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Abstract

Let FG(P ) be a functional defined on the set of all the probability distributions
on the vertex set of a graph G. We say that G is symmetric with respect to FG(P )
if the uniform distribution on V (G) maximizes FG(P ). Using the combinatorial
definition of the entropy of a graph in terms of its vertex packing polytope and
the relationship between the graph entropy and fractional chromatic number, we
characterize all graphs which are symmetric with respect to graph entropy. We show
that a graph is symmetric with respect to graph entropy if and only if its vertex
set can be uniformly covered by its maximum size independent sets. This is also
equivalent to saying that the fractional chromatic number of G, χf (G), is equal to
n

α(G) , where n = |V (G)| and α(G) is the independence number of G. Furthermore,
given any strictly positive probability distribution P on the vertex set of a graph
G, we show that P is a maximizer of the entropy of the graph G if and only if its
vertex set can be uniformly covered by its maximum weighted independent sets.
We also show that the problem of deciding if a graph is symmetric with respect to
graph entropy, where the weight of the vertices is given by probability distribution
P , is co-NP-hard.

1 Introduction

The entropy of a graph is an information theoretic functional which is defined on a graph
with a probability distribution on its vertex set. This functional was originally proposed
by J. Körner in 1973 to study the minimum number of codewords required for representing
an information source [7].

Let V P (G) be the vertex packing polytope of a given graph G which is the convex
hull of the characteristic vectors of its independent sets. Let n := |V (G)| and P be a
probability distribution on V (G). Then the entropy of G with respect to the probability
distribution P is defined as

H(G,P ) = min
a∈V P (G)

∑
v∈V (G)

pv lg(1/av),
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where lg denotes the base 2 logarithm. J. Körner investigated the basic properties of the
graph entropy in several papers from 1973 till 1992 [7, 8, 10, 9, 12, 13, 11].

Let F and G be two graphs on the same vertex set V . Then the union of graphs F
and G is the graph F ∪G with vertex set V and its edge set is the union of the edge set
of graph F and the edge set of graph G. That is

V (F ∪G) = V,

E (F ∪G) = E (F ) ∪ E (G) .

Perhaps, the most important property of the entropy of a graph is that it is sub-additive
with respect to the union of graphs, that is

H (F ∪G,P ) 6 H (F, P ) +H (G,P ) .

This leads to the application of graph entropy for graph covering problem as well as the
problem of perfect hashing.

The graph covering problem can be described as follows. Given a graph G and a family
of graphs G where each graph Gi ∈ G has the same vertex set as G, we want to cover the
edge set of G with the minimum number of graphs from G. Using the sub-additivity of
graph entropy one can obtain lower bounds on this number.

Graph entropy was used implicitly in a paper by Fredman and Komlós for the mini-
mum number of perfect hash functions of a given range that hash all k-element subsets
of a set of a given size [4].

G. Simonyi showed that the maximum of the graph entropy of a given graph over
the probability distribution on its vertex set is equal to the logarithm of its fractional
chromatic number [15]. For general information on fractional graph theory we refer the
reader to [16]. In this paper, we characterize all strictly positive probability distributions
which maximize the entropy of a given graph.

Let S be a multi-set of independent sets of a graph G. We say S is uniform over a
subset of vertices W of the vertex set of G if each vertex v ∈ W is covered by a constant
number of independent sets in S. We prove the following theorem in section 3.

Theorem 1. For every graph G and every probability distribution P over V (G), we have
H(G,P ) = lgχf (G[{v ∈ V (G) : pv > 0}]) if and only if there exists a multi-set of
independent sets S such that

1. S is uniform over {v ∈ V (G) : pv > 0}, and

2. every independent set I ∈ S is a maximum weighted independent set with respect
to P .

We say a graph is symmetric with respect to graph entropy if the uniform probability
distribution maximizes its entropy. It is worth noting that the notion of a symmetric
graph with respect to a functional was already defined by G. Greco [6]. Furthermore,
S.S. C. Rezaei and C. Godsil studied some classes of graphs which are symmetric with
respect to graph entropy [1, 2]. Our theorem 1 gives a characterization of symmetric
graphs, i.e, a graph is symmetric with respect to graph entropy if and only if its vertex
set can be uniformly covered by its maximum size independent sets. We combine this
characterization with results from [16] to get another characterization for symmetric
graphs:
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Corollary 1. A graph G is symmetric if and only if χf (G) = n
α(G)

.

Finally we consider the complexity of deciding whether a graph is symmetric with
respect to its entropy by proving the following theorem.

Theorem 2. It is co-NP-hard to decide whether a given graph G is symmetric.

2 Preliminaries

Here we recall some properties of entropy of graphs. The following lemma shows the
monotonicity for graph entropy.

Lemma 2.1. (J. Körner). Let F be a spanning subgraph of a graph G. Then for any
probability distribution P we have H(F, P ) 6 H(G,P ).

The notion of substitution is defined as follows. Let F and G be two vertex disjoint
graphs and v be a vertex of G. We substitute F for v by deleting v and joining all vertices
of F to those vertices of G which have been adjacent with v. Let Gv←F be the resulting
graph.

We extend the notion of substitution to distributions. Let P and Q be the probability
distributions on V (G) and V (F ), respectively. Then the probability distribution Pv←Q
on V (Gv←F ) is given by Pv←Q(x) = P (x) if x ∈ V (G) \ {v} and Pv←Q(x) = P (v)Q(x) if
x ∈ V (F ).

Now we state the following lemma which was proved by J. Körner, et. al. in [11].

Lemma 2.2. (J. Körner, G. Simonyi, and Zs. Tuza). Let F and G be two vertex disjoint
graphs, v a vertex of G, while P and Q are probability distributions on V (G) and V (F ),
respectively. Then we have

H (Gv←F , Pv←Q) = H (G,P ) + P (v)H (F,Q) .

Notice that the entropy of an empty graph (a graph with no edges) is always zero
(regardless of the distribution on its vertices).

3 Graph entropy and fractional chromatic number

G. Simonyi in [14, 15] established the relationship between the entropy of a graph H(G,P )
with its fractional chromatic number χf (G) by showing

max
P

H(G,P ) = lgχf (G) (1)

Here we characterize strictly positive probability distributions which maximize H(G,P ).
First we recall a characterization of uniform independent set covers using fractional

chromatic number. A b-fold colouring of the vertices of a graph G is an assignment of
b-subsets of a set with a elements such that adjacent vertices get disjoint b-subsets. The
least a such that G admits a b-fold colouring is called the b-fold chromatic number of G
and is denoted by χb(G).
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Theorem 3.1. ([16]) For every graph G and positive integer b

χf (G) 6
χb(G)

b
.

Furthermore, there exists an integer that realizes the equality.

As a corollary to the above theorem we have

Corollary 3.2. Let S be a multi-set of independent sets of G. Then each element of S
induces a maximum independent set of G with size α(G) and S is a uniform cover over
the vertices of G if and only if χf (G) = n

α(G)
.

Proof. First, assuming χf = n
α

, we prove that there exists a uniform independent set
cover whose elements are maximum independent sets. From Theorem 3.1, there exists a
b-fold colouring such that χb(G) = a and we have

χf (G) =
n

α
=
a

b
. (2)

Now we construct a uniform maximum independent cover S as follows. Let A be the
set of colours of size a and B be the function that assigns a b-subset of A to every vertex.
For every x ∈ A, Ix = {v ∈ V (G) : x ∈ B(v)} is an independent set. So, S = {Ix : x ∈ A}
is a uniform independent set cover of size a. Equation (2) tells us that the average size
of independent sets in S is α and so they all must be maximum independent sets.

Conversely, assume that G admits a uniform maximum independent set cover S such
that each vertex v ∈ V (G) lies in exactly b elements of S, and so |S|

b
= n

α
. Then,

B(v) = {S ∈ S : v ∈ S} is a b-fold colouring. Let b′ be an integer such that χf (G) =
χb′ (G)

b′

and B′ be the b′-fold colouring that achieves this. Then

n

α
6
χb′(G)

b′
= χf (G) 6

χb(G)

b
6
|S|
b

=
n

α
.

The left-most inequality comes from the fact that αχb′(G) is an over-estimation of∑
v∈V (G) |B′(v)| = nb′.

We prove Theorem 1 in two steps, i.e., using Theorems 3.3 and 3.5 below.

Theorem 3.3. For every graph G and every probability distribution P over V (G), if
H(G,P ) = lgχf (G[{v ∈ V (G)|pv > 0}]), then there exists a multi-set of independent sets
S such that

1. S is uniform over {v ∈ V (G) : pv > 0}, and

2. every independent set I ∈ S is a maximum weighted independent set with respect
to P .

Proof. Consider a fractional colouring (I, w) of G, where I is the family of independent
sets of G and w : I → Q+ is a weight function such that∑

I∈I

wI = χf (G), (3)
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and ∑
I∈I,v∈I

wI > 1, (4)

for all v ∈ V (G). We define x∗ =
∑

I∈I
wI

χf (G)
· I, where I is the characteristic vector of

the independent set I. That is I ∈ {0, 1}|V (G)|, and Iv = 1 if v ∈ I and Iv = 0 otherwise.
Clearly, x∗ ∈ VP(G) due to (3), and x∗v >

1
χf (G)

, for all v ∈ V (G), due to (4).

We turn the set I to a multi-set S by setting the multiplicity of any independent set
I to r ·wI , where r is an integer such that r ·wI ∈ N for all I ∈ I. If for some v ∈ DP =
{v ∈ V (G) : pv > 0}, x∗v > 1

χf (G)
, then H(G,P ) 6 −

∑
v∈V (G) pv lg x∗v < lgχf (G), which

is a contradiction. So, every v ∈ DP is in exactly r · x∗v · χf (G) = r independent sets of
S, which means S is uniform over DP .

We also claim that PI = αP for all I ∈ I, where αP is the weight of maximum
weighted independent set of G with respect to P . Indeed, if there exists an I1 ∈ I such
that PI1 < αP , then we define xε = x∗ − εI1 + εM, where M is the characteristic vector
of an arbitrary maximum weighted independent set M . Note that xε ∈ VP(G) for all
0 6 ε 6

wI1

χf (G)
.

Now consider

d(ε) =
∑

v∈I1\M

pv lg
xεv
x∗v

+
∑

v∈M\I1

pv lg
xεv
x∗v

= lg(1−εχf (G))
∑

v∈I1\M

pv+lg(1+εχf (G))
∑

v∈M\I1

pv.

We have d(0) = 0, d is differentiable at zero, and

d′(0) = (
∑

v∈M\I1

pv −
∑

v∈I1\M

pv)χf (G) > 0.

So, there exists a positive number ε+ such that d(ε) is positive for all ε in (0, ε+). Then,

for an arbitrary ε ∈ (0,min
{

wI1

χf (G)
, ε+
}

),

H(G,P ) 6 −
∑

v∈V (G)

pv lg xεv = −
∑

v∈V (G)

pv lg x∗v − d(ε) < −
∑

v∈V (G)

pv lg x∗v = lgχf (G),

which is a contradiction.

It is easy to see that the converse of Theorem 3.3 holds for any uniform distribution.
We call a graph G symmetric if H(G,U) > H(G,P ) for all probability distributions P
on V (G), where U is the uniform distribution.

Corollary 3.4. A graph G is symmetric if and only if χf (G) = n
α(G)

.

Proof. For every x ∈ VP(G) we have
∑

v∈V (G) xv 6 α. If χf (G) = n
α

, then∏
v∈V (G)

xv 6
(α
n

)n
⇒ − 1

n

∑
v∈V (G)

lg xv > −
1

n
lg
(α
n

)n
= − lg

α

n
= lgχf (G).

This along with equation (1) implies H(G,U) = lgχf (G), and so G is symmetric.
On the other hand, if G is symmetric, then, according to Theorem 3.3, there exists

a uniform maximum independent set cover. Thus from Corollary 3.2, we have χf (G) =
n
α

.
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Now we prove the converse of Theorem 3.3 for every distribution.

Theorem 3.5. Let G be a graph with probability distribution P on its vertex set. Suppose
that there exists a multi-set of independent sets S such that

1. S is uniform over {v ∈ V (G) : pv > 0}, and

2. every independent set I ∈ S is a maximum weighted independent set with respect
to P .

Then H(G,P ) = lgχf (G[{v ∈ V (G) : pv > 0}]).

Proof. First we assume that the probability of every vertex v ∈ V (G), i.e., pv is equal to
nv

m
for some nv and m ∈ N. We then construct the graph G′ by blowing each vertex v up

to a set of size nv and making the corresponding vertices adjacent to the neighbours of
v. We consider each set of vertices substituted for each vertex v as an independent set
Fv of size nv with uniform distribution 1

nv
. Then G′ is a probabilistic graph with uniform

distribution 1
m

on its vertex set, and repeated application of Lemma 2.2 leads to

H(G′,
1

m
) = H(G,P ) +

∑
v

nv
m
H(Fv,

1

nv
).

Noting that Fv is an independent set, we have

H(Fv,
1

nv
) = 0, ∀ v ∈ V (G),

and consequently,

H(G′,
1

m
) = H(G,P ). (5)

Note that the vertex set of G is uniformly covered by maximum weighted independent
set with respect to P . Therefore, due to the construction of G′, graph G′ is uniformly
covered by its maximum independent sets. Thus using Corollary 3.2 and Corollary 3.4
and equation (5), we have

H(G′,
1

m
) = lgχf (G

′) = H(G,P ) 6 lgχf (G). (6)

Noting that there is a homomorphism from G to G′, we get

χf (G) 6 χf (G
′).

This along with (6) implies that χf (G) = χf (G
′), and hence, probability distribution P

over the vertex set of G maximizes H(G,P ).
Now, suppose that P is a real probability distribution over the vertex set of G. Next

we will show that graph entropy H(G,P ) is a continuous function of P . Let P be a
strictly positive probability distribution over V (G). Then for every ε > 0 we set

δ =
1

2
min
v∈V

pv ×min

{
1,

ε

|V (G)|H(G,P )

}
.
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Therefore, we have

‖P − P ′‖ < δ → |H(G,P ′)−H(G,P )| < ε.

First we show H(G,P ′) < H(G,P ) + ε. Let a∗ ∈ V P (G) achieve H(G,P ), that is

H(G,P ) =
∑
v

pv lg
1

a∗v
.

Thus (
min
v
pv

)
×
∑
v

lg
1

a∗v
6 H(G,P )

⇒
∑

lg
1

a∗v
6
H(G,P )

minv pv
⇒ lg

1

a∗v
6
H(G,P )

minv pv
, ∀v ∈ V. (7)

On the other hand, setting δv = p′v − pv, we have

H(G,P ′) = min
a∈V P (G)

∑
v

(pv + δv) lg
1

av

6
∑
v

(pv + δv) lg
1

a∗v
= H(G,P ) +

∑
v

δv lg
1

a∗v

6 H(G,P ) + |V (G)| × δ × H(G,P )

minv pv
6 H(G,P ) +

ε

2
. (8)

Now we show that H(G,P ′) > H(G,P )− ε. Let b∗ ∈ V P (G) achieve H(G,P ′), that is

H(G,P ′) =
∑
v

p′v lg
1

b∗v
. (9)

If H(G,P ) 6 H(G′, P ), we are done. Thus we may assume H(G,P ) > H(G,P ′). Then
using the value for δ defined above we have

lg

(
1

b∗v

)
6
H(G,P ′)

minv p′v
6

2H(G,P )

minv pv
, ∀v ∈ V (G).

Now using the above equation and equation (9), we get

H(G,P ′) =
∑
v

pv lg
1

b∗v
+
∑
v

δv lg
1

b∗v

> H(G,P ) +
∑
−|δv| lg

1

b∗v

> H(G,P )− |V (G)| × 2× H(G,P )

minv pv
× δ

> H(G,P )− ε. (10)

Thus H(G,P ) is a continuous function. Now note that there exists a sequence of rational
probability distribution Pk which tends to P as k →∞. Consequently, there exists a se-
quence of graphs G′k with the corresponding sequence of uniform probability distributions
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1
mk

constructed as explained above. Then, noting that H(G,P ) is a continuous function

with respect to P and using (6), we have

lim
k→∞

H(G′k,
1

mk

) = lim
k→∞

lgχf (G
′
k) = lim

k→∞
H(G,Pk) = H(G,P ) 6 lgχf (G). (11)

Since there is a homomorphism from G to G′k for every k, we get

χf (G) 6 lim
k→∞

χf (G
′
k). (12)

Therefore, (11) and (12) imply that probability distribution P over the vertex set of G
maximizes H(G,P ).

3.1 Computational Complexity

In this section, we discuss the complexity of computing graph entropy by proving the
following theorem.

Theorem 3.6. It is co-NP-hard to decide whether a given graph G is symmetric.

Proof. We use a reduction from the maximum independent set problem. Assume we are
given a graph F and an integer k, and let A and B be two disjoint sets of size k − 1
disjoint from V (F ). Then, graph F has an independent set of size at least k if and only
if the graph G, defined below, is not symmetric:

V (G) = A ∪ V (F )×B,

E(G) = {{a, (v, b))} : a ∈ A, v ∈ V (F ), b ∈ B} ∪
{{(v, b), (v′, b′)} : v, v′ ∈ V (F ), b, b′ ∈ B, v 6= v′, b 6= b′} ∪
{{(v, b), (v′, b)} : (v, v′) ∈ E(F ), b ∈ B}

To see this, it is enough to note that α(G) = max{α(F ), k − 1} and G has a uniform
independent set cover whose independents sets are all of size k−1. If α(F ) 6 k−1, then
α(G) = k − 1 and due to the construction of G the vertex set of G is covered uniformly
by its maximum size independent sets. Therefore, using Corollary 3.2 and Corollary 3.4,
graph G is symmetric with respect to graph entropy. Conversely, if α(F ) > k, then since
the vertices of G in A are adjacent to all vertices in V (G) \A, the vertex set of G is not
covered uniformly by its maximum size independent sets. Consequently, from Corollary
3.2 and Corollary 3.4, graph G is not symmetric with respect to graph entropy.
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