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Abstract

This paper discusses consistent flag bicolorings of maps, in their own right and
as generalizations of orientations and pseudo-orientations. Furthermore, a related
doubling concept is introduced, and relationships between these ideas are explored.
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1 Introduction

The main goal of this paper is to develop a general theory of flag bicolorings and the
related concepts of coverings and pseudo-orientations.

The idea of consistent colorings of the flags of a map with two colors has appeared
previously in literature in different contexts. For instance, when the automorphism group
of a map which is a polytope has two orbits on the flags, we may color the flags with
two colors in such a way that flags in different orbits have different colors. These are
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called 2-orbit polytopes in [8], but that investigation requires the extra property that the
maps be abstract polytopes. Specific k-colorings of flags are equivalent to the concept of
T -compatible maps introduced in [13], where T is a class of k-orbit maps. This concept,
generalized to hypermaps, is called T -conservative in [1]. In all these instances, the
colorings are used as a tool to work with automorphisms of maps.

Although some of the motivations behind the bicoloring of flags come from maps
admitting symmetries, the ideas can be applied to general maps. In this work we shall not
make assumptions on the automorphism groups of the maps in consideration. Moreover,
the definitions of consistent bicolorings of flags and pseudo-orientations can be easily
extended to maniplexes [17] (higher dimensional analogues of maps) or to more general
incidence geometries [4]. Some results of this paper may even become obvious in the
context of operations of hypermaps (see [10]). However, to keep the introductory sections
brief, we restrict ourselves to maps. Furthermore, one of the main results of this paper,
namely Theorem 8.1 is specifically about maps.

Maps admitting a bicoloring of flags in which adjacent flags have different colors are
precisely maps on orientable surfaces (see Proposition 5.1). Although the other types
of bicolorings of flags that we consider in this paper do not have a known topological
equivalence, some results on orientability do translate directly to analogous results on
bicolorability. In this sense we may think of bicolorings of flags as generalizations of
orientability in maps.

The paper is organized as follows. Sections 2, 3, 4 introduce the concepts of maps,
pseudo-orientations and bicolorings, respectively. We also give a natural group structure
to the set of bicolorings of any map. A relationship between pseudo-orientability and
bicolorings is provided in Section 5. Section 6 explores the impact on bicolorability of
operations on maps. In Section 7, we discuss a natural double cover of every map which
is not bicolorable. In Section 8 we determine, for each possible group, which surfaces
admit maps with the given group of bicolorings. Finally, in Section 9 we pose some open
questions related to our results.

2 Maps

A mapM is, first and foremost, an embedding of a graph (or pseudograph) on a (compact,
connected) surface so that the components of the complement of the embedding (called
faces) are topologically open disks. We can, for example, regard the cube as an embedding
of the graph Q3 on the sphere.

The graph Q3 is an example of a graph which is bipartite, i.e., its vertices can be colored
with two colors so that every edge joins vertices of opposite colors. When speaking about
maps, we will use the term vertex-bipartite to describe a mapM whose underlying graph
is bipartite. Similarly, we will callM face-bipartite provided its faces can be colored with
two colors so that each edge separates faces of opposite colors. We will call M edge-
bipartite provided that the edges can be colored with two colors so that edges which are
consecutive around a face (and hence around a vertex) have different colors.

To look more closely at the structure of a map, we find the following subdivision useful:
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choose a point in the interior of each face to call its center and a point in the relative
interior of each edge to be its midpoint. Draw dotted lines to connect each face-center
with each incidence with the surrounding vertices and edge-midpoints. The original edges
and these dotted lines divide the surface into triangles called flags. Figure 1 shows the
subdivision of the cube into flags.

Figure 1: The cube divided into flags

If a face meets a vertex (or an edge) more than once, we emphasize that the face
center is connected to each incidence—each appearance—of the vertex or midpoint. For
instance, consider the map M4 shown in the left of Figure 2. This map has only one face,
an octagon, four edges and only one vertex. Nonetheless, the dissection into flags draws
16 dotted lines, dividing the octagon, and the map, into 16 flags, as shown on the right.

Figure 2: The map M4

Each flag corresponds to a mutual incidence of face, edge, and vertex, though different
flags may correspond to the same triple.

Let Ω be the set of flags. Then let r0, r1, r2 be the permutations on Ω which match
each flag f with its three immediate neighbors, as in Figure 3.

In that figure, we see that f and fr0 are adjacent along a face-center-to-edge-midpoint
line. Thus f and fr0 differ only in their incidences to a vertex, a 0-dimensional face ofM.
Similarly, f and fr1 differ only in their incidences to an edge, a 1-dimensional face, while
f and fr2 differ only in their incidences to a 2-dimensional face. Notice from Figure 3
that the r2-adjacent flag of fr0 is also r0-adjacent to fr2. In other words, as permutations
on Ω, r0 and r2 commute.

We can take a slightly more abstract point of view by defining a map to be a pair
(Ω, [r0, r1, r2]) where Ω is a set of things called flags, the ri’s and r0r2 are fixed point free
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Figure 3: Flags in a map

permutations of order 2 on Ω, the connection group C(M) = 〈r0, r1, r2〉 is transitive on Ω,
and r0 and r2 commute. This C(M) is often called the monodromy group of the map. We
can then think of vertices inM as orbits of 〈r1, r2〉 in C(M). Similarly, edges correspond
to orbits of 〈r0, r2〉 and faces to orbits of 〈r0, r1〉.

We will use the word kite or corner for the area within a face where two consecutive
edges meet. More formally, a kite is the union of two flags which are r1-adjacent.

IfM and N are maps on surfaces SM and SN , a projection from N toM is a function
φ mapping SN to SM which is locally a homeomorphism at all points of N except perhaps
at vertices and/or face-centers, and which sends faces to faces, edges to edges, and vertices
to vertices.

In combinatorial terms, if M = (Ω, [r0, r1, r2]) and N = (Ω′, [s0, s1, s2]), a projection
of N toM is a function φ mapping Ω′ to Ω such that siφ = φri for all i ∈ R := {0, 1, 2}.

We call such an N a cover ofM. Notice that if N is a cover ofM, and the pre-image
of some flag in M has size k, then the projection φ is k-to-1 onto every flag of M. We
say then that N is a k-fold cover of M.

3 Orientations and Pseudo-Orientations

We call a map orientable provided that the surface on which it is embedded is itself
orientable. We check that a map is orientable by giving it a face orientation; this is an
assignment of a circular arrow to each face of M such that at every edge, the arrows on
the faces joined by the edge point along the edge in opposite directions, as in Figure 4. We
can define a vertex orientation similarly, and it is clear that M has a vertex-orientation
if and only if it has a face-orientation, and this happens if and only if M is orientable.

The word pseudo-orientation has been used in two different ways. We will use the term
vertex pseudo-orientation (VPSO for short) for what is called in [16] simply a pseudo-
orientation. Here, we mean an assignment of one circular arrow to each vertex so that
at each edge the two arrows cross in the same direction, as in Figure 5. If we visualize a
gear wheel at each vertex so that cogs on the wheels of adjacent vertices mesh, the map
is VPSO if we can turn one wheel, causing all wheels to turn at the same time.

In [16], the idea is used to make an important distinction about k-fold rotary covers
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Figure 4: Face orientation of the cube

of a rotary map M for which the branching is totally ramified at vertices. If M is
non-orientable, k can be larger than 2 only if M is vertex pseudo-orientable. Vertex
pseudo-orientable maps on surfaces of low genus were recently classified in [3].

Similarly, a face pseudo-orientation (or FPSO) is an assignment of one circular arrow
to each face, as in Figure 5, so that at each edge, the arrows in adjacent faces flow along
the edge in the same direction. We can simplify this by orienting each edge so that the
cycle of edges around each face is consistently oriented.

In [6] this is called a pseudo-orientation, and the result in that paper is that the Dart
Graph of M is connected if and only if M is not face pseudo-orientable.

Finally, we may define an edge pseudo-orientation (or EPSO) to be an orientation of
the edges such that in every face the direction of the arrows in adjacent edges flows in
the same direction (either into or out of the face) as in Figure 5.

Figure 5: Vertex, Face and Edge Pseudo-orientations

4 Colorings

In this paper, the word ‘coloring’ will be used to describe what might be more fully notated
as a ‘consistent flag 2-coloring’. If I is any subset of R = {0, 1, 2}, then an I-coloring of a
map M is a function a : Ω→ Z2 such that for every flag f , if j ∈ I, then a(frj) 6= a(f),
while if j /∈ I, then a(frj) = a(f). To say that in another way,

a(frj) + a(f) =

{
1 if j ∈ I
0 if j /∈ I.

Figure 6 shows a {0}-coloring, a {1, 2}-coloring, and an R-coloring of the cube. The

the electronic journal of combinatorics 24(1) (2017), #P1.3 5



reader should check that the colorings extend unambiguously to the unseen faces of the
cube as well.

Figure 6: Colorings of the cube

Let us first notice that if a is an I-coloring of M, then so is 1 − a, and these are, in
fact, the only I-colorings of the map.

Give the name sub-edge to the segments forming sides of the flags. These are of three
types:

Type 0 : midpoint-of-edge to face-center,

Type 1 : face-center to vertex,

Type 2 : vertex to midpoint-of-edge.

Each flag f is adjacent to flag fri along their mutual sub-edges of type i. If M is I-
colorable, therefore, the sub-edges bounding each region of a single color are the sub-edges
of types in I.

Note that when considering maps in class 2I as defined in [8], the subset I is used to
indicate that i-adjacent flags belong to the same orbit. This means that maps in class 2I

admit an (R \ I)-coloring. In the context of colorings it turns out to be more practical to
define I-coloring requiring i-adjacent flags to be of a different color rather than requiring
i-adjacent flags to be of the same color if and only if i ∈ I.

4.1 The group T (M)

Let ∆ stand for the symmetric difference operation: I∆J = (I ∪ J)\(I ∩ J). Let P be
the power set of R. It is well-known that P is a group under ∆ and it is an elementary
Abelian group of order eight whose identity element is ∅.

Proposition 4.1. If a map M admits an I-coloring and a J-coloring, then it admits an
I∆J-coloring.

Proof: It is easy to verify that the sum of an I-coloring and a J-coloring is an I∆J-
coloring.

From this proposition we see that, for each map M, the sets I for which M has an
I-coloring form a set T (M) which is a subgroup of P .

The reader is encouraged to look at [2, Section 5] for another approach to understand-
ing this group.
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4.2 Flag-colorings and map-colorings

Whenever I is a subset of size 1, I-colorable maps have a nice characterization.

Proposition 4.2. A map M is vertex-bipartite if and only if M has a {0}-coloring.

Proof: Given such a coloring, all the flags incident with one vertex will be the same color,
while those at an adjacent vertex will be the other color. This is a bipartite coloring of
the vertices. Conversely, given a bipartition of the vertices, color all flags incident with
black vertices with color 1 and all those incident with white vertices with color 0. This is
then a {0}-coloring of M.

Similar proofs lead us to these:

Proposition 4.3. A map M is face-bipartite if and only if M has a {2}-coloring. (i.e.
a {2}-coloring corresponds to a bipartite coloring of the faces of M.)

Proposition 4.4. A map M is edge-bipartite if and only if M has a {1}-coloring. (i.e.
a {1}-coloring corresponds to a bipartite coloring of the edges of M.)

4.3 Colorings and words

Consider a cycle f, fri1 , fri1ri2 , fri1ri2ri3 , . . . , fri1ri2ri3 . . . rik = f of flags in a map M.
We abbreviate that (f,W ), where W is the string i1i2i3 . . . ik. Write rW for ri1ri2ri3 . . . rik .
We call a cycle (f,W ) I-consistent if the number of occurrences in W of indices which
are in I is even. If (f,W ) is I-consistent, this says that, at least along the cycle, we can
color flags from two colors so that flags which are i-connected for i /∈ I are the same color
and those for which i ∈ I are not. A cycle which is not I-consistent is I-inconsistent. It
follows, then that M is I-colorable if and only if every cycle in M is I-consistent.

Consider this quite general fact: for any function F from a set X to Z2, extend F to
the power set of X by F (A) = Σx∈AF (x) for each subset A of X. Then for any subsets
A,B of X, it is clear that F (A∆B) = F (A) + F (B).

Lemma 4.5. For any subsets I, J of R, if K = I∆J , then every cycle in M is consistent
either for exactly one of I, J,K or for all three.

Proof: Fix a cycle (f,W ) of M, and define F on R with F (i) being the parity of the
number of occurrences in W of ri; furthermore, consider F extended to P . The cycle is I-
consistent, then, provided that F (I) = 0. Now consider F (I) +F (J) = F (I∆J) = F (K).
These are elements of Z2, and so we can rephrase that in this form: F (I)+F (J)+F (K) =
0. The number of zeros in {F (I), F (J), F (K)} must be 1 or 3; the conclusion follows
directly.

We will use this lemma in Section 7.
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4.4 Connected sum of maps

A natural operator in topology is the connected sum of two surfaces, which is defined to
be the surface formed by cutting a small disk from each of the two surfaces and attaching
them along the newly created border. We extend this definition to maps by causing the
attachment sets to be the boundaries of two suitably chosen faces.

Formally, let M = (Ω, [r0, r1, r2]) and N = (Ω′, [s0, s1, s2]) be maps and suppose fM
and fN are flags of these maps for which their respective faces FM and FN have the same
number k of sides. Furthermore, suppose that no flag of FM is r2-connected to any of
the flags of FM, and similarly for FN . Then we define the connected sum M⊕N with
respect to (fM, fN ) to be the map whose flag set is (Ω\FM)∪ (Ω′\FN ), with connections
t0, t1, t2, where t0 and t1 are the restrictions of r0 ∪ s0, r1 ∪ s1 to this set, and t2 is the
same except that, for each j, fM(r0r1)

jr2 is t2-connected to fN (s0s1)
js2 and fMr1(r0r1)

jr2
is t2-connected to fN s1(s0s1)

js2. Because of the restriction on the faces, these flags are
both in the new flag set, and it is easy to check that t0t2 = t2t0.

The following Figure illustrates this construction:

Figure 7: A connected sum of two maps

Proposition 4.6. SupposeM and N are I-colorable maps for some I ⊆ R and suppose
M⊕N exists for some flags fM and fN . Then M⊕N is I-colorable.

Proof: Choose an I-coloring for M and one for N in such a way that fM and fN have
opposite colors if 2 ∈ I and the same color if 2 /∈ I. Then the induced coloring provides
the desired coloring on M⊕N .

As we shall see in the following theorem, it is almost always the case that the group
T (M⊕ N ) is equal to T (M) ∩ T (N ). This can fail, roughly, when for some I ⊆ R,
M\ FM is I-colorable but M is not, or similarly for N .

Theorem 4.7. SupposeM and N are maps and supposeM⊕N exists for some flags fM
and fN . Furthermore, suppose that for each I /∈ T (M) there exists an I-inconsistent cycle
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that doesn’t include any of the flags of face FM, and similarly for N . Then T (M⊕N ) =
T (M) ∩ T (N ).

Proof: For I ⊆ R, if I ∈ T (M) ∩ T (N ), then I ∈ T (M⊕ N ) by Proposition 4.6. If
I /∈ T (M) ∩ T (N ), then without loss of generality, assume that M is not I-colorable.
ThenM has cycles which are I-inconsistent, and by the hypothesis, at least one of them
includes none of the flags in FM. This cycle, then, occurs in M ⊕ N , and is still I-
inconsistent. Thus I /∈ T (M⊕N ).

5 Colorings and Orientations

We now offer and prove a series of propositions connecting the ideas of orientations and
colorings. First, we show a collection of easy facts to embody our belief that colorings
generalize orientations. We then generalize these facts in Theorem 5.4.

Proposition 5.1. A map is orientable if and only if it has an R-coloring.

Proof: If M has an R-coloring, orient each face so that, along each edge, the orientation
points from the flag with color 0 to the flag with color 1. This is consistent within the face
and faces that meet along an edge have orientations which meet correctly. Conversely,
given the orientation, assign colors so that along each edge within a face, the orientation
points from the flag with color 0 to the flag with color 1. This causes colors to alternate
within each face. Because the orientation opposes the orientation in each adjacent face,
the colors alternate at each edge, giving an R-coloring.

Similar arguments give us the following two propositions:

Proposition 5.2. A map M has a face pseudo-orientation if and only if M admits a
{0, 1}-coloring.

Proposition 5.3. A map M has a vertex pseudo-orientation if and only if M admits a
{1, 2}-coloring.

5.1 I-Pseudo-Orientability

Our aim in this subsection is to generalize the definition of pseudo-orientability and the
previous results. For any subset I of R (except ∅), we form the map X = X(M, I) whose
faces are the regions formed by conjoining flags which are connected by each ri for which
i /∈ I. For example, if M is the cube, then X(M, {1, 2}) and X(M, {0, 2}) are shown in
Figure 8.

Notice that the boundaries of the faces in X(M, I) are the sub-edges of types that are
in I. Thus M is I-colorable if and only if X(M, I) is face-bipartite. However, the map
X(M, I) can be constructed even if M is not I-colorable.

We call M I-pseudo-orientable (or I-PSO for short) when X(M, I) is face pseudo-
orientable. If this happens, we can orient the edges of X so that around each face of
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Figure 8: X(M, {1, 2}) and X(M, {0, 2})

X, the arrows all point the same way. We say a map is ∅-pseudo-orientable when it is
orientable.

It is clear that X(M, {2}) =M and so {2}-PSO is equivalent to FPSO. Observation
5.2 shows that this happens exactly whenM is {0, 1}-colorable. Similarly,M is {0}-PSO
when it is VPSO, and this happens exactly whenM is {1, 2}-colorable. Surprisingly, this
generalizes completely:

Theorem 5.4. Let M be a map. Then M is I-pseudo-orientable if and only if M is
(R\I)-colorable.

Proof: First, recall that the sub-edges of M are of three different types:

Type 0 : midpoint-of-edge to face-center,

Type 1 : face-center to vertex,

Type 2 : vertex to midpoint-of-edge.

Furthermore, let us think of the sub-edges as directed. Call the directions above the
‘standard’ orientations for the sub-edges, and the reverse of these are the non-standard
orientations.

In order to form X(M, I), we delete or ignore sub-edges of each type i /∈ I, so we only
consider sub-edges of type in I. SupposeM is already (R\I)-colored. Then in X(M, I),
both flags around each sub-edge have the same color. Then we may assign this as the
color of the sub-edge. Now give every sub-edge with color 0 the standard orientation, and
each sub-edge with color 1 the non-standard direction.

A case by case analysis easily shows that for any choice of I the resulting orientation
of the edges induces the desired pseudo-orientation. Note that because of our definition
of ∅-pseudo-orientable as orientable, this theorem works even in this case.

For the converse we may use the orientation to color in the way prescribed to match
the previous list.

5.2 The Cheat Sheet

We summarize here the results of previous sections relating to the question of which maps
have I-colorings for a given I.
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I M Requires:

∅ All flags have the same color -
{0} Vertex-bipartite Faces have even degree
{1} Edge-bipartite Faces and vertices have even degree
{2} Face-bipartite Vertices have even degree
{0, 1} Face Pseudo-Orientable Vertices have even degree
{0, 2} Edge Pseudo-Orientable Faces and vertices have even degree
{1, 2} Vertex Pseudo-Orientable Faces have even degree

R Orientable -

6 Operators

In this section we shall see how colorings and orientations interact with common map
operators such as dual, Petrie, opposite and medial.

Let M = (Ω, [r0, r1, r2]) be any map. Then D(M) (or the dual of M) is the map
(Ω, [d0, d1, d2]), where dj = r2−j. This corresponds exactly to the classical geometric dual
of a polyhedron. The maps M and D(M) lie on the same surface.

The Petrie of M, P (M), is the map (Ω, [p0, p1, p2]), where p0 = r0r2, p1 = r1, and
p2 = r2. This is a less familiar operator on maps. The faces of P (M) are the Petrie paths
(see [15]) ofM and vice-versa. Note that the vertices and the edges are preserved by the
operation.

We call a map formed from M by any composition of the operation D and P a
direct derivate of M. Of special interest among the direct derivates of M is opp(M) =
PDP (M) = DPD(M). Formally, this is (Ω, [s0, s1, s2]) where s0 = r0, s1 = r1 and
s2 = r0r2. More intuitively, opp(M) is formed from M by cutting along the edges and
then re-attaching along the same matching edges but with the reverse local orientation.
See [15] for more information about these operators.

The medial of a map M is drawn on the same surface as M. The vertices of the
medial are the edge-midpoints ofM and two are connected by an edge diagonally across
each kite to which both belong.

Figure 9: Flags in a map and its medial
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Figure 9 shows, on the left, the flags adjacent to a flag f in a map. On the right
we see the edges of the medial drawn in heavy lines. These divide each flag into two.
This suggests the combinatorial form: the medial of M = (Ω, [r0, r1, r2]) is the map
(Ω× Z2, [s0, s1, s2]) where s0, s1, s2 are defined by

1. (f, i)s0 = (fr1, i)

2. (f, 0)s1 = (fr0, 0)

3. (f, 1)s1 = (fr2, 1)

4. (f, i)s2 = (f, 1− i).

6.1 Operators and colorings

In this subsection, we describe the ways in which the colorings of a map come from the
colorings of maps related to it by operators. We omit the proofs whenever they follow
directly from the definitions.

Lemma 6.1. If M admits an I-coloring, then D(M) admits a J-coloring, where J =
{2− i : i ∈ I}

Proposition 6.2. If M admits an I-coloring, then opp(M) admits a J-coloring, where:

J =

{
I if 0 /∈ I

I∆{2} if 0 ∈ I.

Proof: Suppose M is I-colored. We shall take opposites but keep the coloring of each
flag. Let f be a flag. Then the r0 and r1-adjacent flags in opp(M) are the same as in
M, and the r2-adjacent flag is fr2r0. If 0 /∈ I, then fr2 is the same color as fr2r0, which
means the coloring doesn’t change when taking opposites. Analogously, if 0 ∈ I, fr2 is
the opposite color as fr2r0, so taking opposite changes the color of the flag r2-adjacent
to f .

Corollary 6.3. If M admits an I-coloring, then P (M) admits a J-coloring, where:

J =

{
I if 2 /∈ I

I∆{0} if 2 ∈ I.

Corollary 6.4. A map M has all colorings, i.e. T (M) = P , if and only if the surfaces
of M, opp(M) and P (M) are orientable.

Proof: Indeed, if R ∈ T (M) ∩ T (P (M)) ∩ T (opp(M)), by the preceding theorems we
conclude that {0, 1} and {1, 2} are both in T (M), which means R∆{0, 1} = {2} and
R∆{1, 2} = {0} are also in T (M), and so T (M) = P , since {{0}, {2}, R} is a generating
set of P under ∆.

Now, suppose T (M) = P . By previous results, if M admits every coloring, then
opp(M) and P (M) admit every coloring. Thus all three admit an R-coloring and so are
orientable.
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Theorem 6.5. The medial map of any map can always be {2}-colored. Furthermore, for
each I in the first column of the table below, a map M has an I-coloring if and only if
the medial of M has a J-coloring and a J∆{2}-coloring shown in columns 2 and 3.

I J J∆{2}
∅ ∅ {2}
{1} {0} {0, 2}
{0, 2} {1} {1, 2}
R R {0, 1}

Proof: The medial of any map always admits a {2}-coloring, since we have two types
of faces: those that surround vertices of M, and those that surround face-centers of M.
For the second row, if the map is edge-bipartite, then we may color each vertex of the
medial with the color corresponding to the color of the edge it was the midpoint of and
vice-versa. For the third, note that an edge of the medial corresponds to a kite of the
original. Finally, the medial map lies on the same surface as the original. Coloring J∆{2}
is a consequence of the fact that the medial always admits a {2}-coloring and Proposition
4.1.

7 Doubles

Given a map M = (Ω, [r0, r1, r2]) and a subset I of R = {0, 1, 2}, we define the I-double
of M, denoted I �M, to be the map N = (Ω× Z2, [s0, s1, s2]), where

fisj =

{
(frj)i if j /∈ I
(frj)1−i if j ∈ I.

Here, we write “fi” for (f, i).
Note that this definition is the particular case for maps of the double coverings de-

scribed in [2, Section 6], where some properties of the double coverings dealt with in this
section have been discussed. Here we reproduce some of these in our context.

Notice that the function sending fi to f is a projection of N ontoM, and so I �M is
a covering of M. Also notice that the function which sends fi to i ∈ Z2, is an I-coloring
of I �M.

Now, ifM has an I-coloring, then I �M consists of two disjoint copies ofM; in this
case we discard one copy and say that I � M is isomorphic to M. If M does not have
an I-coloring then I �M truly is a double cover (i.e., a 2-fold topological covering which
may or may not be branched at vertices and/or face-centers) of M.

We have remarked above that the map I � M always has an I-coloring. Moreover,
we claim, it is universal minimal in the sense of the following proposition ([2, Section 6]):

Proposition 7.1. If N is any map that is a covering ofM and which is I-colorable, then
N must itself cover I �M.
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An example of a double covering is N = R � M when M is a non-orientable map.
Because M does not have an R-coloring, N is truly a double cover of it, and since N
then does have an R-coloring, it must be orientable and so N is the orientable twofold
cover (some say the canonical cover) of M.

In Figure 10 we show the {2}-double cover of the tetrahedron. Every face is a triangle
and there are six triangles around each vertex. This map lies on the torus.

Figure 10: The {2}-double cover of the tetrahedron

Another example of the double construction in the literature comes from Sherk’s 1962
paper [14]. At that time few non-toroidal chiral maps were known. Sherk constructed an
infinite family of such maps on an infinite number of different surfaces, using a simple and
clever technique. Starting with a chiral map M on the torus, with triangles as faces and
six of them incident to each vertex, he made a new map N in the following way. For each
vertex v ofM, he created vertices v0, v1; for each edge {u, v}, he made edges {u0, v1} and
{u1, v0}; and each triangular face [u, v, w] became a hexagonal face [u0, v1, w0, u1, v0, w1].
This map has hexagonal faces, still six meeting at a vertex. Thus if M has D vertices,
2D faces and 3D edges, then N has 2D vertices, 2D faces and 6D edges. It follows that
N must lie on the orientable surface of characteristic −2D, i.e., of genus D − 1. From
our point of view, we can construct N as {0} � M.

7.1 Properties of double covers

We present here some of the facts about I-doubles. When the proofs are straightforward,
they are omitted.

Proposition 7.2. If M has a I-coloring then so does any J �M.

Proposition 7.3. IfM has a J-coloring then any I �M is isomorphic to (I∆J) �M.

Proof: For any mapM, I �M is the smallest covering ofM which admits an I-coloring.
If M has a J-coloring, then I � M has a J-coloring as well. Thus, by Proposition 4.1,
I �M admits an (I∆J)-coloring, and whetherM has an I-coloring or not, this covering
of M must be minimal of those admitting an (I∆J)-coloring. Thus I � M ∼= (I∆J) �
M.

The following two results summarize the examples given above.
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Proposition 7.4. If M is non-orientable, then R � M is isomorphic to the orientable
double covering of M.

We say that a map N is the Sherk double cover of a non-vertex-bipartite map M
whenever N can be obtained from M by the above procedure used by Sherk to obtain
the chiral maps with hexagonal faces.

Proposition 7.5. IfM is not vertex-bipartite, then {0} � M is isomorphic to its Sherk
double cover. Moreover, the underlying graph of {0} � M is the canonical bipartite
double cover of the underlying graph of M.

Remark 7.6. Note that {0}, {1}, {2} generate P under ∆, and so if M is any map,
then N = {0} � ({1} � ({2} � M)) has T (N ) = P , and so N is an un-double-able map
in our context.

Proposition 7.7. For any map M and any subset I of R, T (I �M) = 〈T (M), I〉

Proof: This is obvious if I ∈ T (M). If not, it is clear that 〈T (M), I〉 is contained in
T (I � M), and so we need only to show that the opposite containment holds. This is
equivalent to showing that if J ∈ T (I � M) and J /∈ T (M), then I∆J ∈ T (M) (see
Proposition 7.3).

Let N = I � M and note that, if J ∈ T (N ), then N is a J-colorable double cover
of M; by Proposition 7.1, N must be isomorphic to N ′ = J � M. Because J /∈ T (M),
there is some cycle (f,W ) which is J-inconsistent. If any such cycle is I-consistent, then
in N , the cycle (f0,W ) has the same length as (f,W ), and so is also J-inconsistent,
contradicting J ∈ T (N ). Thus every cycle which is J-inconsistent is also I-inconsistent.
A similar argument in N ′ shows that every cycle in M which is I-inconsistent is also
J-inconsistent. Therefore every cycle is either consistent for both, or inconsistent for
both. By Lemma 4.5, every cycle in M is I∆J-consistent, and then (I∆J) ∈ T (M), as
required.

7.2 Which maps are I-double covers?

We want to generalize the result from [5] which says, loosely speaking, that a reflexible
map is a 2-fold orientable cover of a non-orientable reflexible map if and only if its rota-
tion group contains an involutory element which conjugates each of the generators to its
inverse.

To re-phrase that in our context, a reflexible map N which has an R-coloring is an R-
double covering of some reflexible mapM which does not have such a coloring if and only
if the subgroup of Aut(N ) which preserves colors in the coloring contains an involutory
element which conjugates each of the generators (of the color-preserving group) to its
inverse.

If N is I-colorable, let a be either of the I-colorings of N and define C+(N , I) to be
the subgroup of C(N ) consisting of all w such that a(f) = a(fw) for all f ∈ Ω. Because
N is I-colorable, this group has index 2, and so is normal, in C(N ).
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Note that Theorem 7.8 generalizes the result from [5] not only to all I-colorings, but
also to maps with no assumption on their automorphism group.

Theorem 7.8. A map N = (Ω, [r0, r1, r2]) is I � M for some non-I-colorable map
M = (Θ, [s0, s1, s2]) if and only ifN is I-colorable and there exists i ∈ I and w ∈ C+(N , I)
of order 2 such that for every element c ∈ C+(N , I), wcw = ricri.

Proof: First, assume N = I � M with M a non-I-colorable map. We will prove the
existence of w. The group C+(N , I) has index 2 in C(N ), and there is an isomorphism f :
C+(N , I) → C(M) which is the letter-to-letter projection, f(ri0ri1 · · · rik) = si0si1 · · · sik
whenever the word ri0ri1 · · · rik is in C+(N , I) and so has an even number of indices in I.

Because M is not I-colorable, I is not empty. So consider any i ∈ I and let w =
f−1(si). Note that w is an involution since f is an isomorphism. This w is not ri,
since ri /∈ C+; it is, instead, expressible as some longer product of rj’s. Then for any
c ∈ C+(M) we have f(wcw) = sif(c)si, while f(ricri) = sif(c)si, since ricri is in C+,
and f acts there as letter-to-letter projection. Since f is an isomorphism and hence
one-to-one, we conclude that wcw = ricri.

Now assume we have w ∈ C+(N , I) of order 2 and i ∈ I such that for every element
c ∈ C+(N , I), wcw = ricri. In particular, with c = w, we have w = www = riwri. From
this we see that wri = riw. We then construct M by identifying flags in the following
consistent way: let u = wri, so that u is an involution. We shall identify flag f ∈ Ω
with fu. Because u is an involution, this identification is unambiguous, and each flag is
identified with exactly one other. Since w preserves coloring and ri changes it, we are
identifying a white flag with a black flag. These equivalence classes are the flags of M.

Then we have to define the connectors s0, s1 and s2 of M. Notice that for every
c ∈ C+(N , I) we have u−1cu = c, so u commutes with all of C+(N , I). But C+(N , I) has
index 2, and u /∈ C+(N , I) so u commutes with all of C(N ). Then we define ([f, fu])sj =
[frj, furj = frju]. The si’s are well defined and we can easily see s0 and s2 commute,
since r0 commutes with r2.

To see that N is the I-double cover of M, identify each black flag f of N with the
flag [f, fu]1 of I �M, and each white flag f with the flag [f, fu]0.

In order to use this theorem we would, in theory, need to prove the existence of w and
observe that under conjugation, w acts in the same way as some ri on every element of
C+(N ). But in practice, we only need to find w that acts in such a way for the generators
of C+(N ). The element ri must not be in C+ and so we will refer to it as an external
generator. Table I summarizes information about each subset I of R. The second column
(adapted from [8]) gives generators for C+(N ) as a subgroup of C(N ). The third column
gives the r′is which are not in C+, and the last column shows the actions on the generators
of C+ under conjugation by this external generator.

8 Which subgroups appear on which surfaces?

The purpose of this section is to prove that every subgroup H of P occurs on every surface
on which it can appear. To clarify that statement, we call a group which includes R an
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Table I

I C+ generators external generator action

{0} a = r1, b = r2, c = r0r1r0 r0 a↔c, b↔b

{1} a = r0, b = r2, c = r1r0r1, d = r1r2r1 r1 b↔d, a↔c

{2} a = r0, b = r1, c = r2r1r2 r2 a↔a, b↔c

{0, 1} a = r2, b = r0r1
r0 a↔a, b↔b−1

r1 a↔b−1ab, b↔b−1

{0, 2} a = r1, b = r0r2, c = r0r1r0
r0 b↔b, a↔c
r2 b↔b, a↔bcb, c↔bab

{1, 2} a = r0, b = r2r1
r2 a↔a, b↔b−1

r1 a↔b−1ab, b↔b−1

R a = r0r1, b = r1r2

r0 a↔a−1, b↔ab−1a−1

r1 a↔a−1, b↔b−1

r2 a↔b−1a−1b, b↔b−1

orientable subgroup of P , and subgroups which do not contain R are non-orientable. So
we want H to appear on S when they are both orientable or both non-orientable. This is
almost true, as explained by the following Theorem:

Theorem 8.1. For every subgroup H of P and every surface S, there is a map M on S
such that T (M) = H if and only if S and H are both orientable or both non-orientable,
with the following exceptions:

1. The group {∅, {1}, {0, 2}, R} does not appear on the sphere.

2. The group {∅, {1}} does not appear on the projective plane.

3. The group {∅, {0, 2}} does not appear on the projective plane.

The proof of this claim is contained in and scattered through the remaining parts of
this section. We will consider the 16 possible subgroups of P individually and in dual
pairs. Such a proof would appear to require 16 constructions, but we can use Lemma
6.1 and Proposition 7.2 for some simplification. Moreover, the insertion techniques that
we will introduce and the connected sum construction of Section 4.4 allow even more
simplification. We consider the non-orientable cases first; then a simple argument, using
the results of Section 7, takes care of the orientable ones.

8.1 H = {∅}

Consider any triangulation of a non-orientable surface S. Refine the triangulation slightly
by placing one new vertex inside some triangular face and connect it to the three vertices
on its boundary so as to have one vertex of degree 3. Call this map M. Because of the
triangular faces and the degree-3 vertex, the Cheat Sheet of Section 5 shows us that none
of the sets of size 1 or 2 are in the group, and because S is non-orientable, it cannot
contain R either. Thus T (M) must be the trivial group.

the electronic journal of combinatorics 24(1) (2017), #P1.3 17



8.2 Insertion

In this subsection, we introduce the technique of insertion. We shall prove that any map
M can be easily modified to produce a map which is face or vertex bipartite and also face
or vertex pseudo-orientable.

Let us assume, for example, that we wish to modifyM to construct a vertex-bipartite
map. Color the vertices of M at random. For the edges for which both vertices are the
same color, add a vertex (of degree 2) to split the edge in two.

The same idea can be applied if we wish vertex pseudo-orientability. We may assign
orientations to the vertices at random and then split the edges whose endpoints do not
match into two edges. Call this process vertex-insertion. This can also be used to turn a
map which is vertex-bipartite or VPSO into one that is not. Note that vertex-insertion
does not modify the status of either face-bipartiteness or FPSO of M.

Dually, we may replace an edge by a face bounded by two edges to get either face-
bipartition or FPSO. The following picture illustrates this for face pseudo-orientation:

Figure 11: Adjusting one edge

We begin with an arbitrary map on a surface S, and an arbitrary orientation of each
face. If there is an edge, as in Figure 11a, where the assigned arrows flow in opposite
directions along the edge, replace the edge with a face bounded by a pair of edges as
shown in 11b. Orient the resulting lune with an arrow as shown. This gives a map on the
same surface with one fewer edge for which the given arrows fail to give a face pseudo-
orientation. Continuing this process eventually gives us a map on S admitting a face
pseudo-orientation.

Let us call this process face-insertion. Here, we used it to produce a FPSO map on
any surface. We can use it equally well to turn any map into a face-bipartite map on the
same surface. As with vertex insertion, this same process can also be used to convert a
map which is face bipartite or FPSO to one which is not.

Fortunately, when doing vertex insertion to make a map vertex-bipartite there is no
danger of accidentally making it vertex pseudoorientable ({1, 2}-colorable), or vice-versa.
If a map is one of vertex bipartite, vertex pseudoorientable and orientable, then the
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other two are equivalent. The same is true for maps which are one of face biparte, face
pseudoorientable and orientable. Orientability cannot be modified without modifying the
surface.

For many groups we can use these two operations to produce maps with these groups
on any non-orientable surface. We will show one of these in detail and summarize the
rest.

Consider the non-orientable group H = {∅, {0, 1}}. For any non-orientable surface S,
we choose any map on S, and, using face-insertion as above, construct a map which is
FPSO. Now we must be certain that the group of the map is no bigger than H. The
other cosets of H in P are H2 = {{0}, {1}}, H3 = {{0, 2}, {1, 2}}, H4 = {{2}, {0, 1, 2}}.
By inserting one vertex on one edge, if necessary, we can cause the map to have a face
with odd degree, eliminating {0} and {1, 2} and hence all of H2 ∪ H3 from the group.
The non-orientability of the surface eliminates R = {0, 1, 2} and hence all of H4. Thus
the final form M of the map has T (M) = {∅, {0, 1}}, as required.

Notice that the group T (D(M)) is then {∅, {1, 2}}.
We produce maps having most of the other non-orientable groups in a similar way.

Starting with an arbitrary map on a non-orientable surface we perform insertions in the
following ways:

• Use face-insertion to force FPSO and vertex-insertion to force VPSO. The result is
a map whose group is {∅, {0, 1}, {0, 2}, {1, 2}}.

• Use face-insertion to force FPSO and then vertex-insertion to force it to be vertex-
bipartite. The resulting map has group {∅, {0}, {1}, {0, 1}}. Its dual has group
{∅, {1}, {2}, {1, 2}}.

• Use face-insertion to force the map to be face-bipartite and vertex-insertion to force
it to be vertex-bipartite. The resulting map has group {∅, {0}, {2}, {0, 2}}.

• Use face-insertion to force face-bipartiteness and vertex-insertion in order to force
some face to have an odd number of sides. The group must be just {∅, {2}}. Its
dual then has group {∅, {0}}.

These constructions take care of all non-orientable groups except for two: {∅, {1}}
and {∅, {0, 2}}.

8.3 The groups H = {∅, {1}} and H = {∅, {0, 2}}

In order to cope with the two non-orientable exceptional groups, we apply the technique
of connected sums of maps, developed in Subsection 4.4.

Lemma 8.2. For each group H 6 P with R /∈ H and |H| = 4, there exists a mapM on
every non-orientable surface such that all the following hold:

• T (M) = H.
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• There is a face F with exactly 2 sides and exactly 2 vertices.

• T (M\ F ) = H. That is, the flags of M that are not in F are not I-colorable for
every I /∈ H.

Proof: Let S be an arbitrary non-orientable surface. To construct a map on S with the
desired properties, first consider any map for which no face shares a vertex with itself.
Because the surface is non-orientable, we may choose an arbitrarily fine subdivision for
which there is a Möbius band of faces which does not use all the faces or edges. Then
apply the operations described in subsection 8.2 to make the map h-colorable for each
h in H. This is possible since any group H with 4 elements with R /∈ H must contain
two of the following: vertex-bipartite, face-bipartite, FPSO or VPSO, with the other non
trivial element being the symmetric difference of the other two.

Now consider an edge that is not in any of the faces of the chosen Möbius band and
convert it into three edges, as with face-insertion but with three edges instead of two.
This operation does not change the status of vertex-bipartition, face-bipartition, VPSO
or FPSO as required. Now pick either of the two newly created faces and call it F . Since
we still have a Möbius strip, R /∈ T (M \ F ), but every I ∈ T (M) is in T (M \ F ).
Therefore, T (M\ F ) = H.

Proposition 8.3. For H = {∅, {0, 2}} and H = {∅, {1}} we have that for every surface
(except the projective plane) there exists a map M on that surface with T (M) = H.

Proof: Let S be a surface with non-orientable genus k > 2. Consider maps as in the
previous lemma M1 and M2 such that M1 lies on a surface with non-orientable genus
k − 1 and M2 lies on the projective plane and such that:

• If H = {∅, {1}}, then

T (M1) = {∅, {1}, {2}, {1, 2}} and T (M2) = {∅, {0}, {1}, {0, 1}}.

• If H = {∅, {0, 2}}, then

T (M1) = {∅, {0, 1}, {0, 2}, {1, 2}} and T (M2) = {∅, {0}, {2}, {0, 2}}.

Then M1 ⊕M2 (along the 2-sided faces as in the previous lemma) lives on the non-
orientable surface with genus k and T (M1 ⊕M2) = H (see Theorem 4.7).

Explicit constructions can be easily constructed and are avoided for brevity.

This concludes the proof for the non-orientable case.

8.4 Orientable Groups

If the subgroup H contains R, then it is generated by R and some subgroup H ′ not
containing R. Each orientable surface S is the orientable twofold cover of some non-
orientable surface S ′. By the preceding subsections, S ′ has a map M′ whose group is
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H ′ (unless S is the sphere, S ′ is the projective plane and H is {∅, {1}, {0, 2}, {0, 1, 2}}).
Then R �M′ is a map on S whose group is H. By Proposition 7.7, T (M) is exactly H.
Thus, with the one exception, for each subgroup H containing R, every orientable surface
admits a map whose group is H.

All that is left to prove now is that the three exceptions mentioned in the theorem
are in fact exceptions – namely that there is no map on the specified surfaces with the
specified group. We shall prove this first for the group {∅, {1}, {0, 2}, R} on the sphere.

Lemma 8.4. There is no map on the sphere with group {∅, {1}, {0, 2}, R}.

Proof: Suppose M is one such map. Since {0} /∈ T (M), the underlying graph of M is
not bipartite, which means it has a cycle C of odd length. By Jordan’s Closed Curve
Theorem, this divides the sphere into two connected components. Choose one of these
two components and erase every edge and vertex exterior to it in order to form the deleted
part into a single face whose boundary is C. This gives a new mapM′, also on the sphere.
Since {1} ∈ T (M), every face of M must have an even number of sides. Therefore M′

has exactly one face with an odd number of sides. Then the underlying graph of D(M′)
has exactly one vertex of odd degree, a well-known impossibility.

Corollary 8.5. No map M on the projective plane has T (M) = {∅, {1}} or T (M) =
{∅, {0, 2}}.

Proof: If such a map were to exist, its orientable double cover would violate Lemma 8.4.

The proof of Theorem 8.1 is now complete.

Corollary 8.6. No map on a non-orientable surface has an R-coloring. In all other cases,
for any subset I of R, and any surface S, there is a map M on S which is I-colorable.

9 Open Questions

The constructions in Section 8 lead to quite general maps, although some of them may
be somewhat degenerate in the viewpoint of other previous work. It may be the case that
more exceptions in Theorem 8.1 are needed if we ask the extra requirement that the maps
are polyhedral maps (that is, the intersection of the closure of two distinct faces is either
empty, a single vertex, or a single edge. See [9]). However, this is beyond the scope of
this paper.

In previous sections we considered colorings of the flags of maps insisting that we use
only two colors. In doing so, we ensure that if a given flag is i-adjacent to another flag
with the same color then all flags are the same color as their i-adjacent flags.

Consistent colorings with k colors can be defined following the idea of [1] and [13], that
is, each flag is assigned a color in {1, . . . , k} with the restriction that for every i ∈ {0, 1, 2}
and j ∈ {1, . . . , k}, the color of the i-adjacent flag to a flag f colored j depends on j but
not on f .
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When k-coloring a map consistently for k > 3 then it may not be true that a flag
is i-adjacent to another flag with the same color if and only if each flag is i-adjacent to
another flag with the same color. For example, we can color the flags of the pentagons of
a pentagonal prism with color 1, the flags of the edges shared by two squares with color
2, and the remaining flags with color 3, as in Figure 12. The reader can easily verify that
this is a consistent 3-coloring, however, flags colored 1 are 1-adjacent to flags colored 1,
and flags colored 2 are 1-adjacent to flags colored 3.
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Figure 12: A 3-orbit map

It is unlikely that the concept of pseudo-orientability admits a generalization that
preserves the connections between 2-colorings and pseudo-orientations of maps. However,
k-colorings may still keep an interesting relation with k-fold covers of maps and maniplexes
as well.

Some results in [8], [13], [1] relate symmetry with I-colorings. We suspect that many
more results can be obtained linking symmetry with I-colorings.
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