On the multicolor Ramsey number for 3-paths of length three

Tomasz Luczak* and Joanna Polcyn
A. Mickiewicz University
Faculty of Mathematics and Computer Science
ul. Umultowska 87,
61-614 Poznań, Poland
tomasz@amu.edu.pl

Submitted: Dec 6, 2016; Accepted: Jan 30, 2017; Published: Feb 17, 2017
Mathematics Subject Classifications: 05D10, 05C38, 05C55, 05C65

Abstract

We show that if we color the hyperedges of the complete 3 -uniform hypergraph on $2 n+\sqrt{18 n+1}+2$ vertices with n colors, then one of the color classes contains a loose path of length three.

Let P denote the 3 -uniform path of length three by which we mean the only connected 3 -uniform hypergraph on seven vertices with the degree sequence ($2,2,1,1,1,1,1$). By $R(P ; n)$ we denote the multicolored Ramsey number for P defined as the smallest number N such that each coloring of the hyperedges of the complete 3-uniform hypergraph $K_{N}^{(3)}$ with n colors leads to a monochromatic copy of P. It is easy to check that $R(P ; n) \geqslant n+6$ (see $[2,5]$), and it is believed that in fact equality holds, i.e.

$$
R(P ; n)=n+6 .
$$

Gyárfás and Raeisi [2] proved, among many other results, that $R(P ; 2)=8$. Their theorem was extended by Omidi and Shahsiah [9] to loose paths of arbitrary lengths, but still only for the case of two colors. On the other hand, in a series of papers [5, 7, 12, 10] it was verified that $R(P ; n)=n+6$ for all $3 \leqslant n \leqslant 10$.

Note that from the fact that for $N \geqslant 8$ the largest P-free 3 -uniform hypergraph on N vertices contains at most $\binom{N-1}{2}$ hyperedges (see [6]), it follows that for $n \geqslant 3$ we have (see [2])

$$
R(P ; n) \leqslant 3 n+1
$$

Our main goal is to improve the above bound.

[^0]Theorem. $R(P ; n) \leqslant 2 n+\sqrt{18 n+1}+2$.
Let C denote the (loose) 3-uniform 3-cycle, i.e. the only 3-uniform linear hypergraph with six vertices and three hyperedges. Furthermore, let F be the 3 -uniform hypergraph on vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ such that the first four of these vertices span a clique, and v_{5} is contained in the following three hyperedges: $v_{1} v_{2} v_{5}, v_{2} v_{3} v_{5}$, and $v_{3} v_{4} v_{5}$. The following fact will be crucial for our argument.

Lemma. Let H be a 3 -uniform P-free hypergraph on $n \geqslant 5$ vertices. Then we can delete from H fewer than $3 n$ hyperedges in such a way that the resulting hypergraph contains no copies of C and F.

Proof. Let us first consider components containing C. Jackowska, Polcyn and Ruciński [7] showed that each such component of H on n_{i} vertices has at most $3 n_{i}-8<3 n_{i}$ hyperedges, provided $n_{i} \geqslant 7$. Furthermore, from the complete 3 -uniform hypergraph on $n_{i}=6$ vertices it is enough to delete $10<3 n_{i}$ hyperedges to get a star, which clearly contains no copies of C and F. Hence, to get rid of all copies of C (and F in components containing C) it is enough to remove fewer than $3 n^{\prime}$ hyperedges from components containing them, where n^{\prime} denotes the number of vertices in these components combined. Now let us consider components containing F but not C. It is easy to check by direct inspection that any hyperedge e which shares with F just one vertex would create a copy of P. Moreover, any hyperedge e^{\prime} which shares with F two vertices would create a copy of C. Consequently, each copy of F in a P-free, C-free 3 -uniform hypergraph is contained in a component on 5 vertices. Note that each such component has at most $\binom{5}{3}=10$ hyperedges and we can destroy F by removing just $4<3 \cdot 5$ of them. Thus, one can delete from H fewer than $3 n$ hyperedges to destroy all copies of C and F.

Proof of Theorem. Consider a coloring of the hyperedges of the complete 3-uniform hypergraph on $2 n+m$ vertices with n colors. Assume that no color class contains a copy of P. Then, by the lemma, we can mark as 'blank' fewer than $r=3(2 n+m) n$ hyperedges of the hypergraph in such a way that when we ignore blank hyperedges no color class contains a monochromatic copy of C and F.

Let us color a pair of vertices $v w$ with a color $s, s=1,2, \ldots, n$, if there exist at least three hyperedges of color $s, s=1,2, \ldots, n$, which contain this pair. If there are many such colors we choose any of them; if there are none we leave $v w$ uncolored. Note that every uncolored pair must be contained in at least $m-2$ blank hyperedges. Consequently, fewer than $3 r /(m-2)$ pairs remain uncolored. But then there exists a color $t, t=1,2, \ldots, n$, such that there are more than

$$
\left[\binom{2 n+m}{2}-\frac{3 r}{m-2}\right] / n=2 n+m+(2 n+m)\left[\frac{m-1}{2 n}-\frac{9}{m-2}\right]
$$

pairs colored with t. If $m \geqslant \sqrt{18 n+1}+2$, then

$$
\frac{m-1}{2 n}-\frac{9}{m-2}>0
$$

and the graph G_{t} spanned by these pairs has more edges than vertices. But this means that G_{t} contains a path of length 3 , i.e. there are vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and a color t such that each of the three pairs $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$ is contained in at least three different hyperedges colored with t. We shall show that this leads to a contradiction.

Indeed, let H_{t} be a hypergraph spanned by hyperedges colored with the t th color. Observe first that since $v_{2} v_{3}$ is contained in three different hyperedges of H_{t} there must be one which is different from $v_{1} v_{2} v_{3}$ and $v_{2} v_{3} v_{4}$; let us call it $v_{2} v_{3} v_{5}$ where $v_{5} \neq v_{1}, v_{2}, v_{3}, v_{4}$. Furthermore, $v_{1} v_{2}$ must be contained in a hyperedge $v_{1} v_{2} w$ of H_{t} where $w \neq v_{3}, v_{5}$, while $v_{3} v_{4}$ is contained in some $v_{3} v_{4} u$, where $u \neq v_{2}, v_{5}$. Note now that if $w \neq v_{4}$ and $u \neq w, v_{1}$, then H_{t} contains a copy of P which contradicts the fact that it is P-free. The case $w=u \neq v_{1}, v_{4}$, as well as the cases $w=v_{4}, u \neq v_{1}$, and $u=v_{1}, w \neq v_{4}$, would lead to a cycle C. Finally, if the only possible choices for w and u are $w=v_{4}$ and $u=v_{1}$, then the vertices v_{1}, \ldots, v_{5} span a copy of F, so we arrive at a contradiction again.

Remark The bound $3 n$ given in the lemma is rather crude. Using the fact that each component of H on n_{i} vertices containing C and two disjoint hyperedges has at most $n_{i}+5$ hyperedges, provided $n_{i} \geqslant 7$ (see [10]) and by careful analysis of 3 -uniform intersecting families (see $[1,3,4,8,11]$) one can improve it by a constant factor and, consequently, improve by a constant factor the second order term in the estimate for $R(P ; n)$. Nonetheless our method, based on the reduction of the hypergraph problem to the analogous problem for graphs, clearly cannot be used to produce an upper bound better than $2 n$. However, we still believe that $n+6$ could be the correct value for $R(P ; n)$.

Acknowledgements

We wish to thank Andrzej Ruciński for stimulating conversations and the anonymous referee for his/her comments.

References

[1] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2), 12 (1961), 313-320.
[2] A. Gyárfás, G. Raeisi, The Ramsey number of loose triangles and quadrangles in hypergraphs, Electron. J. Combin., 19(2) (2012), \#R30.
[3] J. Han, Y. Kohayakawa, Maximum size of a non-trivial intersecting uniform family which is not a subfamily of the Hilton-Milner family, Proc. Amer. Math. Soc., 145(1) (2017), 73-87.
[4] A. J. W. Hilton, E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2), 18 (1967), 369-384.
[5] E. Jackowska, The 3-color Ramsey number for a 3-uniform loose path of length 3, Australas. J. Combin, 63(2) (2015), 314-320.
[6] E. Jackowska, J. Polcyn, A. Ruciński, Turán numbers for 3-uniform linear paths of length 3, Electron. J. Combin., 23(2) (2016), \#P2.30
[7] E. Jackowska, J. Polcyn, A. Ruciński, Multicolor Ramsey numbers and restricted Turán numbers for the loose 3-uniform path of length three, arXiv:1506.03759v1.
[8] A. Kostochka, D. Mubayi, The structure of large intersecting families, Proc. Amer. Math. Soc., to appear, arXiv:1602.01391.
[9] G. R. Omidi, M. Shahsiah, Ramsey Numbers of 3-Uniform Loose Paths and Loose Cycles, J. Combin. Theory Ser. A, 121 (2014), 64-73.
[10] J. Polcyn, One more Turán number and Ramsey number for the loose 3-uniform path of length three, Discuss. Math. Graph Theory, to appear, arXiv:1511.09073.
[11] J. Polcyn, A. Ruciński, A hierarchy of maximal intersecting triple systems, Opuscula Math., to appear, arXiv:1608.06114.
[12] J. Polcyn, A. Ruciński, Refined Turán numbers and Ramsey numbers for the loose 3-uniform path of length three, Discrete Math., 340 (2017), 107-118.

[^0]: *Partially supported by NCN grant 2012/06/A/ST1/00261.

