . . . , vk (with vi 6= −vj for any i, j) such that for
any u ∈ Zn the edges in E involving u are precisely the edges:

(u, u± v1), (u, u± v2), (u, u± v3), . . . , (u, u± vk)

• For each integer vector vi = (vi1, vi2, . . . , vin) above, the entries {vi1, vi2, . . . , vin} are
relatively prime (primitive).

• The span of {v1, v2, . . . , vk} is Rn.
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We note that the above conditions imply that G is regular of degree 2k, and any
translation mapping Zn to itself is an isomorphism of this graph to itself. The last
condition implies that the graph is “full dimensional” and appropriately lives in Zn (as
opposed to Z` for some ` < n).

For any PL graph, we also define the following:

Definition 3. Suppose G = (V,E) is a PL graph whose edges are given by the vectors
v1, v2, . . . , vk. Then the edge segments `i, i = 1, 2, . . . , k of G are the line segments from
the origin to vi for each i:

`i = {t~0 + (1− t)vi : t ∈ [0, 1]}

We now have the following Lemma, which will be proved in Subsection 2.2:

Lemma 1. Let G = (Zn, E) be a PL graph. Let `1, `2, . . . , `k be the edge segments of G.
Let Z be the zonotope

Z =
k∑
i=1

(−`i + `i)

where all sums are the Minkowski sum. Let µn denote the Lebesgue measure on Rn and
let b be the real-valued function on sets A ⊂ Rn defined by:

b(A) = lim
ε→0+

µn (A+ εZ)− µn (A)

ε

where A+ εZ is the Minkowski sum.
Then for any convex set X ⊂ Rn, we have for α ∈ R

lim
α→∞

µn(αX)

|Zn ∩ αX|
= 1 and

lim
α→∞

b(αX)

|∂e(Zn ∩ αX)|
= 1

The above Lemma tells us that solving the isoperimetric inequality on Rn using the
boundary function b should give us an idea of the shape of set that solves the edge isoperi-
metric inequality for a PL graph. (We discuss conditions under which X is guaranteed to
be the optimal shape in Remark 2). The main Theorem of this paper is that we can solve
the corresponding continuous isoperimetric inequality on Rn using boundary function b:

Theorem 1. Suppose G = (Zn, E) is a PL graph with edge segments `1, `2, . . . , `k. Let Z
be the zonotope

Z =
k∑
i=1

(−`i + `i)

where all sums are the Minkowski sum. Let X be a scaling of Z and b be the boundary
function as defined in Lemma 1. Then for any A ⊂ Rn with Vol(A) = Vol(X), we have

b(X) 6 b(A)

with equality if and only if A is homothetic to X.
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The paper is organized as follows: in Section 2 we prove Lemma 1 and Theorem 1. In
section 3 we apply Theorem 1 to cases where the discrete isoperimetric inequality has been
solved, to show how easily the proper “shape” of the discrete solution can be found. And
in section 4 we apply Theorem 1 to some cases where the discrete isoperimetric problem
has not previously been solved.

2 Defining and Solving the Continuous Isoperimetric Problem

2.1 Limiting Solutions

We expect our technique will find the shape of sets with minimum edge boundary in PL
graphs which have a limiting solution:

Definition 4. Suppose that G = (V,E) is a PL graph. We say that the edge isoperimetric
problem for G has a limiting solution with convex body K if there exists a family {Sm}m∈N
of subsets of Zn with |Sm| = m and Sm having minimum edge boundary such that the
following holds:

There exists a subsequence Skn and a function f : Z → R with limn→∞ f(kn) = ∞
such that

Skn = Zn ∩ f(kn)K

where f(kn)K is the scaling of the set K by the number f(kn).

In words, a PL graph has a limiting solution if for any N ∈ N, we can find a set of
minimum boundary with volume larger than N such that the set consists of the integer
points in a scaling of a fixed convex body.

It is reasonable to expect a PL graph to have a limiting solution because a PL graph
is so symmetric. It is natural to expect shapes for sets of minimum boundary to be nearly
the points in a convex set, and precisely the points in a convex set for particular volumes.
And again, given the symmetry, it is reasonable to expect that the same optimal shape
appears repeatedly as the volume grows. We also note that in Section 3, we apply our
technique to all PL graphs we could find in the literature for which the edge-isoperimetric
inequality has already been solved. All of them do indeed satisfy this assumption.

Note that this assumption implies that

lim
n→∞

Vol (f(kn)K)

|Skn|
= 1

Indeed, from Lattice theory, we know that as a convex set is scaled by an unbounded
factor, the number of integer points in the scaled set approaches the volume of the scaled
set. (One can prove this by, for example, modifying the proof of Theorem 2.3 in Chapter
VII Section 2 of [1] and also using Minkowski’s theorem on mixed volumes, which is stated
as Theorem 3 below).

We also note that this assumption implies that all of the sets Skn have no “gaps”:
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Definition 5. Let (Zn, E) be a PL graph with edges corresponding to vectors v1, v2, . . . , vk.
For S ⊂ Zn, we define

gapvi(S) = {x ∈ Zn : x− vi ∈ S, x 6∈ S, and x+ bvi ∈ S for some b > 1}

Thus, one can think of a point x ∈ gapvi(S) as the first vertex in Zn which indicates a
gap in S in the line through x in the direction of vi.

We say that S ⊂ Zn has no gaps if for each i = 1, 2, . . . , k the set gapvi(S) is empty.

2.2 Appropriate Boundary Definition for Continuous Problem

It is not too hard to calculate the edge boundary for a general set S ⊂ Zn in a PL graph.
First we require a definition.

Definition 6. Let (Zn, E) be a PL graph with edges corresponding to vectors v1, v2, . . . , vk.
We define Pvi(S) to be the projection of S onto the hyperplane of Rn which is perpendicular
to vi. That is,

Pvi(S) =

{
u− 〈u, vi〉

||vi||2
vi : u ∈ S

}
We can now calculate the edge boundary of S ⊂ Zn:

Theorem 2. Let (Zn, E) be a PL graph with edges corresponding to vectors v1, v2, . . . , vk.
Let S ⊂ Zn be a finite set. Then

|∂e(S)| = 2
k∑
i=1

(
|Pvi(S)|+ |gapvi(S)|

)
(1)

Proof. We proceed by induction on |S|. If |S| = 1, then gapvi(S) = ∅ for each i =
1, 2, . . . , k. We can also see that if S = {u}, then

∂e(S) = {(u, u+ vi) : i = 1, 2, . . . , k} ∪ {(u, u− vi), i = 1, 2, . . . , k}

Additionally, in this case,
|Pvi(S)| = 1

for each i = 1, 2, . . . , k. Thus, we have

|∂e(S)| = 2
k∑
i=1

(
|Pvi(S)|+ |gapvi(S)|

)
if |S| = 1.

Now suppose that |S| > 1. Fix u ∈ S. By induction,

|∂e(S\{u})| = 2
k∑
i=1

(
|Pvi(S\{u})|+ |gapvi(S\{u})|

)
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Consider what u contributes to the edge boundary of S. Note that for each vi, i =
1, 2, . . . , k we have three cases:
Case 1: Both u+ vi and u− vi are in S: In this case,

(u, u+ vi) ∈ ∂e(S\{u}) (u− vi, u) ∈ ∂e(S\{u})
(u, u+ vi) 6∈ ∂e(S) (u− vi, u) 6∈ ∂e(S)

and
gapvi(S) = gapvi(S\{u})\{u} Pvi (S\{u}) = Pvi(S)

Thus we can see that when considering only edges in the vi direction, both the left and
right hand sides of equation (1) go down by 2 when u is added back to S.
Case 2: Exactly one of u+ vi or u− vi is in S: Without loss of generality, assume that
u− vi ∈ S. Then

(u− vi u) ∈ ∂e(S\{u}) (u, u+ vi) 6∈ ∂e(S\{u})
(u− vi u) 6∈ ∂e(S) (u, u+ vi) ∈ ∂e(S)

and ∣∣gapvi(S)
∣∣ =

∣∣gapvi(S\{u})
∣∣ Pvi (S\{u}) = Pvi(S)

Thus we can see that when considering only edges in the vi direction, both the left
and right hand sides of equation (1) do not change when u is added back to S.
Case 3: Neither u+ ε nor u− ε are in S: In this case,

(u, u+ vi) 6∈ ∂e(S\{u}) (u− vi, u) 6∈ ∂e(S\{u})
(u, u+ vi) ∈ ∂e(S) (u− vi, u) ∈ ∂e(S)

and either u+ bvi ∈ S for some b in which case∣∣gapvi(S)
∣∣ =

∣∣gapvi(S\{u})
∣∣+ 1 Pvi (S\{u}) = Pvi(S)

or u+ bvi 6∈ S for any b in which case

gapvi(S) = gapvi(S\{u}) = ∅ |Pvi(S)| = |Pvi (S\{u})|+ 1

Thus we can see that when considering only edges in the vi direction, both the left
and right hand sides of equation (1) go up by 2 when u is added back to S.

Since i was arbitrary, we can see that all of the changes between ∂e(S\{u}) and ∂e(S)
are balanced out by changes in either the corresponding gaps or projections. Thus, we
have

|∂e(S)| = 2
k∑
i=1

(
|Pvi(S)|+ |gapvi(S)|

)
Theorem 2 clearly has the following corollary:
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Corollary 1. Let (Zn, E) be a PL graph with edges corresponding to vectors v1, v2, . . . , vk.
Let S ⊂ Zn be a finite set such that gapvi(S) = ∅ for each i = 1, 2, . . . , k. Then

|∂e(S)| = 2
k∑
i=1

|Pvi(S)| (2)

Remark 1. We note that Corollary 1 is a nice counterpoint to the vertex boundary cal-
culations in [20], which calculate the vertex boundary of optimal sets in a particular PL
graph as a weighted sum of projections of the graph.

Recall that from our arguments in Subsection 2.1, for a PL graph with a limiting
solution, once the volume is large enough, the sets of minimum boundary have no gaps.
Thus, we can assume that for volume large enough, the boundary of a set of minimum
boundary can be calculated using equation (2). In order to finish our translation of the
discrete isoperimetric problem into a continuous isoperimetric problem, we must now
define an appropriate boundary function b on Rn. Let µn denote the usual Lebesgue
measure on Rn.

Definition 7. Let u, P ⊂ Rn. Define

DuP = lim
ε→0+

µn(P + εu)− µn(P )

ε
. (3)

Note that the special case of u = Bn, the Euclidean ball in Rn of radius 1, gives the
surface volume of the set P .

We now need a couple of Lemmas, which we note also appear in [19]. We include
them here for completeness. We will use Minkowski’s theorem on mixed volumes, which
can be found, for example, in Chapter 5 of Schneider’s text [18]. This theorem says that
the volume of a Minkowski sum of convex bodies can be written as a polynomial in the
coefficients of that Minkowski sum, where the coefficients of the polynomial depend only
on the convex bodies. Specifically:

Theorem 3. Suppose K1, K2, . . . , Km are convex bodies in Rn. Then

µn (λ1K1 + λ2K2 + · · ·+ λmKm) =
∑

λi1λi2 · · ·λinV (Ki1 , Ki2 , . . . , Kin)

where the sum on the left hand side is the Minkowski sum, and the sum on the right
hand side is over all multisets of size n whose elements are in the set {1, 2, . . . ,m}.
The functions V are nonnegative, symmetric, and depend only on the convex bodies
Ki1 , Ki2 , . . . , Kin. For a fixed n-dimensional convex body K, V (K,K, . . . ,K︸ ︷︷ ︸

n times

) = µn(K).

From Minkowski’s Theorem on mixed volume it follows that if P and u are convex,
then DuP is linear in u:

Lemma 2. Suppose P, u, v ⊂ Rn with P, u, and v convex bodies, and suppose α, β ∈ R.
Then

Dαu+βv(P ) = αDu(P ) + βDv(P )
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Proof. By definition we have

Dαu+βv(P ) = lim
ε→0+

µn (P + ε (αu+ βv))− µn(P )

ε
= lim

ε→0+

µn (P + εαu+ εβv)− µn(P )

ε

From Theorem 3, we can see that

Dαu+βv(P ) = αV (P, P, . . . , P︸ ︷︷ ︸
n−1 times

, u) + βV (P, P, . . . , P︸ ︷︷ ︸
n−1 times

, v)

where V represents the function in the statement of Theorem 3. Similarly, one can easily
see that

Du(P ) = V (P, P, . . . , P︸ ︷︷ ︸
n−1 times

, u)

Dv(P ) = V (P, P, . . . , P︸ ︷︷ ︸
n−1 times

, v)

and our Lemma is proved.

For the following Lemma, we prove that the derivative we’ve defined in equation (3)
calculates the volume of the projection of a convex body in the case where u is a segment
of length 1. For a convex body K ⊂ Rn and u ∈ Sn−1, we denote by Pu(K) the projection
of K onto the (n− 1)-dimensional subspace of Rn which is perpendicular to u.

Lemma 3. Let u be a segment of length 1 and K ⊂ Rn convex. Then

µn−1 (Pu(K)) = DuK.

Proof. Let Lu be the set of lines parallel to u. Note that each l ∈ Lu corresponds
uniquely to a single point in l⊥, so that Lu is isomorphic to Rn−1 (and thus we can define
the measure µn−1 on Lu). Then

µn(K) =

∫
l∈Lu

µ1(l ∩K)dµn−1.

Now,

µn−1 (Pu(K)) =

∫
l∩K 6=∅
l∈Lu

1dµn−1.

For ε > 0, we have

µn (K + εu)− µn (K) =

∫
l∈Lu

(µ1 (l ∩ (K + εu))− µ1 (l ∩K)) dµn−1.

Convexity implies that
µ1 (l ∩ (K + εu))− µ1 (l ∩K) = ε
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whenever l intersects K. Therefore the last integral is equal to∫
l∩K 6=∅
l∈Lu

εdµn−1 = εµn−1 (Pu(K))

and hence,

DuK = lim
ε→0+

µn(K + εu)− µn(K)

ε
= lim

ε→0+

εµn−1
(
K|u⊥

)
ε

= µn−1 (Pu(K))

We are now able to see how to define the boundary function b for the continuous
isoperimetric problem. Recall that for a PL graph (Zn, E) with edges corresponding to
vectors v1, v2, . . . , vk, the boundary of a set S ⊂ Zn having no gaps is twice the sum of
the number of points in Pvi for i = 1, 2, . . . , k:

|∂e(S)| = 2
k∑
i=1

|Pvi(S)|

Since Pvi(S) = P−vi(S), we can re-write this edge calculation as:

|∂e(S)| =
k∑
i=1

(|Pvi(S)|+ |P−vi(S)|)

If the edge isoperimetric inequality for the PL graph has a limiting solution, for the
sets Skn ⊂ Zn of minimum boundary, the integer points in the set f(kn)K are pre-
cisely Skn . Thus, again from Lattice Theory, ci|Pvi(S)| is a good approximation for
µn−1(Pvi(f(kn)K)), where ci is the determinant of the lattice Λ = Pvi(Zn). Thus, us-
ing what we found in Lemma 3, we will define our boundary function b on Rn as follows:
for A ⊂ Rn.

b(A) =
k∑
i=1

ci(Dui(A) +D−ui(A)) (4)

where ci is the determinant of the lattice Pvi(Zn) and ui is the segment of length 1 in the
direction of vi. Thus, for the optimal sets Skn , we will have both

lim
n→∞

Vol (f(kn)K)

|Skn|
= 1 and

lim
n→∞

b(f(kn)K)

|∂e(Skn)|
= 1

Note that by the same argument, for any convex set X, we have for α ∈ R

lim
α→∞

µn(αX)

|Zn ∩ αX|
= 1 and

lim
α→∞

b(αX)

|∂e(Zn ∩ αX)|
= 1 (5)
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We have nearly finished the proof of Lemma 1; we need only simplify the expression
in equation (4). Specifically, we need to calculate the constants ci. In other words: what
is the determinant of the lattice Pvi(Zn)?

In order to answer this, we need the following Lemmas:

Lemma 4. Suppose a ∈ Zn and Λ = Pa (Zn). Then

Λ∗ = {x ∈ Zn : 〈x, a〉 = 0}

where Λ∗ denotes the dual lattice to Λ.

Lemma 5. Suppose a = (a1, a2, . . . , an) where {a1, a2, . . . , an} is a set of relatively prime
integers. Let

Λ = Pa (Zn)

Then

det(Λ) =
1√

a21 + a22 + · · ·+ a2n

Proof of Lemma 4. Suppose a ∈ Zn and Λ = Pa (Zn). Suppose y ∈ {x ∈ Zn : 〈x, a〉 = 0}.
Pick any z ∈ Λ. Then we know that z = x− 〈x,a〉〈a,a〉a for some x ∈ Zn. Note that

〈z, y〉 =

〈
x− 〈x, a〉
〈a, a〉

a, y

〉
= 〈x, y〉 ∈ Z

This proves that {x ∈ Zn : 〈x, a〉 = 0} ⊂ Λ∗.
Now suppose that y ∈ Λ∗. Certainly y lives in the same vector space as Λ, so that

y ∈ Rn and 〈y, a〉 = 0. Since y ∈ Λ∗, we know that for any z ∈ Λ, 〈y, z〉 ∈ Z. For
i = 1, 2, . . . , n, let zi be the vector which is:

zi = ei −
〈ei, a〉
〈a, a〉

a

Then note that if y = (y1, y2, . . . , yn) we must have

〈y, zi〉 =

〈
y, ei −

〈ei, a〉
〈a, a〉

a

〉
= 〈y, ei〉 = yi ∈ Z

for i = 1, 2, . . . , n. This implies that Λ∗ ⊂ {x ∈ Zn : 〈x, a〉 = 0}, and thus

Λ∗ = {x ∈ Zn : 〈x, a〉 = 0}

Proof of Lemma 5. Suppose a = (a1, a2, . . . , an) where {a1, a2, . . . , an} is a set of relatively
prime integers and let

Λ = Pa (Zn)
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From Lemma 4 we know that Λ∗ = {x ∈ Zn : 〈x, a〉 = 0}. It is also well-known in the
theory of lattices that for any lattice Λ, det(Λ) det(Λ∗) = 1. (See, for example, Chapter
VII section 7 of [1]). Thus, to prove our Lemma, we need only prove that

det(Λ∗) =
√
a21 + a22 + · · ·+ a2n

We shall prove this, although we note that the proof is equivalent to solving problem
number 4 in Chapter VII, section 2 of [1].

First we let N = a21 + a22 + · · ·+ a2n and define

Λ1 = {x ∈ Zd : 〈x, a〉 ≡ 0 mod N}

It is clear that Λ1 is a sublattice of Zn, and since the numbers a1, a2, . . . , an are relatively
prime, the number of cosets of Λ1 in Zn is n. From lattice theory (see Theorem 2.5 in
Chapter VII, section 2 of [1]), this implies that

det(Λ1) = N det(Zn) = N

Now suppose that u1, u2, . . . , un−1 is a basis for Λ∗. We claim that u1, u2, . . . , un−1, a is a
basis for Λ1.

Indeed, if we write x = βa +
∑n−1

i=1 βiui for integers β, β1, β2, . . . , βn−1, then clearly
x ∈ Zn and

〈x, a〉 = β〈a, a〉+
n−1∑
i=1

βi 〈ui, a〉 = βN ≡ 0 mod N

This implies that the integer span of u1, u2, . . . , un, a is in Λ1.
Now pick x ∈ Λ1. Since u1, u2, . . . , un−1 is a basis for Λ∗ and a is not in Λ∗, we know

that the vectors u1, u2, . . . , un−1, a span all of Rn so that we can write

x = γa+
n−1∑
i=1

γiui

for some real numbers γ, γ1, γ2, . . . , γn−1. It remains to show that in fact γ, γ1, . . . , γn are
in fact all integers. Note that

〈x, a〉 = β 〈a, a〉 = βN ≡ 0 mod N

This implies that β ∈ Z. Thus, we can see that

n−1∑
i=1

βiui = x− 〈x, a〉
〈a, a〉

a = x− βa

where β ∈ Z. Thus, we can see that
∑n−1

i=1 βiui has integer coordinates and thus is in Λ∗.
By the definition of lattice basis, we must have β1, β2, . . . , βn−1 all integers. Thus we have
proved that u1, u2, . . . , un−1, a is a basis for Λ1.
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Finally, recall that the determinant of a lattice is the volume of the fundamental paral-
lelepiped of that lattice. Specifically, the volume of the (n−1)-dimensional parallelepiped
defined by the vectors u1, u2, . . . , un−1 is the determinant of Λ∗ while the volume of the
n-dimensional parallelepiped defined by the vectors u1, u2, . . . , un−1, a is the determinant
of the lattice Λ1. Let P be the (n − 1)-dimensional parallelepiped defined by vectors
u1, u2, . . . , un−1. Since a is perpendicular to the span of u1, u2, . . . , un−1, we must have:

Vol(P )||a|| = Volume of parallelepiped defined by vectors{u1, u2, . . . , un−1, a}
det(Λ∗)||a|| = det(Λ1)

det(Λ∗)
√
N = N

so that we have now shown that det(Λ∗) =
√
N =

√
a21 + a22 + · · ·+ a2n.

We can now see that in equation (4), we can take ci = ||vi|| for each i = 1, 2, . . . , k.
This, along with Lemma 2, gives us the following more beautiful definition of the boundary
function b: For A ⊂ Rn,

b(A) =
k∑
i=1

ci(Dui(A) +D−ui(A))

=
k∑
i=1

||vi|| (Dui(A) +D−ui(A))

= DZ(A)

where Z is the zonotope from Theorem 1:

Z =
k∑
i=1

(−`i + `i)

This completes the proof of Lemma 1.

Remark 2. We expect the solution Z for the continuous isoperimetric problem on Rn

using boundary function b will give us the set K for a PL graph whose edge isoperimetric
inequality has a limiting solution. Indeed, without loss of generality we can scale K so
that µn(K) = µn(Z). If Z is not homothetic to K, we must have b(Z) < b(K). From
equation (5), this implies that ∂e(αZ) < ∂e(αK) for α > 0 large enough. This would be
a contradiction if, for large enough α, we ever had |Zn ∩αZ| = |Zn ∩αK|. We note that,
for all of our examples in Section 3, the PL graphs do have limiting solutions K which
are the same as the continuous solution Z.

2.3 Proof of Continuous Problem

Now, with the help of the Brunn-Minkowski inequality [10], we can prove Theorem 1.
The Brunn-Minkowski inequality can be stated as follows:
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Theorem 4 (Brunn-Minkowski Inequality). Suppose A and B are nonempty convex bodies
in Rn. Then

µn(A+B)1/n > µn(A)1/n + µn(B)1/n

with equality true if and only if A and B are nomothetic.

This now allows us to now prove Theorem 1.

Proof of Theorem 1. Suppose G = (V,E) is a PL graph with edge segments `1, `2, . . . , `k.
Let

Z =
k∑
i=1

(−`i + `i)

From the discussion above, the sets of optimum edge boundary Skn have continuous
counterparts S ′kn which are convex bodies. Thus, to solve the continuous isoperimetric
problem, we look for convex bodies A ⊂ Rn of fixed volume with minimum boundary
b(A).

Recall that we define

b(A) = DZ(A) = lim
ε→0+

µn (A+ εZ)− µn(A)

ε

Using the Brunn-Minkowski inequality, we have

b(A) = lim
ε→0

µn (A+ εZ)− µn(A)

ε

> lim
ε→0

(
µn(A)1/n + εµn(Z)1/n

)n − µn(A)

ε

= nµn(A)(n−1)/nµn(Z)1/n (6)

with equality if and only if A is a translate of a scalar multiple of Z.
We can also calculate

b(Z) = lim
ε→0

µn (Z + εZ)− µn(Z)

ε

= lim
ε→0

µn ((1 + ε)Z)− µn(Z)

ε

= lim
ε→0

(1 + ε)nµn(Z)− µn(Z)

ε
= nµn(Z)

Substituting this into equation (6), we have

b(A) >
b(Z)

µn(Z)
µn(A)(n−1)/nµn(Z)1/n

b(A)

b(Z)
>
µn(A)(n−1)/n

µn(Z)(n−1)/n(
µn(A)

µn(Z)

)1/n

6

(
b(A)

b(Z)

)1/(n−1)
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with equality if and only if A is a translate of a scalar multiple of Z.

We note that this proof is essentially the same as a proof for the Euclidean isoperimetric
inequality, with Z replaced by the Euclidean ball.

3 Using the Continuous Technique for Known Isoperimetric
Problems

Example 1. Our technique for translating a discrete isoperimetric inequality into a con-
tinuous one can be applied to any PL graph. One such graph that has been previously
studied is the graph (Zn, E1) where E1 denotes the set of edges which connects any pair
of integer points whose `1-distance is 1:

E1 = {(x, y) ∈ Zn × Zn : ||x− y||1 = 1}

where, as usual, for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), we have

||x− y||1 =
n∑
i=1

|xi − yi|

Bollobás and Leader studied the edge-isoperimetric inequality on this graph (and others)
in [3]. While they used the corresponding continuous isoperimetric problem to solve their
main discrete result in the paper, for the PL graph described above they used discrete
methods. In [3], Bollobás and Leader show that sets of minimal boundary in (Zn, E1) of
size sn for s ∈ Z are boxes:

[s]n = {(s1, s2, . . . , sn) : si ∈ Z, 0 6 si 6 s for i = 1, 2, . . . , n}

(Note that this easily shows that this graph satisfies the assumption listed in Subsection
2.1.)

Using our continuous method, we see that the edges in this graph correspond to vectors
vi = ei, i = 1, 2, . . . , n, where ei is the ith standard basis vector whose entries are all 0
except the ith, which is 1. Thus, letting [−ei, ei] denote the line segment from −ei to
ei, our method would predict the sets of minimum boundary to have the shape of the
zonotope

n∑
i=1

[−ei, ei]

which is, as expected, a box.

Example 2. Here, we consider the triangular lattice in R2. That is, we tile the plane with
equilateral triangles, and from this we get a graph T2 whose vertices are the vertices of
each triangle, and edges are the edges of each triangle.

We note that the edge-isoperimetric problem of this graph is of interest in the study
of the emergence of the Wulff shape in the crystallization problem [7].
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Figure 2:
Subgraph of T2

Using a linear transformation, this graph is isomorphic to a PL graph, so our technique
will work for this graph.

According to [13], the solutions are nested and for |S| = 1 + 3r(r + 1) they are of the
form

Br = {v ∈ V : d(v0, v) 6 r}.
(Again showing that this graph satisfies the assumption listed in Subsection 2.1.)

From our technique, the limit zonotope is given by the sum of the edges:

Z =
5∑
j=0

[~0, eij
π
3 ]

which is the regular hexagon, consistent with Br.

4 Using the Continuous Technique on some New Graphs

We can apply our continuous technique to any PL graph in order to give an idea of what
the shapes of the sets of minimum edge boundary should look like for sets of large volume.
Here we apply this technique to two graphs whose edge-isoperimetric inequalities are not
yet known. For both of these examples, the solutions for the continuous case are fairly
“complicated,” suggesting that finding these sets using discrete methods only would be
quite difficult.

Example 3. There exists a tessellation of R4 using 4-dimensional crosspolytopes; see [6]
for details. One can translate this tessellation into a graph living in R4 as follows: the
0-dimensional faces of these crosspolytopes become vertices and the 1-dimensional faces
become edges. The vertices of this graph are the points

(x1, x2, x3, x4) ∈ Z4 such that x1 + x2 + x3 + x4 ≡ 0 mod 2

and the edges involving any vertex v are of the form

(v, v + e1) where e1 is any permutation of (1,−1, 0, 0)

and (v, v ± e2) where e2 is any permutation of (1, 1, 0, 0)
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In [13], Harper mentions that the isoperimetric inequality for this graph is unknown.
Note that this graph is isomorphic to a PL graph, so that we can use our technique to
see that the limiting optimal shape should be the following zonotope:

ZC =
12∑
i=1

[
~0, πi(1,−1, 0, 0)

]
+

6∑
j=1

[
~0, φj(1, 1, 0, 0)

]
+

6∑
k=1

[
~0, ψk(−1,−1, 0, 0)

]
where the πis are the distinguishable permutations of (1,−1, 0, 0), the φjs are the dis-
tinguishable permutations of (1, 1, 0, 0), the ψks are the distinguishable permutations of
(−1,−1, 0, 0), and [~0, v] indicates the line segment from the origin to v.

Using the online version of polymake [11] which can be found here:
https://polymake.org/doku.php/boxdoc
we were able to find that the vertices of this zonotope are all coordinate permutations and
sign combinations of (0,2,4,6) and this polytope has f -vector (192, 384, 240, 48). (Thus,
this limiting shape is apparently a truncated 24-cell [21]).

One might have guessed, given the definition of ZC as a zonotope, that it has facets
corresponding to {

x ∈ R4 : 〈x, v〉 6 c
}

where v is a permutation of (1,−1, 0, 0), (1, 1, 0, 0), or (−1,−1, 0, 0). And it does have
all of those facets (according to polymake) with c = 20. But it also has 24 other facets,
corresponding to{

x ∈ R4 : 〈x, u〉 6 12
}

where u is a permutation of (1, 0, 0, 0) or (−1, 0, 0, 0)

and {x ∈ R4 : 〈x,w〉 6 24} where w is one of (±1,±1,±1,±1)

This shape is complicated enough that it likely would be quite difficult to find using only
discrete methods.

Example 4. We also apply our technique to the edge-isoperimetric problem for a graph
whose vertex-isoperimetric problem was recently solved in [20]. Here, we denote this
graph by (Zn, E∞). Its vertices are Zn and any two vertices whose `∞ distance is 1 have
an edge between them:

E∞ = {(x, y) ∈ Zn × Zn : ||x− y||∞ = 1}

where, as usual, for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), we have

||x− y||∞ = max
i=1,2,...,n

|xi − yi|

This graph is clearly a PL graph such that the edges involving v ∈ Zn are:

(v, v + ε) where ε ∈ {−1, 0, 1}n, ε 6= ~0

Thus, from our technique, the sets of minimum edge boundary should have the shape
of

Zn =
∑

ε∈{−1,0,1}n
ε6=~0

[
~0, ε
]
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where
[
~0, ε
]

is, as usual, the line segment from the origin to ε.

These shapes can be seen in Figure 3 (courtesy of Polymake [11] and Sage [8]) for
n = 2 and n = 3.

(a) n = 2 (b) n = 3

Figure 3: Optimal zonotopes for (Zn, E∞) in dimensions 2 and 3.

From Polymake [11], we found that the f-vectors of Z2, Z3, and Z4 were (8,8), (96, 144,
50), and (5376, 11328, 7312, 1360) respectively.

In the case of n = 2, it is not hard to argue that for a fixed boundary, the shape of
largest volume lies inside a polygon defined by 8 facets:

〈x, (1, 0)〉 6 c1 〈x, (0, 1)〉 6 c2 〈x, (1, 1)〉 6 c3 〈x, (1,−1)〉 6 c4

〈x, (−1, 0)〉 6 c5 〈x, (0,−1)〉 6 c6 〈x, (−1,−1)〉 6 c7 〈x, (−1,−)〉 6 c8

Using precise boundary calculations and discrete volume calculations (from Pick’s
Theorem, which can be found in Section 2, Chapter VII of [1]) one can show that the
optimal sets in the discrete 2-dimensional case are indeed growing octagons, and thus are
nested. Moreover, as expected, the shape from picture 3(a) appears periodically in the
optimal discrete sets of growing volume (whenever it can be achieved with a particular
discrete volume). Thus, one might predict that the sets in higher dimensions are also
nested.

Frequently, when a graph is defined for any dimension n such as this one is, and the
sets of optimum boundary are nested, one can use the technique of compression to prove
the discrete isoperimetric inequality [13]. This technique requires that sections of the
optimal set in dimension n which are perpendicular to the coordinate axes are optimal
sets in dimension n− 1. Interestingly, this is not the case here. In the Proposition below,
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we show that sections of Zn which are perpendicular to the coordinate axes, and either
through the origin or on the boundary are in the shape of Zn−1. However, Sage [8] can
show us that already the section of Z3 through the hyperplane x = 3 is not Z2 (since it
is not an octagon), see Figure 4.

Figure 4: Section of Z2 through the plane x = 3

Proposition 1. 1. Let ei be a standard basis vector and let Fi be the face of Zn defined
as follows:

Fi = {z ∈ Zn : 〈ei, z〉 = max{〈ei, x〉 : x ∈ Zn}}

Then Fi is a translation of the zonotope Zn−1.

2. Additionally, define X to be the intersection of Zn−1 with the hyperplane consisting
of all points whose ith coordinate is 0:

X = {z ∈ Zn : 〈ei, x〉 = 0}

Then X is the set 3Zn−1 embedded into that hyperplane.

Proof. Let x ∈ Fi for the set Fi as defined above. For ease of notation, say i = 1. Define

E−1 = {ε = (ε1, ε2, . . . , εn) ∈ {−1, 0, 1}n : ε1 = −1}
E0 = {ε = (ε1, ε2, . . . , εn) ∈ {−1, 0, 1}n : ε1 = 0}
E1 = {ε = (ε1, ε2, . . . , εn) ∈ {−1, 0, 1}n : ε1 = 1}

Since x ∈ Zn, we know that we can write

x =
∑

ε∈{−1,0,1}n
ε6=~0

λεε (7)
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where 0 6 λε 6 1. Since x ∈ F1, we know that the first coordinate of x must be as large
as possible; that is, it must be 3n−1. This implies that

x =
∑
ε∈E1

ε+
∑
ε∈E0

λεε (8)

where 0 6 λε 6 1. That is, in the expression (7), if ε ∈ E1 then λε = 1; if ε ∈ E−1 then
λε = 0, and if ε ∈ E0 then λε may be anything between 0 and 1. Thus, if we define Z as
Zn−1 embedded into the hyperplane of Rn consisting of all vectors with first coordinate
0, then this shows

F1 ⊂ Z + v

where v =
∑

ε∈E1
ε.

It is also clear that any x that can be expressed as in equation (8) must also be in F1.
This implies that Z + v ⊂ F1, and we have proved our first claim.

Define X as above, let x ∈ X, and again for ease assume i = 1. Then we can write

x =
∑

ε∈{−1,0,1}n
ε6=~0

λεε

=
∑
ε∈E0

λεε+
∑
ε∈E−1

λεε+
∑
ε∈E1

λεε

=
∑
ε∈E0

λεε+
∑
ε∈E−1

λε(−e1 + (ε+ e1)) +
∑
ε∈E1

λε(e1 + (ε− e1))

Since we know that 〈x, e1〉 = 0, we must have∑
ε∈E0

λεε+
∑
ε∈E−1

λε(−e1 + (ε+ e1)) +
∑
ε∈E1

λε(e1 + (ε− e1))

=
∑
ε∈E0

λεε+
∑
ε∈E−1

λε(ε+ e1) +
∑
ε∈E1

λε(ε− e1) (9)

Note that each ε ∈ E0 also appears in the other two sums on the right side of equation
(9). Thus, grouping the three coefficients for the same ε ∈ E0, we see that

x =
∑
ε∈E0

cεε

and we must have 0 6 cε 6 3. Thus, if we define Z as Zn−1 embedded into the hyperplane
of Rn consisting of all vectors with first coordinate 0, then this shows

X ⊂ 3Z

Now suppose that x ∈ 3Z. That is, we can write

x =
∑
ε∈E0

cεε
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where 0 6 cε 6 3. Define:

λε,0 =

{
cε if cε 6 1

1 if cε > 1

λε,1 =

{
0 if cε 6 1
cε−1
2

if cε > 1

λε,−1 =

{
0 if cε 6 1
cε−1
2

if cε > 1

Then we can see that clearly 〈e1, x〉 = 0 and

x =
∑
ε∈E0

cεε =
∑
ε∈E0

(λε,0ε+ λε,1 (e1 + ε) + λε,−1 (−e1 + ε))

where 0 6 λε,i 6 1 for i = −1, 0, 1. This shows that x ∈ X. Thus, we have shown that
3Z ⊂ X and we have proved our second claim.

The complicated structure of the sets Zn again suggests that it would be difficult to
find these optimal sets using discrete methods alone.
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