
Anti-power Prefixes of the Thue-Morse Word

Colin Defant
Department of Mathematics
University of Florida, U.S.A.

cdefant@ufl.edu

Submitted: Jul 20, 2016; Accepted: Feb 1, 2017; Published: Feb 17, 2017

Mathematics Subject Classifications: 05A05; 68R15

Abstract

Recently, Fici, Restivo, Silva, and Zamboni defined a k-anti-power to be a word
of the form w1w2 · · ·wk, where w1, w2, . . . , wk are distinct words of the same length.
They defined AP (x, k) to be the set of all positive integers m such that the prefix
of length km of the word x is a k-anti-power. Let t denote the Thue-Morse word,
and let F(k) = AP (t, k) ∩ (2Z+ − 1). For k > 3, γ(k) = min(F(k)) and Γ(k) =
max((2Z+ − 1) \ F(k)) are well-defined odd positive integers. Fici et al. speculated
that γ(k) grows linearly in k. We prove that this is indeed the case by showing that
1/2 6 lim inf

k→∞
(γ(k)/k) 6 9/10 and 1 6 lim sup

k→∞
(γ(k)/k) 6 3/2. In addition, we prove

that lim inf
k→∞

(Γ(k)/k) = 3/2 and lim sup
k→∞

(Γ(k)/k) = 3.

Keywords: Thue-Morse word; anti-power; infinite word

1 Introduction

A well-studied notion in combinatorics on words is that of a k-power; this is simply a
word of the form wk for some word w. It is often interesting to ask questions related to
whether or not certain types of words contain factors (also known as substrings) that are
k-powers for some fixed k. For example, in 1912, Axel Thue [7] introduced an infinite
binary word that does not contain any 3-powers as factors (we say such a word is cube-
free). This infinite word is now known as the Thue-Morse word; it is arguably the world’s
most famous (mathematical) word [1, 2, 3, 4, 5].

Definition 1. Let w denote the Boolean complement of a binary word w. Let A0 = 0.
For each nonnegative integer n, let Bn = An and An+1 = AnBn. The Thue-Morse word t
is defined by

t = lim
n→∞

An.
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Recently, Fici, Restivo, Silva, and Zamboni [6] introduced the very natural concept of
a k-anti-power; this is a word of the form w1w2 · · ·wk, where w1, w2, . . . , wk are distinct
words of the same length. For example, 001011 is a 3-anti-power, while 001010 is not.
In [6], the authors prove that for all positive integers k and r, there is a positive integer
N(k, r) such that all words of length at least N(k, r) contain a factor that is either a k-
power or an r-anti-power. They also define AP (x, k) to be the set of all positive integers
m such that the prefix of length km of the word x is a k-anti-power. We will consider
this set when x = t is the Thue-Morse word. It turns out that AP (t, k) is nonempty
for all positive integers k [6, Corollary 6]. It is not difficult to show that if k and m are
positive integers, then m ∈ AP (t, k) if and only if 2m ∈ AP (t, k). Therefore, the only
interesting elements of AP (t, k) are those that are odd. For this reason, we make the
following definition.

Definition 2. Let F(k) denote the set of odd positive integers m such that the prefix of t
of length km is a k-anti-power. Let γ(k) = min(F(k)) and Γ(k) = sup((2Z+− 1) \F(k)).

Remark 3. It is immediate from Definition 2 that F(1) ⊇ F(2) ⊇ F(3) ⊇ · · · . Therefore,
γ(1) 6 γ(2) 6 γ(3) 6 · · · and Γ(1) 6 Γ(2) 6 Γ(3) 6 · · · .

For convenience, we make the following definition.

Definition 4. If m is a positive integer, let K(m) denote the smallest positive integer k
such that the prefix of t of length km is not a k-anti-power.

If k > 3, then (2Z+ − 1) \ F(k) is nonempty because it contains the number 3 (the
prefix of t of length 9 is 011010011, which is not a 3-anti-power). We will show (Theorem
9) that (2Z+ − 1) \ F(k) is finite so that Γ(k) is a positive integer for each k > 3. For
example, (2Z+ − 1) \ F(6) = {1, 3, 9}. This means that AP (t, 6) is the set of all postive
integers of the form 2`m, where ` is a nonnegative integer and m is an odd integer that
is not 1, 3, or 9.

Fici et al. [6] give the first few values of the sequence γ(k) and speculate that the
sequence grows linearly in k. We will prove that this is indeed the case. In fact, it is the
aim of this paper to prove the following:

• 1

2
6 lim inf

k→∞

γ(k)

k
6

9

10

• 1 6 lim sup
k→∞

γ(k)

k
6

3

2

• lim inf
k→∞

Γ(k)

k
=

3

2

• lim sup
k→∞

Γ(k)

k
= 3.

Despite these asymptotic results, there are many open problems arising from consid-
eration of the sets F(k) (such as the cardinality of (2Z+ − 1) \ F(k)) that we have not
investigated; we discuss some of these problems at the end of the paper.
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2 The Thue-Morse Word: Background and Notation

Our primary focus is on the Thue-Morse word t. In this brief section, we discuss some of
the basic properties of this word that we will need when proving our asymptotic results.

Let ti denote the ith letter of t so that t = t1t2t3 · · · . The number ti has the same
parity as the number of 1’s in the binary expansion of i − 1. For any positive integers
α, β with α 6 β, define 〈α, β〉 = tαtα+1 · · · tβ. In his seminal 1912 paper, Thue proved
that t is overlap-free [7]. This means that if x and y are finite words and x is nonempty,
then xyxyx is not a factor of t. Equivalently, if a, b, n are positive integers satisfying
a < b 6 a+ n, then 〈a, a+ n〉 6= 〈b, b+ n〉. Note that this implies that t is cube-free.

We write A6ω to denote the set of all words over an alphabet A. Let W1 and W2

be sets of words. A morphism f : W1 → W2 is a function satisfying f(xy) = f(x)f(y)
for all words x, y ∈ W1. A morphism is uniquely determined by where it sends letters.
Let µ : {0, 1}6ω → {01, 10}6ω denote the morphism defined by µ(0) = 01 and µ(1) = 10.
Also, define a morphism σ : {01, 10}6ω → {0, 1}6ω by σ(01) = 0 and σ(10) = 1 so that
σ = µ−1. The words t and t are the unique one-sided infinite words over the alphabet
{0, 1} that are fixed by µ. Because µ(t) = t, we may view t as a word over the alphabet
{01, 10}. In particular, this means that t2i−1 6= t2i for all positive integers i. In addition,
if α and β are nonnegative integers with α < β, then 〈2α+1, 2β〉 ∈ {01, 10}6ω. Recall the
definitions of An and Bn from Definition 1. Observe that An = µn(0) and Bn = µn(1).
Because µn(t) = t, the Thue-Morse word is actually a word over the alphabet {An, Bn}.
This leads us to the following simple but useful fact.

Fact 5. For any positive integers n and r, 〈2nr + 1, 2n(r + 1)〉 = µn(tr+1).

3 Asymptotics for Γ(k)

In this section, we prove that lim inf
k→∞

Γ(k)/k = 3/2 and lim sup
k→∞

Γ(k)/k = 3. The following

proposition will prove very useful when we do so.

Proposition 6. Let m > 2 be an integer, and let δ(m) = dlog2(m/3)e.

(i) If y and v are words such that yvy is a factor of t and |y| = m, then 2δ(m) divides
|yv|.

(ii) There is a factor of t of the form yvy such that |y| = m and 2δ(m)+1 does not divide
|yv|.

Proof. We first prove (ii) by induction on m. If m = 2, we may simply set y = 01 and
v = 1. If m = 3, we may set y = 101 and v = ε (the empty word). Now, assume m > 4.
First, suppose m is even. By induction, we can find a factor of t of the form yvy such that
|y| = m/2 and such that 2δ(m/2)+1 does not divide |yv|. Note that µ(y)µ(v)µ(y) is a factor
of t and that 2δ(m/2)+2 does not divide 2|yv| = |µ(y)µ(v)|. Since δ(m/2) + 2 = δ(m) + 1,
we are done. Now, suppose m is odd. Because m + 1 is even, we may use the above
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argument to find a factor y′v′y′ of t with |y′| = m+ 1 such that 2δ(m+1)+1 does not divide
|y′v′|. It is easy to show that δ(m) = δ(m + 1) because m > 3 is odd. This means that
2δ(m)+1 does not divide |y′v′|. Let a be the last letter of y′, and write y′ = y′′a. Put
v′′ = av′. Then y′′v′′y′′ is a factor of t with |y′′| = m and |y′′v′′| = |y′v′|. This completes
the inductive step.

We now prove (i) by induction on m. If m 6 3, the proof is trivial because δ(2) =
δ(3) = 0. Therefore, assume m > 4. Assume that yvy is a factor of t and |y| = m. Let
us write t = xyvyz.

Suppose by way of contradiction that |vy| is odd. Then |xy| and |xyvy| have different
parities. Write y = y1a, where a is the last letter of y. Either xy or xyvy is an even-length
prefix of t, and is therefore a word in {01, 10}6ω. It follows that the second-to-last letter of
y is a, so we may write y1 = y2a. We now observe that one of the words xy1 and xyvy1 is
an even-length prefix of t, so the same reasoning as before tells us that the second-to-last
letter in y1 is a. Therefore, y = y3aaa for some word y3. We can continue in this fashion
to see that aaaaa is a suffix of vy. This is impossible since t is overlap-free. Hence, |vy|
must be even. We now consider four cases corresponding to the possible parities of |x|
and m.
Case 1: |x| and |y| = m are both even. We just showed |vy| is even, so all of the words
x, xy, xyv, xyvy are even-length prefixes of t. This means that x, y, v, z ∈ {01, 10}6ω, so
t = σ(x)σ(y)σ(v)σ(y)σ(z). By induction, we see that 2δ(|σ(y)|) divides |σ(y)σ(v)|. Because
δ(|σ(y)|) = δ(m/2) = δ(m)− 1 and |σ(y)σ(v)| = |yv|/2, it follows that 2δ(m) divides |yv|.
Case 2: |x| is odd and m is even. As in the previous case, |v| must be even. Let a, b, c
be the last letters of y, v, x, respectively. Write y = y0a, v = v0b, x = x0c. We have
t = x0cy0av0by0az. Note that |x0|, |cy0|, |av0|, and |by0| are all even. In particular, cy0
and by0 are both in {01, 10}6ω. As a consequence, b = c. Setting x′ = x0, y

′ = by0,
v′ = av0, z

′ = az, we find that t = x′y′v′y′z′. We are now in the same situation as in the
previous case because |x′| is even and |y′| = m. Consequently, 2δ(m) divides |y′v′| = |yv|.
Case 3: m is odd and |x| is even. Let a be the last letter of y. Both v and z start with
the letter a, so we may write v = av1 and z = az1. Put x1 = x and y1 = ya. We have
t = x1y1v1y1z1. Because |x1| and |y1| = m+ 1 are both even, we know from the first case
that 2δ(m+1) divides |y1v1| = |yv|. Now, simply observe that δ(m) = δ(m + 1) because
m > 3 is odd.
Case 4: m and |x| are both odd. Let d be the first letter of y. Both x and v end in
the letter d, so we may write x = x2d and v = v2d. Let y2 = dy and z2 = z. Then
t = x2y2v2y2z2. Because |x2| and |y2| = m + 1 are both even, we know that 2δ(m+1)

divides |y2v2| = |yv|. Again, δ(m) = δ(m+ 1).

Corollary 7. Let m be a positive integer, and let δ(m) = dlog2(m/3)e. If k > 3 and
m ∈ (2Z+ − 1) \ F(k), then k − 1 > 2δ(m).

Proof. There exist integers n1 and n2 with 0 6 n1 < n2 6 k− 1 such that 〈n1m+ 1, (n1 +
1)m〉 = 〈n2m+1, (n2 +1)m〉. Let y = 〈n1m+1, (n1 +1)m〉 and v = 〈(n1 +1)m+1, n2m〉.
The word yvy is a factor of t, and |y| = m. According to Proposition 6, 2δ(m) divides
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|yv| = (n2 − n1)m, where δ(m) = dlog2(m/3)e. Since m is odd, 2δ(m) divides n2 − n1.
This shows that k − 1 > n2 > n2 − n1 > 2δ(m).

The following lemma is somewhat technical, but it will be useful for constructing
specific pairs of identical factors of the Thue-Morse word. These specific pairs of factors
will provide us with odd positive integers m for which K(m) is relatively small. We will
then make use of the fact, which follows immediately from Definitions 2 and 4, that
Γ(k) > m whenever k > K(m).

Lemma 8. Suppose r,m, `, h, p, q are nonnegative integers satisfying the following condi-
tions:

• h < 2`−2

• rm = p · 2`+1 + 2`−1 + h

• (r + 1)m 6 p · 2`+1 + 5 · 2`−2

• (r + 2`−2)m = q · 2`+1 + 3 · 2`−2 + h

• tp+1 6= tq+1.

Then 〈rm+ 1, (r + 1)m〉 = 〈(r + 2`−2)m+ 1, (r + 2`−2 + 1)m〉, and K(m) 6 r + 2`−2 + 1.

Proof. Let u = 〈rm + 1, (r + 1)m〉 and v = 〈(r + 2`−2)m + 1, (r + 2`−2 + 1)m〉. Let us
assume tp+1 = 0; a similar argument holds if we assume instead that tp+1 = 1. According
to Fact 5,

〈p · 2`+1 + 1, (p+ 1)2`+1〉 = A`+1 = A`−2B`−2B`−2A`−2B`−2A`−2A`−2B`−2.

We may now use the first three conditions to see that B`−2A`−2B`−2 = xuy for some words
x and y such that |x| = h and |y| = p · 2`+1 + 5 · 2`−2 − (r + 1)m (see Figure 1).

We know from the last condition that tq+1 = 1, so

〈q · 2`+1 + 1, (q + 1)2`+1〉 = B`+1 = B`−2A`−2A`−2B`−2A`−2B`−2B`−2A`−2.

The fourth condition tells us that B`−2A`−2B`−2 = x′vy′ for some words x′ and y′ with
|x′| = h. We have shown that xuy = x′vy′, where |x| = |x′| and |u| = |v|. Hence, u = v.
It follows that the prefix of t of length (r+ 2`−2 + 1)m is not a (r+ 2`−2 + 1)-anti-power,
so K(m) 6 r + 2`−2 + 1 by definition.

We may now use Lemma 8 and Proposition 6 to prove that lim sup
k→∞

Γ(k)/k = 3. Recall

that if k > 3, then Γ(k) > 3 because 3 ∈ (2Z+ − 1) \ F(k). A particular consequence of
the following theorem is that (2Z+− 1) \F(k) is finite. It follows that if k > 3, then Γ(k)
is an odd positive integer.

Theorem 9. Let Γ(k) be as in Definition 2. For all integers k > 3, we have Γ(k) 6 3k−4.

Furthermore, lim sup
k→∞

Γ(k)

k
= 3.
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A`+1 B`+1

A`−2B`−2B`−2A`−2B`−2A`−2A`−2B`−2 B`−2A`−2A`−2B`−2A`−2B`−2B`−2A`−2

x u y x′ v y′

Figure 1: An illustration of the proof of Lemma 8.

Proof. Fix k > 3, and let m ∈ (2Z+ − 1) \ F(k). If m 6 5, then m 6 3k − 4 as desired,
so assume m > 7. By Corollary 7, k − 1 > 2δ(m), where δ(m) = dlog2(m/3)e. Since
m > 7 is odd, δ(m) > log2(m/3). This shows that k − 1 > 2δ(m) > m/3, so m 6 3k − 4.
Consequently, Γ(k) 6 3k − 4.

We now show that lim sup
k→∞

Γ(k)

k
= 3. For each positive integer α, let kα = 22α+2α+2.

Let us fix an integer α > 3 and set r = 2α + 1, m = 3 · 22α − 2α + 1, ` = 2α + 2, h = 1,
p = 3·2α−3, and q = 3·22α−3+2α−2. One may easily verify that these values of r,m, `, h, p,
and q satisfy the first four of the five conditions listed in Lemma 8. Recall that the parity
of ti is the same as the parity of the number of 1’s in the binary expansion of i− 1. The
binary expansion of p has exactly two 1’s, and the binary expansion of q has exactly three
1’s. Therefore, tp+1 = 0 6= 1 = tq+1. This shows that all of the conditions in Lemma
8 are satisfied, so K(m) 6 r + 2`−2 + 1 = kα. The prefix of t of length kαm is not a
kα-anti-power, so Γ(kα) > m = 3 · 22α − 2α + 1. For each α > 3,

Γ(kα)

kα
>

3 · 22α − 2α + 1

22α + 2α + 2
.

In the preceding proof, we found an increasing sequence of positive integers (kα)α>3

with the property that Γ(kα)/kα → 3 as α → ∞. It will be useful to have two other
sequences with similar properties. This is the content of the following lemma.

Lemma 10. For integers α > 3, β > 9, and ρ > 4, define

kα = 22α + 2α + 2, Kβ = 22β+1 + 3 · 2β+3 + 49, and κρ = 2ρ + 2.

We have

Γ(kα) > 3·22α−2α+1, Γ(Kβ) > 3·22β+1−2β−1+1, and Γ(κρ) > 5·2ρ−1−8χ(ρ)+1,

where χ(ρ) =

{
1, if ρ ≡ 0 (mod 2);

2, if ρ ≡ 1 (mod 2).

Proof. We already derived the lower bound for Γ(kα) in the proof of Theorem 9. To prove
the lower bound for Γ(Kβ), put r = 3 · 2β+3 + 48, m = 3 · 22β+1 − 2β−1 + 1, ` = 2β + 3,
h = 48, p = 9 · 2β + 17, and q = 3 · 22β−2 + 143 · 2β−4 + 17. Straightforward calculations
show that these choices of r,m, `, h, p, and q satisfy the first four conditions of Lemma 8.
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The binary expansion of p has exactly four 1’s while that of q has exactly nine 1’s (it is
here that we require β > 9). It follows that tp+1 = 0 6= 1 = tq+1, so the final condition in
Lemma 8 is also satisfied. The lemma tells us that K(m) 6 r+2`−2+1 = Kβ, so the prefix
of t of length Kβm is not a Kβ-anti-power. Hence, Γ(Kβ) > m = 3 · 22β+1 − 2β−1 + 1.

To prove the lower bound for κρ, we again invoke Lemma 8. Let r′ = 1, m′ =
5 ·2ρ−1−8χ(ρ)+1, `′ = ρ+2, h′ = 2ρ−1−8χ(ρ)+1, p′ = 0, and q′ = 5 ·2ρ−4−χ(ρ). These
choices satisfy the first four conditions in Lemma 8. The binary expansion of q′ has an odd
number of 1’s, so tp′+1 = t1 = 0 6= 1 = tq′+1. We now know that K(m′) 6 r′+2`

′−2+1 = κρ,
so Γ(κρ) > m′ = 5 · 2ρ−1 − 8χ(ρ) + 1.

We now use the sequences (kα)α>3, (Kβ)β>9, and (κρ)ρ>4 to prove that lim inf
k→∞

(Γ(k)/k)

= 3/2.

Theorem 11. Let Γ(k) be as in Definition 2. We have lim inf
k→∞

Γ(k)

k
=

3

2
.

Proof. Let k > 3 be a positive integer, and let m = Γ(k). Put δ(m) = dlog2(m/3)e.
Corollary 7 tells us that k − 1 > 2δ(m). Suppose k is a power of 2, say k = 2λ. Then the

inequality k − 1 > 2δ(m) forces δ(m) 6 λ− 1. Thus, m 6 3 · 2λ−1 =
3

2
k. This shows that

Γ(k)

k
6

3

2
whenever k is a power of 2, so lim inf

k→∞

Γ(k)

k
6

3

2
.

To prove the reverse inequality, we will make use of Lemma 10. Recall the definitions
of kα, Kβ, κρ, and χ(ρ) from that lemma. Fix k > κ18, and put m = Γ(k). Because
k > κ18, we may use Lemma 10 and the fact that Γ is nondecreasing (see Remark 3) to
see that m = Γ(k) > Γ(κ18) > 5 · 217 − 7. Let ` = dlog2me so that 2`−1 < m < 2`. Note
that ` > 20. Let us first assume that 3 · 2`−2 − 2(`−2)/2 < m < 2`. Lemma 10 tells us that
Γ(κ`−1) > 5 · 2`−2 − 8χ(` − 1) + 1. We also know that 5 · 2`−2 − 8χ(` − 1) + 1 > m, so
Γ(κ`−1) > m. Because Γ is nondecreasing, κ`−1 > k. Thus,

Γ(k)

k
>

3 · 2`−2 − 2(`−2)/2

κ`−1
=

3 · 2`−2 − 2(`−2)/2

2`−1 + 2
(1)

if 3 · 2`−2 − 2(`−2)/2 < m < 2`.
Next, assume 2`−1 < m 6 3 · 2`−2 − 2(`−2)/2 and ` is even. According to Lemma

10, Γ(k(`−2)/2) > 3 · 2`−2 − 2(`−2)/2 + 1 > m. Because Γ is nondecreasing, k < k(`−2)/2.
Therefore,

Γ(k)

k
>

2`−1

k(`−2)/2
=

2`−1

2`−2 + 2(`−2)/2 + 2
. (2)

Finally, suppose 2`−1 < m 6 3 · 2`−2 − 2(`−2)/2 and ` is odd. Lemma 10 states that
Γ(K(`−3)/2) > 3 · 2`−2 − 2(`−5)/2 + 1 > m. We know that k < K(`−3)/2 because Γ is
nondecreasing. As a consequence,

Γ(k)

k
>

2`−1

K(`−3)/2
=

2`−1

2`−2 + 3 · 2(`+3)/2 + 49
. (3)
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The inequalities in (1), (2), and (3) show that in all cases,
Γ(k)

k
>

3 · 2`−2 − 2(`−2)/2

2`−1 + 2
.

Because `→∞ as k →∞ (Γ(k) cannot be bounded since we have just shown Γ(k)/k is
bounded away from 0), we find that lim inf

k→∞
Γ(k)/k > 3/2.

4 Asymptotics for γ(k)

Having demonstrated that lim inf
k→∞

(Γ(k)/k) = 3/2 and lim sup
k→∞

(Γ(k)/k) = 3, we turn our

attention to γ(k). To begin the analysis, we prove some lemmas that culminate in an
upper bound for K(m) for any odd positive integer m. It will be useful to keep in mind
that if j is a nonnegative integer, then t2j 6= t2j+1 = tj+1 and t4j+2 = t4j+3.

Lemma 12. Let m be an odd positive integer, and let ` = dlog2me. If K(m) > 2` + 1,
then tm+1tm+2 = 11 and t2m+1t2m+2 = 10.

Proof. Let w0 = 〈1,m〉, w1 = 〈2`−1m + 1, (2`−1 + 1)m〉, and w2 = 〈2`m + 1, (2` + 1)m〉.
The words w0, w1, w2 must be distinct because K(m) > 2` + 1. For each n ∈ {0, 1, 2}, wn
is a prefix of
〈nm2`−1 + 1, (nm + 2)2`−1〉 = µ`−1(tnm+1tnm+2). It follows that t1t2, tm+1tm+2, and
t2m+1t2m+2 are distinct. Since t1t2 = 01 and t2m+1 6= t2m+2, we must have t2m+1t2m+2 =
10. Now, t2m+1t2m+2 = µ(tm+1), so tm+1 = 1. This forces tm+1tm+2 = 11.

Lemma 13. Let m > 3 be an odd integer, and let ` = dlog2me. Suppose there is a

positive integer j such that tjtj+1 = tm+jtm+j+1. Then K(m) <

(
1 +

j + 1

m

)
2`.

Proof. First, observe that

〈2`(j−1)+1, 2`(j+1)〉 = µ`(tjtj+1) = µ`(tm+jtm+j+1) = 〈2`(m+j−1)+1, 2`(m+j+1)〉.
(4)

Because |〈2`(j−1) + 1, 2`(j+ 1)〉| = 2`+1 > 2m, there is a nonnegative integer r such that

〈2`(j − 1) + 1, 2`(j + 1)〉 = w〈rm+ 1, (r + 1)m〉z (5)

for some nonempty words w and z. Note that r + 1 <
2`(j + 1)

m
. It follows from (5) that

2`(m+ j − 1) + 1 < 2`m+ rm+ 1 < 2`m+ (r + 1)m < 2`(m+ j + 1),

so
〈2`(m+ j − 1) + 1, 2`(m+ j + 1)〉 = w′〈(2` + r)m+ 1, (2` + r + 1)m〉z′

for some nonempty words w′ and z′. Note that |w′| = (2` + r)m − 2`(m + j − 1) =
rm− 2`(j − 1) = |w|. Combining this fact with (4), we find that

〈rm+ 1, (r + 1)m〉 = 〈(2` + r)m+ 1, (2` + r + 1)m〉.

Consequently,

K(m) 6 2` + r + 1 < 2` +
2`(j + 1)

m
.

the electronic journal of combinatorics 24(1) (2017), #P1.32 8



Lemma 14. Let m be an odd positive integer with m 6≡ 1 (mod 8), and let ` = dlog2me.
We have K(m) <

(
1 + 37

m

)
2`.

Proof. Suppose instead that K(m) >
(
1 + 37

m

)
2`. Let us assume for the moment that

m 6≡ 29 (mod 32). We will obtain a contradiction to Lemma 13 by exhibiting a positive
integer j 6 36 such that tjtj+1 = tm+jtm+j+1. Because K(m) > 2` + 1, Lemma 12 tells
us that tm+1tm+2 = 11 and t2m+1t2m+2 = 10.

First, assume m ≡ 3 (mod 4). We have 〈m + 2,m + 5〉 = µ2(t(m+5)/4), so either
〈m + 2,m + 5〉 = 0110 or 〈m + 2,m + 5〉 = 1001. Since tm+2 = 1, we must have
〈m+ 2,m+ 5〉 = 1001. This shows that tm+4tm+5 = 01 = t4t5, so we may set j = 4.

Next, assume m ≡ 5 (mod 8). Let x01s01 be the binary expansion of m, where x is
some (possibly empty) string of 0’s and 1’s. As m ≡ 5 (mod 8) and m 6≡ 29 (mod 32),
we must have 1 6 s 6 2. Because tm+1 = 1, the number of 1’s in the binary expansion of
m is odd. This means that the parity of the number of 1’s in x is the same as the parity
of s.

Suppose s = 1. The binary expansion of m + 3 is the string x1000, which contains
an even number of 1’s. As a consequence, tm+4 = 0. The binary expansion of m + 4 is
x1001, so tm+5 = 1. This shows that tm+4tm+5 = 01 = t4t5, so we may set j = 4.

Suppose that s = 2 and that x ends in a 0, say x = y0. Note that y contains an even
number of 1’s. The binary expansions of m + 19 and m + 20 are y100000 and y100001,
respectively, so tm+20tm+21 = 10 = t20t21. We may set j = 20 in this case.

Assume now that s = 2 and that x ends in a 1. Let us write x = x′01s
′
, where x′ is

a (possibly empty) binary string. For this last step, we may need to add additional 0’s
to the beginning of x. Doing so does not raise any issues because it does not change the
number of 1’s in x. The binary expansion of m is x′01s

′
01101. Note that the parity of

the number of 1’s in x′ is the same as the parity of s′. The binary expansions of m + 19
and m + 35 are x′10s

′+5 and x′10s
′
10000, respectively. If s′ is even, then we may put

j = 20 because tm+20tm+21 = 10 = t20t21. If s′ is odd, then we may set j = 36 because
tm+36tm+37 = 10 = t36t37.

We now handle the case in which m ≡ 29 (mod 32). Say m = 32n − 3. Let b be the
number of 1’s in the binary expansion of n. The binary expansion of m+ 17 = 32n+ 14
has b + 3 1’s. Similarly, the binary expansions of m + 18, m + 19, 2m + 17, 2m + 18,
and 2m + 19 have b + 4, b + 1, b + 3, b + 2, and b + 3 1’s, respectively. This means that
tm+18tm+19tm+20 = t2m+18t2m+19t2m+20. Therefore,

〈(m+ 17)2`−1 + 1, (m+ 20)2`−1〉 = µ`−1(tm+18tm+19tm+20)

= µ`−1(t2m+18t2m+19t2m+20) = 〈(2m+ 17)2`−1 + 1, (2m+ 20)2`−1〉. (6)

We have
17⋃
r=9

(
17

2r
,

10

r + 1

)
=

(
1

2
, 1

)
, so there exists some r ∈ {9, 10, . . . , 17} such that

17

2r
<

m

2`
<

10

r + 1
. Equivalently, 17 · 2`−1 < rm < (r + 1)m < 20 · 2`−1. It follows

that there are nonempty words w and z such that 〈(m + 17)2`−1 + 1, (m + 20)2`−1〉 =
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w〈(r+ 2`−1)m+ 1, (r+ 2`−1 + 1)m〉z. Similarly, there are nonempty words w′ and z′ such
that 〈(2m + 17)2`−1 + 1, (2m + 20)2`−1〉 = w′〈(r + 2`)m + 1, (r + 2` + 1)m〉z′. Note that
|w| = rm − 17 · 2`−1 = |w′|. Invoking (6) yields 〈(r + 2`−1)m + 1, (r + 2`−1 + 1)m〉 =
〈(r+ 2`)m+ 1, (r+ 2` + 1)m〉. This shows that K(m) 6 r+ 2` + 1 6 2` + 18, securing our
final contradiction to the assumption that K(m) >

(
1 + 37

m

)
2`.

Lemma 15. Let m be an odd positive integer, and let ` = dlog2me. Suppose m = 2Lh+1,

where L and h are integers with L > 3 and h odd. We have K(m) <

(
1 +

2L+1 + 4

m

)
2`.

Proof. Suppose instead that K(m) >

(
1 +

2L+1 + 4

m

)
2`. We will obtain a contradiction

to Lemma 13 by finding a positive integer j 6 2L+1 + 3 satisfying tjtj+1 = tm+jtm+j+1.
Let x01s0L−11 be the binary expansion of m, and note that s > 1. Let N be the number
of 1’s in x. The binary expansions of m + 2L + 2, m + 2L + 3, m + 2L+1 + 2, and
m + 2L+1 + 3 are x10s+L−211, x10s+L−3100, x10s−110L−211, and x10s−110L−3100. This
shows that tm+2L+3tm+2L+4 = 10 if N is even and tm+2L+1+3tm+2L+1+4 = 10 if N is odd.
Observe that t2L+3t2L+4 = t2L+1+3t2L+1+4 = 10. Therefore, we may put j = 2L + 3 if N is
even and j = 2L+1 + 3 if N is odd.

Lemma 16. Let m be an odd positive integer, and let ` = dlog2me. Assume m = 2Lh+1
for some integers L and h with L > 3 and h odd. If n is an integer such that 2 6 n 6 2L−1,
tm−n = tm−n+1, and m 6

(
1− 1

2n+2

)
2`, then K(m) 6 2` − n.

Proof. Let y and z be the binary expansions of 2L−1 − n and 2L−1 − n + 1, respectively.
If necessary, let the strings y and z begin with additional 0’s so that |y| = |z| = L − 1.
Let x10L be the binary expansion of m − 1. The binary expansions of m − 2n − 1 and
2m − 2n − 1 are x0y0 and x01y1, respectively. The quantities of 1’s in these strings
are of the same parity, so tm−2n = t2m−2n. Similarly, tm−2n+2 = t2m−2n+2 because the
binary expansions of m − 2n + 1 and 2m − 2n + 1 are x0z0 and x01z1, respectively.
Let a = tm−n. Because tm−n = tm−n+1 by hypothesis, we have t2m−2n = t2m−2n+2 = a.
Therefore, tm−2n = tm−2n+2 = a. The word t is cube-free, so tm−2ntm−2n+1tm−2n+2 =
aaa = t2m−2nt2m−2n+1t2m−2n+2. Hence,

〈(m− 2n− 1)2`−1 + 1, (m− 2n+ 2)2`−1〉 = µ`−1(tm−2ntm−2n+1tm−2n+2)

= µ`−1(t2m−2nt2m−2n+1t2m−2n+2) = 〈(2m− 2n− 1)2`−1 + 1, (2m− 2n+ 2)2`−1〉. (7)

Now, m ∈
(

2`−1,

(
1− 1

2n+ 2

)
2`
]
⊆

2n−1⋃
r=n

[
2n− 2

r
2`−1,

2n+ 1

r + 1
2`−1

]
, so there is some

r ∈
{n, n+ 1, . . . , 2n− 1} such that

2n− 2

r
2`−1 6 m 6

2n+ 1

r + 1
2`−1. Equivalently, (m− 2n−

1)2`−1 6 (2`−1 − r − 1)m < (2`−1 − r)m 6 (m− 2n+ 2)2`−1. We find that

〈(m− 2n− 1)2`−1 + 1, (m− 2n+ 2)2`−1〉 = w〈(2`−1 − r − 1)m+ 1, (2`−1 − r)m〉z
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and

〈(2m− 2n− 1)2`−1 + 1, (2m− 2n+ 2)2`−1〉 = w′〈(2` − r − 1)m+ 1, (2` − r)m〉z′

for some words w,w′, z, z′. Because |w| = (2n+ 1)2`−1 − (r+ 1)m = |w′|, we may use (7)
to deduce that

〈(2`−1 − r − 1)m+ 1, (2`−1 − r)m〉 = 〈(2` − r − 1)m+ 1, (2` − r)m〉.

This shows that K(m) 6 2` − r 6 2` − n as desired.

Lemma 17. If m is an odd positive integer and ` = dlog2me, then K(m) < 2`+2(`+5)/2 +
10.

Proof. We will assume that m > 65 (so ` > 7). One may easily use a computer to check
that the desired result holds when m < 65.

If m 6≡ 1 (mod 8), then Lemma 14 tells us that

K(m) <

(
1 +

37

m

)
2` < 2` + 74 6 2` + 2(`+5)/2 + 10.

Suppose that m ≡ 1 (mod 8), and let m = 2Lh + 1, where L > 3 and h is odd. First,

assume m >

(
1− 1

2L − 4

)
2`. Because 2L|2` − m + 1 and 2` − m + 1 > 0, we have

2L 6 2` − m + 1 <
2`

2L − 4
+ 1. This implies that 22L − 4 · 2L < 2` + 2L − 4, so

2L < 2`−L + 5− 4 · 2−L < 2`−L+2. Hence, L 6
`+ 1

2
. By Lemma 15,

K(m) <

(
1 +

2L+1 + 4

m

)
2` < 2` + 2L+2 + 8 < 2` + 2(`+5)/2 + 10.

Next, assume m 6

(
1− 1

2L − 4

)
2` and L > 4. Let n be the largest integer satisfying

m−n ≡ 2 (mod 4) and n 6 2L−1. Note that m 6

(
1− 1

2n+ 2

)
2` because n > 2L−1−3.

Asm−n ≡ 2 (mod 4), we have tm−n = tm−n+1. We have shown that n satisfies the criteria
specified in Lemma 16, so K(m) 6 2` − n < 2` + 2(`+5)/2 + 10.

Finally, if L = 3, then Lemma 15 tells us that

K(m) <

(
1 +

20

m

)
2` < 2` + 40 < 2` + 2(`+5)/2 + 10.

At last, we are in a position to prove lower bounds for lim inf
k→∞

(γ(k)/k) and

lim sup
k→∞

(γ(k)/k).
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Theorem 18. Let γ(k) be as in Definition 2. We have

lim inf
k→∞

γ(k)

k
>

1

2
and lim sup

k→∞

γ(k)

k
> 1.

Proof. For each positive integer `, let g(`) = b2` + 2(`+5)/2 + 10c + 1. Lemma 17 implies
that K(m) < g(`) for all odd positive integers m < 2`. It follows from the definition of γ
that γ(g(`)) > 2` + 1. Therefore,

lim sup
k→∞

γ(k)

k
> lim sup

`→∞

γ(g(`))

g(`)
> lim

`→∞

2` + 1

2` + 2(`+5)/2 + 11
= 1.

Now, choose an arbitrary positive integer k, and let ` = dlog2(γ(k))e. By the definition
of γ, k < K(γ(k)). We may use Lemma 17 to find that

γ(k)

k
>

γ(k)

2` + 2(`+5)/2 + 10
>

2`−1

2` + 2(`+5)/2 + 10
.

Note that this implies that γ(k)→∞ as k →∞. It follows that `→∞ as k →∞, so

lim inf
k→∞

γ(k)

k
> lim

`→∞

2`−1

2` + 2(`+5)/2 + 10
=

1

2
.

In our final theorem, we provide upper bounds for lim inf
k→∞

(γ(k)/k) and lim sup
k→∞

(γ(k)/k).

This will complete our proof of all the asymptotic results mentioned in the introduction.
Before proving this theorem, we need one lemma. In what follows, recall that the Thue-
Morse word t is overlap-free. This means that if a, b, n are positive integers satisfying
a < b 6 a+ n, then 〈a, a+ n〉 6= 〈b, b+ n〉.

Lemma 19. For each integer ` > 3, we have

K(3 · 2`−2 + 1) >
5 · 22`−3

3 · 2`−2 + 1
and K(2`−1 + 3) >

22`−2

2`−1 + 3
.

Proof. Fix ` > 3, and let m = 3 · 2`−2 + 1 and m′ = 2`−1 + 3. By the definitions
of K(m) and K(m′), there are nonnegative integers r < K(m) − 1 and r′ < K(m′) − 1
such that 〈rm + 1, (r + 1)m〉 = 〈(K(m) − 1)m + 1,K(m)m〉 and 〈r′m′ + 1, (r′ + 1)m′〉 =
〈(K(m′)−1)m′+1,K(m′)m′〉. According to Proposition 6, 2`−1 divides (K(m)−1)m−rm
and 2`−2 divides (K(m′)−1)m′−r′m′. Since m and m′ are odd, we know that 2`−1 divides

K(m)−r−1 and 2`−2 divides K(m′)−r′−1. If K(m)−r−1 > 2`, then K(m) >
5 · 22`−3

3 · 2`−2 + 1
as desired. Therefore, we may assume K(m) = r + 2`−1 + 1. By the same token, we may
assume that K(m′) = r′ + 2`−2 + 1.

With the aim of finding a contradiction, let us assume K(m) 6
5 · 22`−3

m
. Put

u = 〈rm+ 1, (r + 1)m〉 snd v = 〈(K(m)− 1)m+ 1,K(m)m〉.
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We have
µ2`−3(01) = µ2`−3(t4t5) = 〈3 · 22`−3 + 1, 5 · 22`−3〉 = wvz

for some words w and z. Observe that |w| = (K(m)− 1)m− 3 · 22`−3 = rm+ 2`−1. Since
µ2`−3(01) = µ2`−3(t1t2) = 〈1, 22`−3〉, we have v = 〈rm + 2`−1 + 1, (r + 1)m + 2`−1〉. If we
set a = rm+ 1 and b = rm+ 2`−1 + 1, then a < b 6 a+m. It follows from the fact that
t is overlap-free that u 6= v. This is a contradiction.

Assume now that K(m′) 6
22`−2

m′
. Let

u′ = 〈r′m′ + 1, (r′ + 1)m′〉 and v′ = 〈(K(m′)− 1)m′ + 1,K(m′)m′〉.

Let q = d(r′m′ + 1)/2`−2e and H = min{(r′ + 1)m′, (q + 2)2`−2}. Finally, put U =
〈r′m′ + 1, H〉 and V = 〈(r′ + 2`−2)m′ + 1, H + 2`−2m′〉. The word U is the prefix of u′ of
length H − r′m′. Because K(m′) = r′ + 2`−2 + 1, V is the prefix of v′ of length H − r′m′.
Since u′ = v′, we must have U = V .

There are words w′ and z′ such that

µ`−2(tqtq+1tq+2) = 〈(q − 1)2`−2 + 1, (q + 2)2`−2〉 = w′Uz′.

Furthermore,

µ`−2(tq+m′tq+m′+1tq+m′+2) = 〈(q +m′ − 1)2`−2 + 1, (q +m′ + 2)2`−2〉 = w′′V z′′

for some words w′′ and z′′. Note that 0 6 |w′| = r′m′ − (q − 1)2`−2 = |w′′| < 2`−2 (the
inequalities follow from the definition of q). The suffix of µ`−2(tq) of length 2`−2 − |w′| is
a prefix of U . Similarly, the suffix of µ`−2(tq+m′) of length 2`−2 − |w′′| is a prefix of V .
Since |w′| = |w′′| and U = V , we must have tq = tq+m′ . Similar arguments show that
tq+1 = tq+m′+1 and tq+2 = tq+m′+2 (see Figure 2).

Now,

r′ = K(m′)− 2`−2 − 1 6
22`−2

m′
− 2`−2 − 1 =

22`−3 − 5 · 2`−2 − 3

m′
,

so
r′m′ + 1

2`−2
< 2`−1 − 5. Therefore, q + 4 < 2`−1. It follows that for each j ∈ {0, 1, 2}, the

binary expansion of q + m′ + j − 1 has exactly one more 1 than the binary expansion of
q+j+2. We find that tq+3tq+4tq+5 = tq+m′tq+m′+1tq+m′+2 = tqtq+1tq+2. However, utilizing
the fact that t is cube-free, it is easy to check that XX is not a factor of t whenever X
is a word of length 3. This yields a contradiction when we set X = tqtq+1tq+2.

Theorem 20. Let γ(k) be as in Definition 2. We have

lim inf
k→∞

γ(k)

k
6

9

10
and lim sup

k→∞

γ(k)

k
6

3

2
.
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〈(q − 1)2`−2 + 1, (q + 2)2`−2〉

µ`−2(tq) µ`−2(tq+1) µ
`−2(tq+2)

w′ U z′

〈(q +m′ − 1)2`−2 + 1, (q +m′ + 2)2`−2〉

µ`−2(tq+m′ ) µ`−2(tq+m′+1) µ`−2(tq+m′+2)

w′′ V z′′

Figure 2: An illustration of the proof of Lemma 19.

Proof. For each positive integer `, let f(`) =

⌊
5 · 22`−3

3 · 2`−2 + 1

⌋
and h(`) =

⌊
22`−2

2`−1 + 3

⌋
. One

may easily verify that h(`) < f(`) 6 h(` + 1) for all ` > 3. Lemma 19 informs us that
K(3 · 2`−2 + 1) > f(`). This means that the prefix of t of length (3 · 2`−2 + 1)f(`) is an
f(`)-anti-power, so γ(f(`)) 6 3 · 2`−2 + 1. As a consequence,

lim inf
k→∞

γ(k)

k
6 lim inf

`→∞

γ(f(`))

f(`)
6 lim

`→∞

3 · 2`−2 + 1

f(`)
=

9

10
.

Now, choose an arbitrary integer k > 3. If h(`) < k 6 f(`) for some integer ` > 3,
then the prefix of t of length (3 · 2`−2 + 1)f(`) is an f(`)-anti-power. This implies that
γ(k) 6 3 · 2`−2 + 1, so

γ(k)

k
<

3 · 2`−2 + 1

h(`)
.

Alternatively, we could have f(`) < k 6 h(`+ 1) for some ` > 3. In this case, Lemma 19
tells us that the prefix of t of length (2` + 3)h(`+ 1) is an h(`+ 1)-anti-power. It follows
that

γ(k)

k
<

2` + 3

f(`)

in this case.
Combining the above cases, we deduce that

lim sup
k→∞

γ(k)

k
6 lim sup

`→∞

[
max

{
3 · 2`−2 + 1

h(`)
,
2`+1 + 3

f(`)

}]
= max

{
3

2
,
6

5

}
=

3

2
.

Remark 21. Preserve the notation from the proof of Theorem 20. We showed that

γ(k)

k
<

3 · 2`−2 + 1

h(`)
=

3

2
+ o(1)

if h(`) < k 6 f(`) and
γ(k)

k
<

2` + 3

f(`)
=

6

5
+ o(1)

whenever f(`) < k 6 h(` + 1) (the o(1) terms refer to asymptotics as k → ∞). This
is indeed reflected in the top image of Figure 3, which portrays a plot of γ(k)/k for
3 6 k 6 2100.
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Figure 3: Plots of γ(k)/k for 3 6 k 6 2100 (top) and Γ(k)/k for 3 6 k 6 135 (bottom).
In the top image, the green lines are at y = 9/10 and y = 3/2. In the bottom image, the
green lines are at y = 3/2 and y = 3.
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Figure 4: A plot of K(m) for all odd positive integers m 6 299. In purple is the graph of
y = 2dlog2 xe.

5 Concluding Remarks

In Theorems 9 and 11, we obtained the exact values of lim inf
k→∞

(Γ(k)/k) and lim sup
k→∞

(Γ(k)/k).

Unfortunately, we were not able to determine the exact values of lim inf
k→∞

(γ(k)/k) and

lim sup
k→∞

(γ(k)/k). Figure 3 suggests that the upper bounds we obtained are the correct

values.

Conjecture 22. We have

lim inf
k→∞

γ(k)

k
=

9

10
and lim sup

k→∞

γ(k)

k
=

3

2
.

Recall that we obtained lower bounds for lim inf
k→∞

(γ(k)/k) and lim sup
k→∞

(γ(k)/k) by first

showing that K(m) 6 2dlog2me(1 + o(m)). If Conjecture 22 is true, its proof will most
likely require a stronger upper bound for K(m).

We know from Theorem 9 that (2Z+−1)\F(k) is finite whenever k > 3. A very natural
problem that we have not attempted to investigate is that of determining the cardinality
of this finite set. Similarly, one might wish to explore the sequence (Γ(k)− γ(k))k>3.

Recall that if w is an infinite word whose ith letter is wi, then AP (w, k) is the set
of all positive integers m such that w1w2 · · ·wkm is a k-anti-power. An obvious general-
ization would be to define APj(w, k) to be the set of all positive integers m such that
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wj+1wj+2 · · ·wj+km is a k-anti-power. Of course, we would be particularly interested in
analyzing the sets APj(t, k).

Define a (k, λ)-anti-power to be a word of the form w1w2 · · ·wk, where w1, w2, . . . , wk
are words of the same length and |{i ∈ {1, 2, . . . , k} : wi = wj}| 6 λ for each fixed
j ∈ {1, 2, . . . , k}. With this definition, a (k, 1)-anti-power is simply a k-anti-power. Let
Kλ(m) be the smallest positive integer k such that the prefix of t of length km is not a
(k, λ)-anti-power. What can we say about Kλ(m) for various positive integers λ and m?

Finally, note that we may ask questions similar to the ones asked here for other infinite
words. In particular, it would be interesting to know other nontrivial examples of infinite
words x such that minAP (x, k) grows linearly in k.
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