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Abstract

In an earlier work, the authors developed a rigged configuration model for the
crystal B(∞) (which also descends to a model for irreducible highest weight crystals
via a cutting procedure). However, the result obtained was only valid in finite types,
affine types, and simply-laced indefinite types. In this paper, we show that the
rigged configuration model proposed does indeed hold for all symmetrizable types.
As an application, we give an easy combinatorial condition that gives a Littlewood-
Richardson rule using rigged configurations which is valid in all symmetrizable Kac-
Moody types.
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1 Introduction

The theory of crystal bases [12] has provided a natural combinatorial framework to study
the representations of Kac-Moody algebras (including classical Lie algebras) and their
associated quantum groups. Their applications span many areas of mathematics, and
these diverse applications have compelled researchers to develop different combinatorial
models for crystals which yield suitable settings to studying a particular aspect of the
representation theory. See, for example, [6, 15, 16, 21, 22]. The choice of using one
model over the other usually depends on the underlying question at hand (and/or on the
preference of the author).

We will be using rigged configurations, whose origins lie in statistical mechanics.
Specifically, they correspond naturally to the eigenvalues and eigenvectors of a Hamil-
tonian of a statistical model via the Bethe ansatz [3, 17, 18]. As shown in [29], the
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rigged configuration model for B(∞) has simple combinatorial rules for describing the
crystal structure which work in all finite, affine, and all simply-laced Kac-Moody types.
These combinatorial rules are only based on the nodes of the Dynkin diagram and their
neighbors.

If instead we use a corner transfer matrix approach to solve the Hamiltonian, the
eigenvectors become indexed by one-dimensional lattice paths [2, 7, 8, 24, 35], which can
be interpreted as highest weight vectors in a tensor product of certain crystals known
as Kirillov-Reshetikhin crystals. While not mathematically rigorous, these two different
approaches suggests a bijection that has been constructed in numerous special cases. See,
for example, [17, 18, 19, 26, 25, 34, 36]. In [30], this bijection was extended to show that
the rigged configuration model in [29] and the marginally large tableaux model in [10]
agree (for the appropriate types).

The purpose of this paper is to extend the crystal structure on rigged configurations
B(∞) in terms of rigged configurations to all symmetrizable Kac-Moody types. There
are several known models for the crystal B(∞) in finite and affine types, but only a select
few which are uniformly constructed to include all symmetrizable types (e.g., modified
Nakajima monomials [11] and Littelmann paths [22]). Having another model which works
beyond finite and affine types is beneficial to studying the combinatorics of the associated
representations, which, for example, has come up in the theory of automorphic forms (see
[30] for an application of rigged configurations in finite type in this direction).

In [29], our proof relied on Schilling’s result [33] that the crystal structure on rigged
configurations satisfied the Stembridge axioms [37]. While the Stembridge axioms are
necessary (local) conditions for highest weight crystals, they are only sufficient conditions
in simply-laced types. Then we used the technology of virtual crystals and well-known
diagram foldings to extend our results to the other finite and affine types. Since rigged
configurations are well-behaved under virtualization [29, 34], the problem of showing
rigged configurations model highest weight crystals and B(∞) for general symmetrizable
type is reduced to determining a realization of every symmetrizable type as a diagram
folding of a simply-laced type.

It is known that every Cartan type can be realized using a simple graph together
with a graph automorphism [23]. We can realize this graph as a Dynkin diagram of a
symmetric type, where the number of edges between vertices vi and vj gives the (negative
of the) (i, j)-entry of the corresponding symmetric Cartan matrix, and the automorphism
as a digram folding. Therefore, we can use the corresponding embedding of root lattices
and [14, Thm. 5.1] to show there exists a virtualization of a crystal of any symmetrizable
type into a crystal of symmetric type. An explicit virtualization map using Nakajima’s
and Lusztig’s quiver varieties was proven in [31] in this case.

In this note, we modify the construction in [23] so that the resulting graph is simple,
where it can be considered as a simply-laced type. We then use the aforementioned
virtualization map to prove an open conjecture (see Conjecture 2.7) stated by the authors
that the rigged configuration model for B(∞) and highest weight crystals B(λ) defined
in [29] may be extended to the case of arbitrary symmetrizable Kac-Moody algebras.
Furthermore, we expect our results could to lead to a solution to the open problem of
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determining an analog of the Stembridge axioms for non-simply-laced types, where the
only known results are for type B2 [5, 38]. Indeed, our results allow for a direct link
between the crystal operators and a simply-laced type where the Stembridge axioms
apply.

The organization of the paper goes as follows. In Section 2, we set our notation and
recall basic notions about crystals, rigged configurations, and virtualization. In Section
3, we define the diagram folding required to prove our conjecture from [29] in Section
4. Lastly, in Section 5, we stage the famous Littlewood-Richardson rule for decomposing
tensor products of irreducible highest weight crystals in terms of the rigged configuration
model.

2 Background

We give a background on crystals, virtual crystals, and rigged configurations.

2.1 Crystals

Let g be a symmetrizable Kac-Moody algebra with index set I, generalized Cartan matrix
A = (Aij)i,j∈I , weight lattice P , root lattice Q, fundamental weights {Λi : i ∈ I}, simple
roots {αi : i ∈ I}, and simple coroots {hi : i ∈ I}. There is a canonical pairing 〈 , 〉 : P∨×
P −→ Z defined by 〈hi, αj〉 = Aij, where P∨ is the dual weight lattice.

An abstract Uq(g)-crystal is a nonempty set B together with maps

wt: B −→ P, εi, ϕi : B −→ Z t {−∞}, ei, fi : B −→ B t {0},

satisfying certain conditions. The ei and fi for i ∈ I are referred to as the Kashiwara
raising and Kashiwara lowering operators , respectively. See [9, 12] for details. The models
used in this paper will be specific, and therefore we will give details related to those models
in the subsequent sections.

We say an abstract Uq(g)-crystal is simply a Uq(g)-crystal if it is crystal isomorphic
to the crystal basis of an integrable Uq(g)-module.

Again let B1 and B2 be abstract Uq(g)-crystals. The tensor product B2⊗B1 is defined
to be the Cartesian product B2 ×B1 equipped with crystal operations defined by

ei(b2 ⊗ b1) =

{
eib2 ⊗ b1 if εi(b2) > ϕi(b1)

b2 ⊗ eib1 if εi(b2) 6 ϕi(b1),
(2.1a)

fi(b2 ⊗ b1) =

{
fib2 ⊗ b1 if εi(b2) > ϕi(b1)

b2 ⊗ fib1 if εi(b2) < ϕi(b1),
(2.1b)

wt(b2 ⊗ b1) = wt(b2) + wt(b1). (2.1c)

Remark 2.1. Our convention for tensor products is opposite the convention given by
Kashiwara in [12].
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2.2 Rigged configurations

Set H = I ×Z>0. Consider λ ∈ P+ ∪{∞} and a sequence of partitions ν = (ν(a) : a ∈ I).

Let m
(a)
i be the number of parts of length i in ν(a). Define the vacancy numbers of ν to

be
p

(a)
i (ν;λ) = p

(a)
i = c(a) −

∑
(b,j)∈H

Aab min(i, j)m
(b)
j , (2.2)

where λ =
∑

a∈I c
(a)Λa or c(a) = 0 if λ = ∞. In addition, we can extend the vacancy

numbers to
p(a)
∞ = c(a) −

∑
b∈I

Aab|ν(b)|

as the limit of p
(a)
i as i→∞ since

∑∞
j=1 min(i, j)m

(b)
j = |ν(b)| for i� 1.

Recall that a partition is a multiset of integers (typically sorted in weakly decreasing
order). More generally, a rigged partition is a multiset of pairs of integers (i, x) such
that i > 0 (typically sorted under weakly decreasing lexicographic order). Each (i, x) is
called a string , while i is called the length or size of the string and x is the rigging , label ,
or quantum number of the string. Finally, a rigged configuration is a pair (ν, J) where

J =
(
J

(a)
i

)
(a,i)∈H, where each J

(a)
i is a weakly decreasing sequence of riggings of strings

of length i in ν(a). We call a rigged configuration λ-valid , for λ ∈ P+ ∪ {∞}, if every

label x ∈ J
(a)
i satisfies the inequality p

(a)
i (ν;λ) > x for all (a, i) ∈ H. We say a rigged

configuration is highest weight if x > 0 for all labels x. Define the colabel or coquantum
number of a string (i, x) to be p

(a)
i − x. For brevity, we will often denote the ath part of

(ν, J) by (ν, J)(a) (as opposed to (ν(a), J (a))).

Definition 2.2. Let (ν∅, J∅) be the rigged configuration with empty partition and empty
riggings. Define RC(∞) to be the graph generated by (ν∅, J∅), ea, and fa, for a ∈ I, where
ea and fa acts on elements (ν, J) in RC(∞) as follows. Fix a ∈ I and let x be the smallest
label of (ν, J)(a).

ea: If x > 0, then set ea(ν, J) = 0. Otherwise, let ` be the minimal length of all strings
in (ν, J)(a) which have label x. The rigged configuration ea(ν, J) is obtained by
replacing the string (`, x) with the string (`− 1, x+ 1) and changing all other labels
so that all colabels remain fixed.

fa: If x > 0, then add the string (1,−1) to (ν, J)(a). Otherwise, let ` be the maximal
length of all strings in (ν, J)(a) which have label x. Replace the string (`, x) by the
string (`+ 1, x− 1) and change all other labels so that all colabels remain fixed.

The remaining crystal structure on RC(∞) is given by

εa(ν, J) = max{k ∈ Z>0 : eka(ν, J) 6= 0}, (2.3a)

ϕa(ν, J) = εa(ν, J) + 〈ha,wt(ν, J)〉, (2.3b)

wt(ν, J) = −
∑

(a,i)∈H

im
(a)
i αa = −

∑
a∈I

|ν(a)|αa. (2.3c)
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It is worth noting that, in this case, the definition of the vacancy numbers reduces to

p
(a)
i (ν) = p

(a)
i = −

∑
(b,j)∈H

Aab min(i, j)m
(b)
j . (2.4)

Moreover, we have 〈ha,wt(ν, J)〉 = p
(a)
∞ from the crystal structure.

Example 2.3. Let g be of type A1, then (ν, J) ∈ RC(∞) given by (ν, J) = fk1 (ν∅, J∅) is

the partition ν(1) = k and the rigging J
(1)
k = {−k}.

Example 2.4. The top of the crystal RC(∞) in type A2 is shown in Figure 2.1. We note
that we write the rigging on the right of each row and the respective vacancy number on
the left.

∅ ∅

−1−2 ∅ ∅ −1−2

−2−4 ∅
0−1 −1−1

−1−1 0−1

∅ −2−4

−3−6 ∅

−1−3 −1−1

−2−3 0−1

0−1 −2−3

−1−1 −1−3

∅ −3−6

1

1 1

1 1

1
1

2

2 2

2 2

2 2

Figure 2.1: The top of the crystal RC(∞) for g = sl3.

Theorem 2.5 ([29]). Let g be of simply-laced type. The map defined by (ν∅, J∅) 7→ u∞,
where u∞ is the highest weight element of B(∞), is a Uq(g)-crystal isomorphism RC(∞) ∼=
B(∞).

We can extend the crystal structure on rigged configurations to model B(λ) as follows.
We consider the subcrystal RC(λ) := {(ν, J) ∈ RC(∞) : (ν, J) is λ-valid} for any λ ∈ P+.
We have to modify the definition of the weight to be wt′(ν, J) = wt(ν, J) + λ. Thus the
crystal operators become fa(ν, J) = 0 if ϕa(ν, J) = 0, or equivalently if the result under
fa above is not a λ-valid rigged configuration. This arises from the natural projection of
B(∞) −→ B(λ).
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2.3 Virtual crystals

A diagram folding is a surjective map φ : Î −→ I between index sets of Kac-Moody
algebras and a set (γa ∈ Z>0 : a ∈ I) of scaling factors . One may induce a map from φ

on the corresponding weight lattices Ψ: P −→ P̂ by asserting

Λa 7→ γa
∑

b∈φ−1(a)

Λ̂b. (2.5)

If g ↪−→ ĝ is the corresponding embedding of symmetrizable Kac-Moody algebras, then
it induces an injection v : B(λ) ↪−→ B(λv) as sets, where λv := Ψ(λ). However, there is
additional structure on the image under v as a virtual crystal , where ea and fa are defined
on the image as

eva =
∏

b∈φ−1(a)

ê γab and f va =
∏

b∈φ−1(a)

f̂ γab , (2.6)

respectively, and commute with v [1, 27, 26]. These are known as the virtual Kashiwara
(crystal) operators . It is shown in [14] that for any a ∈ I and b, b′ ∈ φ−1(a) we have
ebeb′ = eb′eb and fbfb′ = fb′fb as operators (recall that b and b′ are not connected), so both
eva and f vb are well-defined. The inclusion map v also satisfies the following commutative
diagram.

B(λ) B(λv)

P P̂

v

Ψ

wt ŵt
(2.7)

In [1], it was shown that this defines a Uq(g)-crystal structure on the image of v. More
generally, we define a virtual crystal as follows.

Definition 2.6. Consider any symmetrizable types g and ĝ with index sets I and Î,
respectively. Let φ : Î −→ I be a surjection such that b is not connected to b′ for all
b, b′ ∈ φ−1(a) and a ∈ I. Let B̂ be a Uq(ĝ)-crystal and V ⊆ B̂. Let γ = (γa ∈ Z>0 : a ∈ I)

be the scaling factors. A virtual crystal is the quadruple (V, B̂, φ, γ) such that V has an
abstract Uq(g)-crystal structure defined using the Kashiwara operators eva and f va from
(2.6) above,

εa(x) :=
ε̂b(x)

γa
, ϕa(x) :=

ϕ̂b(x)

γa
, for all b ∈ φ−1(a) and x ∈ V,

and wt := Ψ−1 ◦ ŵt.

We say B virtualizes in B̂ if there exists a Uq(g)-crystal isomorphism v : B −→ V .
The resulting isomorphism is called the virtualization map. We denote the quadruple
(V, B̂, φ, γ) simply by V when there is no risk of confusion.
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The virtualization map v from rigged configurations of type g to rigged configurations
of type ĝ is defined by

m̂
(b)
γai

= m
(a)
i , Ĵ

(b)
γai

= γaJ
(a)
i , (2.8)

for all b ∈ φ−1(a). A Uq(g)-crystal structure on rigged configurations is defined by using
virtual crystals [26]. Moreover, we use Equation (2.8) to describe the virtual image of the

type g rigged configurations into type ĝ rigged configurations. Explicitly (ν̂, Ĵ) ∈ V if
and only if

1. m̂
(b)
i = m̂

(b′)
i and Ĵ

(b)
i = Ĵ

(b′)
i for all b, b′ ∈ φ−1(a),

2. Ĵ
(b)
i ∈ γaZ for all b ∈ φ−1(a), and

3. m̂
(b)
i = 0 and Ĵ

(b)
i = 0 for all i /∈ γaZ for all b ∈ φ−1(a).

Next, we recall [29, Conj. 5.12].

Conjecture 2.7. For all g of symmetrizable type, there exists a simply-laced type ĝ and
diagram folding φ with scaling factors (γa ∈ Z>0 : a ∈ I) such that RC(λ) virtualizes in
RC(λv) under the virtualization map given by Equation (2.8).

3 Symmetrizable types as foldings from simply-laced types

In this section, we give a modified graph construction from [23, Prop. 14.1.2] which ensures
that the resulting graph is simple. We identify simple graphs with simply-laced Dynkin
diagrams.

Let D = (da)a∈I be a diagonal matrix such that DA is symmetric with da ∈ Z>0 and

gcd(da : a ∈ I) = 1. Define da,b := lcm(da, db) and N = max
{
−Aabda
da,b

: a 6= b ∈ I
}

. Assert

that ΓA is a graph with vertex set

{va,s : a ∈ I and s ∈ Z/(Nda)Z}

and edge set constructed as follows. Fix some a 6= b ∈ I, let d̃a, d̃b be such that

gcd(d̃a, d̃b) = 1 and d̃a
d̃b

= da
db

, and let cab be such that cabd̃a = −Aba. Then ΓA has

edges {
{va,s, vb,s+k} : a, b ∈ I, k = 0, 1, . . . , cab − 1, s = 0, 1, . . . , Ndadb − 1

}
,

where the indices s and s+ k are taken modulo Nda and Ndb, respectively. Define a map
φA : ΓA −→ ΓA by φA(va,s) = va,s+1 for a ∈ I and s+ 1 understood modulo Nda.

Example 3.1. Let A = ( 2 −6
−4 2 ). Then D = ( 2 0

0 3 ) is a diagonal matrix such that DA =

( 4 −12
−12 6 ) is symmetric. Since d1 = 2 and d2 = 3 are relatively prime, set d̃1 = 2, d̃2 = 3.

Then N = 2 and c12 = c21 = 2. Hence ΓA has vertices

{v1,0, v1,1, v1,2, v1,3, v2,0, v2,1, v2,2, v2,3, v2,4, v2,5}
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and

ΓA =

v1,0

v1,1

v1,2

v1,3

v2,0

v2,1

v2,2

v2,3

v2,4

v2,5

Proposition 3.2. Let A be any symmetrizable Cartan matrix and a 6= b ∈ I. The map
φA defined above is a Dynkin diagram automorphism of ΓA. Moreover, let Eab denote
the number of edges between any fixed vertex in the φA-orbit of a with some vertex in the
φA-orbit of b. Then −Aab = Eab.

In order to prove this proposition, we require a result from [4], which we restate here
for the reader’s convenience.

Proposition 3.3 ([4, Prop. 2.5]). Let A be a symmetrizable Cartan matrix and let ΓA
be its corresponding Dynkin diagram. Let D = (da)a∈I be the (diagonal) symmetrizing
matrix of A. Then

da
db

=
Aba
Aab

,

whenever a and b are connected by an edge in ΓA.

We also need the following technical lemma.

Lemma 3.4. With the notation as above, we have cab 6 N .

Proof. We have

cab =
−Aba
d̃a

=
−Aab
d̃a
· da
db

=
−Aab
d̃a
· d̃a
d̃b

=
−Aab
d̃b

from Proposition 3.3. We also have

−Aabda
lcm(da, db)

=
−Aab gcd(da, db)

db
=
−Aab
d̃b

(3.1)

from the definition of d̃b = db
gcd(da,db)

. Since N is defined as the maximum over the values

given by Equation (3.1), the claim follows.

Proof of Proposition 3.2. The fact that φA is an automorphism is clear from the construc-
tion of ΓA and φA. For a 6= b in I, we have

Eab = #
{
{va,s, vb,s+k} : k = 0, 1, . . . , cab − 1, s = 0, 1, . . . , Ndadb − 1 mod Nda

}
.
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Next, we consider the number of times the edge {va,0, vb,0} occurs in the set above. Note
that for k = 0, we have da,b values of s such that s ≡ 0 mod Nda and s ≡ 0 mod Ndb.
Lemma 3.4 states that k < N , and hence, there does not exist a value k > 0 such that
s ≡ 0 mod Nda such that s + k ≡ 0 mod Ndb. From the construction, we can take any
fixed edge and obtain the same result. Hence,

Eab = cab ·
Ndadb
Nda

· 1

da,b
= cab · db ·

d̃b
db

= −Aba
d̃a
· db ·

d̃b
db

= −Aabd̃a
d̃ad̃b

· db ·
d̃b
db

= −Aab,

where we used Proposition 3.3 and the fact that da
db

= d̃a
d̃b

.

In other words, Proposition 3.2 states that we can recover A from (ΓA, φA). We also
have that the induced map on the weight lattice from Equation (2.5) implies

αa 7→
∑

b∈φ−1
A (a)

α̂b. (3.2)

4 Proof of Conjecture 2.7

In this section we prove our main result. That is, we show that RC(λ) virtualizes in

RC
(
Ψ(λ)

)
for any λ ∈ P+ ∪ {∞}, where Ψ: P −→ P̂ is the induced map on the weight

lattices corresponding to ΓA with γa = 1 for all a ∈ I. Indeed, by the definition of the
crystal operators, we can restrict the proof to the rank two case. The fact that the crystal
operators commute with the virtualization map can be made using an argument similar
to [34, Prop. 3.7] using Proposition 3.2 and the construction of ΓA.

We sketch the argument here. Note that m̂
(b)
i = m̂

(b′)
i and Ĵ

(b)
i = Ĵ

(b′)
i for all b, b′ ∈

φ−1(a), a ∈ I, and i ∈ Z>0. Hence eva and f va change ν(b) for all b ∈ φ−1(a) in exactly the
same position. Moreover, each ν̂(b′) for b′ ∈ φ−1(a′) has exactly −Aaa′ values of b ∈ φ−1(a)

such that Âbb′ = −1 (i.e., b and b′ are adjacent in ΓA), so when there is a change in
vacancy numbers, and hence a change in the riggings, it is exactly Aaa′ for all a′ ∈ I. So
f va (ν̂, Ĵ) = v

(
fa(ν, J)

)
.

Thus the result follows from [29, Prop. 4.2] (which relies on [33, Lemma 3.6]) and Equa-
tion (2.8). Furthermore, the statements of Theorem 5.20 and Corollary 6.2 in [29] hold.
Hence, we have shown that the rigged configuration model is valid in all symmetrizable
types. Alternatively this follows from [14, Thm. 5.1] by Equation (3.2).

Theorem 4.1. Let g be a Kac-Moody algebra of arbitrary symmetrizable type. Then
RC(λ) ∼= B(λ) for λ ∈ P+ ∪ {∞}.

5 Littlewood-Richardson rule

In this section, we give a Littlewood-Richardson rule using rigged configurations, which
requires a combinatorial description of εa and ϕa. The proof of the following Proposition
follows [28, 29].
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Proposition 5.1. Let x be the smallest rigging in (ν, J)(a), where (ν, J) ∈ RC(λ) or
RC(∞). Then, for all a ∈ I,

εa(ν, J) = −min{0, x}, ϕa(ν, J) = p(a)
∞ −min{0, x}.

Theorem 5.2. Let λ, µ ∈ P+ be such that λ =
∑

a∈I caΛa. Then

RC(µ)⊗ RC(λ) ∼=
⊕

(ν,J)∈RC(µ)

min{min J
(a)
i :i∈Z>0}>−ca

for all a∈I

RC
(
λ+ wt(ν, J)

)
.

Proof. Recall that, if B is a crystal, then v ∈ B is called highest weight if eav = 0 for all
a ∈ I. By [13, §4.5] (or directly from (2.1)), the highest weight elements of RC(µ)⊗RC(λ)
are precisely those elements of the form (ν, J)⊗(νλ, Jλ), where (νλ, Jλ) is the highest weight
rigged configuration in RC(λ) and εa(ν, J) 6 〈ha, λ〉 for all a ∈ I. Since λ =

∑
a∈I caΛa,

we seek those (ν, J) ∈ RC(µ) such that εa(ν, J) 6 ca for all a ∈ I. By Proposition 5.1,
we have εa(ν, J) = −min{0, x}, where x is the smallest rigging in (ν, J)(a). The smallest
rigging in (ν, J)(a) is

min
{

min{` : ` ∈ J (a)
i } : i ∈ Z>0

}
,

so we require

ca > εa(ν, J)

= −min
{

0,min
{

min{` : ` ∈ J (a)
i } : i ∈ Z>0

}}
> −min

{
min{` : ` ∈ J (a)

i } : i ∈ Z>0

}
,

which is what we set out to prove.

Example 5.3. Suppose g is of type A2 and let λ = Λ1 + Λ2 and µ = Λ1. Since B(µ) is
the crystal

∅ ∅ 1−−−−→ −1−1 ∅ 2−−−−→ 00 −1−1 ,

it follows that
B(µ)⊗B(λ) ∼= B(2Λ1 + Λ2)⊕B(2Λ2)⊕B(Λ1).

Recall that rigged configurations in finite type can be considered as classical com-
ponents of U ′q(g)-crystals, where g is of affine type, isomorphic to

⊗N
i=1 B

ri,1. We note
that there is an algorithm to construct all classically highest weight U ′q(g)-rigged config-
urations given by Kleber in simply-laced types [20] and extended to all other types by
using virtualization [27]. It would be interesting to determine which nodes of the Kle-
ber tree correspond to the highest weight elements in B(λ) ⊗ B(µ) and more generally
B(λ1)⊗ · · · ⊗B(λ`).
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