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Abstract

We study a cooperative game in which each member of a team of N players,
wearing coloured hats and situated at the vertices of the cycle graph CN , is guessing
their own hat colour merely on the basis of observing the hats worn by their two
neighbours without exchanging the information. Each hat can have one of three
colours. A predetermined guessing strategy is winning if it guarantees at least one
correct individual guess for every assignment of colours. We prove that a winning
strategy exists if and only if N is divisible by 3 or N = 4. This asymmetric game is an
example of relational system using incomplete information about an unpredictable
situation, where at least one participant has to act properly.

Keywords: cooperative games, games on graphs, hat puzzle, hat guessing prob-
lems, deterministic strategy, system reliability, information network, graph colouring

1 Introduction

N ladies wearing white hats are sitting around the table and discussing a tricky task
which is going to be presented to them by the Wizard. They know he will suddenly paint
each hat one of three colours (green, orange or purple) in an unpredictable way and then
ask each of them to independently guess her own hat colour. The light is so dim that
everyone will only see the hat colours of her two neighbours. If at least one of the ladies
guesses right, they will all win; if they all guess wrong, they will lose; and they want
to be absolutely certain of winning. However, can they devise a winning strategy before
inviting the Wizard? The answer, depending on N , is presented in this paper.
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Motivation

This asymmetric random-cooperative game is an example of information network using
an incomplete flow of information about an unpredictable situation, where at least one
link has to act or work properly, so the strategy has to be deterministic. Problems of this
kind have become popular in recent years both as mathematical puzzlers and research
subjects, cf. [1], [2], [3], [17].

Basic results so far have mainly concerned two colours or probabilistic variants (the
expected number of correct guesses) or estimates. Exact results were obtained for certain
kinds of the visibility graph (which is CN in the present paper) such as a complete graph
or a tree. For overviews, see [6], [10], [15], [17] and Section 4.4. The statistical variants
were studied, in particular, in [5], [7], [12], [16], [13], and the deterministic ones in [6] and
[15]. See also [4], [8], [9], [11].

While the round-table game of three colours is simple and natural to consider, it had
not been solved for any N > 4 until the complete solution by the present author at the
beginning of 2010. An exposition [14] was subsequently published on ArXiV.
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2 Coordinates and strategies

2.1 The setting

Configuration. The team players are seeing each other along the edges of the cyclic
graph CN . Let the set Vk =

{
vk0 , v

k
1 , v

k
2

}
represent the three different appearances of the

k-th hat. We let
vki = vk(i) = (i, k) for i ∈ Z3, k ∈ ZN

to make the sets Vk pairwise disjoint within this index range, and we extend the indices
periodically to Z by putting

vki = vk(i) = vk(j) = vmj and Vk = Vm
if i ≡ j (mod 3) and k ≡ m (modN) (i, j, k,m ∈ Z)

Index k will be counted in the positive direction (to the right). The correspondence
vki ∼ i will basically be used, but the sets Vk can be conveniently re-parametrized in
certain situations.

The configuration graph. The flow of information is represented by the configu-
ration graph, denoted G = GN = G(N) = 3 ∗ CN , whose 3N -element set of vertices is
V = V (G) =

⋃N
k=1 Vk and 9N -element set of edges is

E = E(GN) =
⋃

k∈ZN

Ek,k+1

where
Ek,k+1 = EG

k,k+1 = Vk × Vk+1 = {xy : x ∈ Vk and y ∈ Vk+1}

is the set of nine edges between Vk and Vk+1.
Strategies. Wizard’s strategy S is a cycle of length N in graph GN . Equivalently, S

is an infinite colour-assigning sequence k 7→ sk ∈ Vk with k ∈ Z, having period N .
An individual guessing strategy of Player k is represented by a function

Fk : Vk−1 × Vk+1 → Vk.

A composite or collective strategy is a sequence

F = (F1, . . . , FN),

or equivalently, an infinite sequence Z 3 k 7→ Fk, satisfying Fk+N = Fk. Strategy S
defeats F if

sk 6= Fk(sk−1, sk+1) for all k, (1)

otherwise F wins over S. Strategy F is called winning if it wins over every strategy S,
i.e., there is no N -periodic sequence (sk) satisfying (1). If there exists such a sequence, F
will be a losing strategy.

The main result of this paper is:
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Theorem 1. In the three colour hat guessing game on the cycle of length N a winning
strategy exists if and only if N = 4 or N is divisible by three.

Any path which bypasses al the guesses will be called admissible.

Definition 2. Let J be any set of consecutive integers. A path ω = (sk)k∈J in graph GN ,
where sk ∈ Vk for k ∈ J , will be called admissible by F if

sk 6= Fk(sk−1, sk+1) whenever k − 1, k + 1 ∈ J

The family of all the admissible paths (or sequences) will be denoted A = AF = A(F ).

A path ω is in A iff all its 2-edged subpaths (3-element subsequences) are in A. If
ω is periodic, the period must be a multiple of N , and period N defeats F . For all
(a, c) ∈ Vk−1 × Vk+1 the relation axc ∈ AF (i.e., fk(a, c) 6= x) has exactly two solutions,
while abx ∈ AF and xbc ∈ AF may have anywhere from 0 to 3 solutions each.

2.2 Linear coordinates

The method introduced here is essential for the construction of certain strategies, plays
some role in the non-existence proofs, and will arise from a different perspective in Sec-
tion 3.

The covering graph. The configuration graph GN has an infinite lifting Γ = Γ3 =
3 ∗ Z independent of N , with vertices (i, k) and edges (i, k)(j, k + 1) whenever i, j ∈ Z3

and k ∈ Z. A covering Φ : Γ→ GN is induced by any sequence of bijective maps (i, k) 7→
ϕk(i) ∈ Vk. A Φ-lifting of any admissible path will also be called admissible (or (F,Φ)-
admissible).

Notation. Technically, any individual strategy Fk k ∈ Z can be described as a func-
tion f = fk : Z3 × Z3 → Z3 or a 3 × 3 matrix M = Mk = M(fk) = [fk(i, j)]. These
representations may be simpler if the elements of the neighbouring sets Vk−1, Vk, Vk+1 are
conveniently ordered. However, it may turn out that Vk and Vk+N should be ordered
differently. Still, certain functions f (such as symmetric or cyclic) are insensitive to (a
certain kind of) change of ordering as long as it is the same for Vk−1, Vk, Vk+1.

For example, the function f(i, j) = −i−j = (i+j)/2 satisfies f(i−1, j−1) = f(i, j)−1
and f(−i,−j) = −f(i, j), which implies f(σ(i), σ(j)) = σ(f(i, j)) for each permutation
σ.

Any covering Φ : Γ→ GN defines a system of coordinates Φ ∼ (ϕk : k ∈ Z) and cor-
responds to a certain matrix arrangement of V (GN):

Φ ∼ [ϕk(l)] ∼

 · · · u−N0 · · · u00 u10 u20 · · · uN0 uN+1
0 · · ·

· · · u−N1 · · · u01 u11 u21 · · · uN1 uN+1
1 · · ·

· · · u−N2 · · · u02 u12 u22 · · · uN2 uN+1
2 · · ·


Here we have ukl = ϕk(l). Then fk will operate on line numbers l (with l = 0, 1, 2 here).

Coordinates may be simply defined by a 3×∞ matrix with entries in Z3 if we assume
i ∼ vk(i), if we know the position of column 0 and the line order (which is usually l = 0, 1, 2
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or (1, 2, 3) or (1, 0,−1)) and the value of N . For example, for N = 3 we can define (if the
column numbers are specified):

Φ ∼

 · · · 0 1 2 2 0 1 1 2 0 · · ·
· · · 2 0 1 1 2 0 0 1 2 · · ·
· · · 1 2 0 0 1 2 2 0 1 · · ·

 or

 · · · 0 2 1 2 1 0 · · ·
· · · 1 0 2 1 0 2 · · ·
· · · 2 1 0 0 2 1 · · ·

 (2)

Regularity above means that column k+ 3 is obtained from column k by rotation upward
or transposition (1,−1), respectively. In this way all individual strategies may be defined
by one invariant function, such as f(i, j) = −i − j + 1 or f(i, j) = i − j, respectively.
Matrix Φ may be also vertically infinite (Z× Z) if index l is periodically extended to Z.

Representation of strategy. Basic parametrizations are given by ϕk(i) = vki . The
basic represantation of Fk is gk, where Fk(v

k−1
i , vk+1

j ) = vk(gk(i, j)). In general, the
relation between Fk and fk is: Fk(ϕk−1(i), ϕk+1(j)) = ϕk(fk(i, j)) or equivalently,

Vk 3 Fk(x, y) = ϕk ◦ fk(ϕ−1k−1(x), ϕ−1k+1(y)) for (x, y) ∈ Vk−1 × Vk+1 (3)

In addition, consistency requires Fk = Fk+N or, in Φ-coordinates,

fk(σk−1(i), σk+1(j)) = σk(fk+N(i, j)), where σk = ϕ−1k ◦ ϕk+N .

The permutation σk : Z3 → Z3 may be regarded as a transition function and represents
the identity between Vk and Vk+N in the following way: ϕk(i

′) = ϕk+N(i) iff i′ = σk(i). If
σk = σ and fk = f are independent of k, consistency reduces to the σ-invariance of f :

f(σ(i), σ(j)) = σ(f(i, j)) (if σ = ϕ−1k ◦ ϕk+N (k ∈ Z)) (4)

In particular, we have twisted coordinates if σ is a rotation: σ(i) = i± 1, and transposed
coordinates if σ is a transposition. In the examples (2) we have σ(l) = l− 1 or σ(l) = −l.

2.3 Short cycles

The case N = 2. Let us take a closer look at the simplest puzzle (outside our main
problem) with just two players and two possible hat colours. One person should guess
that their hats have the same colour and the other person sholud guess the opposite. If
we interprete the assigned colours as elements A,B ∈ Z2, we can write the effect as a
valid alternative: A = B or B = A+ 1.

In fact, this strategy has an even simpler formula in transposed coordinates (adapted
for Z2): fk(i) = i for all k. Here, the adapted guessing functions have one argument,
fk : Vk+1 → Vk, and the coordinate matrix has the following form:

· · · 0 0 1 1 0 0 · · ·
· · · 1 1 0 0 1 1 · · ·

Admissible paths are those without horizontal edges. They have period 2 in coordinates,
but in the graph G2 they become one path of period 4, which may be viewed as the
boundary of a Möbious band.
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bf 2+3 colours. Next, suppose Player 1 hat can still have two colours, but Player 2
hat can have three colours. Then there are six possible colour assignments. With any
strategy, Player 1 guesses right for three assignments, Player 2 for two. Since the number
of assignments is 6 > 3 + 2, they can both be wrong and they have no winning strategy.

The case N = 3. If A,B,C ∈ Z3 represent the appearances of hats, a winning
strategy can be based on the alternative:

A = −B − C or B = −C − A− 1 or C = −A−B + 1 (5)

clearly valid in Z3.
It turns out that the same can be expressed with a single formula in twisted coordinates

which are given by ϕk(s) = s for k = 1, 2, 3 and ϕ0(s) = s − 1, ϕ4(s) = s + 1. This
corresponds to the matrix:

. . . 2 0 0 0 1 . . .

. . . 0 1 1 1 2 . . .

. . . 1 2 2 2 0 . . .
(6)

In this system we define fk(i, j) = f(i, j) = −i− j = (i + j)/2, which is consistent since
σ(s) = s+ 1 and f(i+ 1, j + 1) = f(i, j) + 1. By (3), we convert to basic coordinates:

g2(i, j) = f(i, j) = −i− j,
g1(i, j) = f(i+ 1, j) = −i− j − 1, g3(i, j) = f(i, j − 1) = −i− j + 1

obtaining equations (5).
A strategy defined by f(i, j) = −i − j in any twisted coordinates on GN may be

denoted C0(N). However, for N = 4 it is defeated by the sequence

. . . (0100)(2022)(1211)(0100) . . .

(coordinates like above) and loses also for all N > 4 (cf. Proposition 3). Nevertheless, this
method can be generalized (outside our main problem) to the classic complete visibility
graph KN with N colours Xk ∈ ZN by using the alternative:

Xk = k −
∑
j 6=k

Xj (k ∈ ZN).

The case N = 4. Let a strategy F on G4 have the form fk(i, j) = f(i, j) = j−i in the
transposed coordinates given by σ(s) = −s. This is consistent since f(−i,−j) = −f(i, j).
Let A,B,C,D ∈ Z3 represent elements of V1, V2, V3, V4, respectively. Then the basic form
of F is:

g1(D,B) = f(−D,B) = D +B, g2(A,C) = f(A,C) = −A+ C,
g3(B,D) = f(B,D) = −B +D, g4(C,A) = f(C,−A) = −C − A (7)

Let us verify the alternative:

A = D +B B = −A+ C,
C = −B +D D = −C − A (8)
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If neither equality in the left column is satisfied, then their sum or difference will be
satisfied in Z3. By adding them we get D = −C−A, by subtracting we get B = −A+C.
It follows that F wins. We also note that exactly one player guesses right in 72 cases and
all guess right in nine.

The analogous strategy on GN will be denoted S1(N), but for N = 5 it is defeated
by the sequence . . . (00101)(00202)(00101) . . . and it loses for all N > 4 as well (cf. next
section 2.4).

2.4 Characteristic 0

The strategies S0(N) and S1(N) have the following property: every edge β ∈ E(GN)
has exactly two left-incident edges α satisfying αβ ∈ AF and exactly two right-incident
edges γ satisfying βγ ∈ AF . That is, every edge of GN has exactly four admissible imme-
diate continuations to the left and right. Any strategy F with this property will be called
symmetric or of characteristic 0, which will be denoted χ(F ) = 0. (The characteristic
χ(F ) will be defined in general in Section 3.)

For S1, the admissible paths starting with 00 are shown in the diagram (Fig. 1). None
of them has period 4 over G4, but some have period 5 over G5 or period 6 over G6.
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v−2(2) v−1(2) v0(1) v1(1) v2(1)

v−1(0) v0(0)

v−1(1) v0(2) v1(2) v2(2)
v−2(1)

Figure 1: Bifurcated admissible paths over GN (strategy S1, N = 4, 5, . . .).

Proposition 3. If N > 4 and a strategy F for CN has characteristic 0 (χ(F ) = 0), then
F is losing.

Proof. Take any edge β ∈ E0,1 ∈ V (GN). The admissible extensions of β to the right
of length m > 2 have at least two possible endpoints in Vm. If m > 3, these extensions
end in a set of at least four edges in Em−1,m. Likewise for the left continuations of β.
Consider all extensions of β to the right of length 3 and to the left of length N − 2 > 3,
both meeting in V3. Their endpoints form the sets A,B ⊂ V3 and their final edges form
the sets X ⊂ E2,3 and Y ⊂ E3,4, respectively.

First, suppose A has three elements. Then there are at least six admissible right
continuations into E3,4 (the example in Fig. 1 allows seven) while |Y | > 4. Since 6+4 > 9,
an edge in A ∩B closes the path and F is losing.

Next, suppose A has only two elements. Then each p ∈ A is the rigt endpoint of
exactly two edges: ap, bp ∈ X. Take a point p ∈ A ∩ B with pq ∈ Y and the left
admissible continuations cpq and dpq. There is e ∈ {a, b} ∩ {c, d} making the edge ep
close the path, so F is losing.
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2.5 The spiral strategy

Let us introduce a new strategy, denoted F = S3(N), which exists for all N > 2 and wins
for all N divisible by 3 (and will naturally arise in section 3.3). In the twisted coordinates
satisfying

ϕ−1k ◦ ϕk+N(i) = σk(i) = σ(i) = i+ 1 for all k

it is defined by the single rotation-invariant function

fk(i, j) = f(i, j) =

{
i+ 1 if i = j
i if i 6= j

(9)

whose matrix form is

M = Mf = [f(i, j)]i,j=0,1,2 =

 1 0 0
1 2 1
2 2 0

 ∼ [f(i, j)]i,j=1,2,3 =

 2 1 1
2 3 2
3 3 1

 .
Alternatively, we can use σ(i) = i− 1.

Proposition 4. Strategy C3(N) is winning if and only if N is divisible by 3.

Proof. By definition (formula (9)), there are at least nine forms of admissible infinite
paths ω = (uk) in graph GN , given in twisted coordinates by uk = ϕk(tk) (k ∈ Z), where:

tk = tk(s, λ) = s+ kλ ∈ Z3 (s, λ ∈ Z3), (10)

that is: ω ∼ (. . . s, s, s, . . .), (. . . s, s+ 1, s+ 2, . . .), (. . . s, s− 1, s− 2, . . .). If the values
of tk are extended to Z, these paths can be represented by straight lines through the lattice
points (k, s+ kλ).

Conversely, let us observe that for every periodic (of any period) admissible sequence
(tk) the difference dk = tk − tk−1 remains constant. Indeed:

• If ttx ∈ A (i.e., f(t, x) 6= t), then x = t. If x, t+ 1, t ∈ A (i.e., f(x, t) 6= t+ 1),
then x = t+ 2.

• Hence, if dk = 0 or dk = −1 for some k = k0, then dk is costant for all k > k0
(resp. k 6 k0) and, by periodicity, for all k ∈ Z.

• The only remaining value dk = 1 must also be constant.

Consequently, all the admissible paths are given by (10). If 3|N , they all have period N
in twisted coordinates, since tN = s+Nλ = s = t0 (in Z3). However, none has period N
in the graph GN :

u0 = ϕ0(s) 6= ϕN(s) = uN

since σ = ϕ−10 ◦ ϕN is a rotation and has no fixed point s. This proves the winning
case; moreover, nine forms of (10) correspond to three admissible paths in GN , each with
period 3N .
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If N is not divisible by 3, then three admissible paths (10) with the same starting
point t0 = s have distinct values of tN = s + Nλ. Hence, for some λ, the path ω in GN

returns to the starting point:

u0 = ϕ0(t0) = ϕN(tN) = uN

that is, t0 = σ(tN). It follows that tk = σ(tk+N) for all k, since any rotation satisfies
σ(t + d) = σ(t) + d (where t = tN , d = kλ). Consequently, uk = uk+N for all k and the
path has period N over GN (which is also evident from the straight line representation of
ω) and F is losing. Note that three admissible loops in GN have period N and two have
period 3N .

The case N = 3 in basic coordinates. To illustrate the advantage of our method,
let us also examine the simple strategy S3(3) using the basic coordinates g. F is given
in twisted coordinates by (6). The conversion formula (3) yields:

g1(C,B) = f(C + 1, B), g2(A,C) = f(A,C), g3(B,A) = f(B,A− 1).

By the definition of f (9), the corresponding Players 1, 2 and 3 guess right in the following
cases:

(A1) C + 1 = A− 1 = B (A2) C + 1 = A 6= B
(B1) A = B − 1 = C (B2) A = B 6= C
(C1) B = C − 1 = A− 1 (C2) B = C 6= A− 1.

Each of the 27 variations (A,B,C) implies some of the above cases in the following way:
A = B 6= C ⇒ (B2)
B = C 6= A ⇒ (A2) or (C2)
C = A 6= B ⇒ (B1) or (C1)


A = B = C ⇒ (C2)

B = A− 1 = C + 1 ⇒ (A1)
A = B − 1 = C + 1 ⇒ (A2)

reflecting the fact that S3(3) is a winning strategy. We also note that each player guesses
right in 9 cases and two players cannot guess right simultaneously. For every N each player
guesses right in 1/3 of all cases, although for N > 3 not disjointly.

3 General structure of strategies

The proof of Theorem 1 was started in Section 2. By the analysis of strategy S1(4) and
S3(3n) in Proposition 4, only the non-existence remains to be proved. Particular cases
of non-existence have already been resolved above by Propositions 3 and 4.

The remaining part of the proof will be carried out in this section by using an interplay
of relatively simple local and global combinatorial methods. The assumption N > 4 will
be unnecessary for certain claims.
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3.1 Admissible extensions

Definition 5. Let F be a fixed (collective) strategy. For any edge

bc ∈ Ek,k+1 = Vk × Vk+1,

define
`+(bc) = #

{
d ∈ Vk+2 : bcd ∈ A(F )

}
,

i.e., the number of the immediate admissible continuations of bc to the right, and

`−(bc) = #
{
a ∈ Vk−1 : abc ∈ A(F )

}
,

i.e., the number of the analogous continuations to the left.

Hence, in general, we have `+(bc), `−(bc) ∈ {0, 1, 2, 3}. The following lemma holds for
all N > 2.

Lemma 6. Consider a fixed strategy F .

(a) The average value of `− (resp. `+) over any three right-adjacent (resp. left-adjacent)
edges of G equals 2. That is, for any vertex b ∈ Vk we have∑

a∈Vk−1

`−(ab) =
∑
c∈Vk+1

`+(bc) = 6

(b) If two edges of G have the same left (resp. right) endpoint then one of them has
at least two admissible immediate continuations to the right (resp. left). That is,
for any vertex b ∈ Vk and any distinct vertices c1, c2 ∈ Vk+1 there is a choice of
i ∈ {1, 2} and distinct vertices d1, d2 ∈ Vk+2 such that bcidj ∈ A(F ) for j = 1, 2;
likewise for passages to the left.

(c) If the graph G contains an F -admissible path s1 . . . sn such that 2 6 n 6 N − 1 and

`−(s1s2) + `+(sn−1sn) > 5,

then F is a losing strategy.

(d) If F is a winning strategy, then for every edge β ∈ E(G) we have

`+(β) + `−(β) = 4.

Proof. (a): Consider `+. For any vertex d ∈ Vk+2, the set Vk+1 contains two vertices
different from fk+1(b, d), defining two admissible connections of b with each of the three
choices of d. The situation with `− is analogous.

(b): For each of three points d ∈ Vk+2 we can choose an i ∈ {1, 2} such that ci 6=
Fk+1(b, d). For some two points d = d1, d2 the choice of i must be the same.
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Figure 2: Closing the path, claim (c). At least one connection between sN−1 and s1 is
admissible.

(c): We may assume `−(s1s2) = 3 and `+(sn−1sn) > 2, with s1 ∈ V1. By (b), the path
can be extended to the right until n = N − 1. Then the paths of the form xs1s2 . . . sN−1y
are in A(f) for all three values of x ∈ V0 and at least two values of y ∈ VN = V0. Now
it is enough to choose y 6= f0(sN−1s1) to make the ends meet, obtaining an N -periodic
F -admissible path ys1s2 . . . sN−1ys1 . . .. (This argument is illustrated in Figure 2.)

(d): Denote `(γ) = `+(γ)+`−(γ) for all γ ∈ E(G). If `(β) > 4 for some β ∈ E(G), then
F is losing by (c) applied to the single edge β. However, (a) implies that the average value
of `(γ) over γ ∈ Ek,k+1 equals 4. Hence, if there was an edge α ∈ Ek,k+1 with `(α) < 4,
there would also be an edge β ∈ Ek,k+1 with `(β) > 4, the case already excluded.

The three categories of edges. Every winning strategy F satisfies the conclusion
of Lemma 6(d):

`+(γ) + `−(γ) = 4 for all γ ∈ E(G). (11)

Definition 7. If (11) is satisfied, all the edges γ ∈ E(G) are divided into three categories:

• If `−(γ) = 3 and `+(γ) = 1, let us paint γ yellow and direct it right.

• If `−(γ) = 1 and `+(γ) = 3, let us paint γ red and direct it left.

• If `−(γ) = `+(γ) = 2, let us paint γ blue and leave it undirected.

Any strategy F satisfying (11) will be called balanced or colourable.

The three patterns can thus be shown as in Figure 3. The arrow is pointing to the
unique admissible continuation (cf. also Lemma 8(b)).

By Lemma 6(d) every winning strategy is balanced, but not vice versa. By Propo-
sition 3, the graph GN for every winning strategy with N > 4 contains some directed
edge(s).

3.2 The directed cycles

The sets of all the yellow, red, and blue edges in E(G) (or in Ek,k+1) will be denoted E+,
E−, and E0 (or E+

k,k+1, E
−
k,k+1, and E0

k,k+1), respectively.

Lemma 8. Let F be a colourable strategy for CN .
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Figure 3: Examples of edges (red, blue, yellow) with their admissible continuations.

(a) In each set Ek,k+1 any three left-adjacent or right-adjacent edges either have three
different colours or all are blue. In particular, two edges of the same direction are
either disjoint or following one another.

(b) If F is winning and N > 4, then every directed edge β ∈ E−k,k+1 or β ∈ E+
k,k+1 is

admissibly followed by an edge with the same direction: α ∈ E−k−1,k or γ ∈ E+
k+1,k+2,

respectively.

(c) In each set Ek,k+1 there are equal numbers of right- and left-directed edges, i.e.,
|E+

k,k+1| = |E
−
k,k+1|. This number is the same for all k.

(d) If F is winning and N > 4, then every admissible cycle (of any length) in GN has
one colour.

Proof. (a): By definition, colours are characterized by the numbers of the corresponding
continuations which, by Lemma 6(a), for any vertex a ∈ V (GN) sum up to:∑

x

`−(xa) =
∑
y

`−(ay) = 6.

The number 6 can be partitioned into three terms equal 1, 2 or 3 in just two ways: 1+2+3
and 2 + 2 + 2.

(b): If β ∈ E+
k,k+1 is yellow and its unique right continuation γ is not, then `+(γ) > 2

while `−(β) = 3. Then Lemma 6(c) applied to the path βγ ∈ A, with n = 3 6 N − 1
and `−(β) + `+(γ) > 5, implies that F is a losing strategy, contrary to the assumption.
Likewise for β ∈ E−.

(c): By (a), the number of red and yellow edges is the same (0 or 1) even if we fix
their left or right endpoint. By (b), the edges of E+

k−1,k are continued into E+
k,k+1, which

implies |E+
k−1,k| 6 |E

+
k,k+1| 6 . . . 6 |E+

k−1,k| in cycle.
(d): By definition, every directed edge is uniquely admissibly continued forward, and

its continuation has the same direction by (b). Hence, if an admissible path (not neces-
sarily cyclic) contains any directed edge, then all its consecutively following edges have
the same direction, so the path becomes eventually cyclic of constant colour (other than
blue). For a cyclic path this refers to the whole.
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The situation at a vertex adjacent to some directed edge is illustrated in Fig. 4. The
only non-admissible connections are: blue-red, yellow-red, yellow-blue. The other possible
situation is six blue edges meeting at a point.

vk−12 vk3 vk+1
3

vk−13 vk1 vk+1
2

vk−11 vk2 vk+1
1

--Q
Q

Q
QQk

Q
Q
Q

QQk

�
�
�
��

�
�
�
��

Figure 4: A typical example of the configuration at the head or tail of any directed edge.

Definition 9. For any winning strategy F for CN (N > 3) the number

χ(F ) = |E−k,k+1| = |E
+
k,k+1| ∈ {0, 2, 3}

(independent of k) will be called characteristic number or the characteristic of F .

By lemma 8(c), χ does not depend on k. By lemma 8(b), the right-directed (resp.
left-directed) edges form a single admissible cycle of length Nχ(F ), as the losing N -cycles
are absent. By Proposition 3, the value χ(F ) = 0 is only possible for N = 4. We move
on to the analysis of two remaining possibilities: χ(F ) = 2 or 3.

3.3 Characteristic 3

By Lemma 8(a)(b), the yellow edges for F are arranged as follows in the graph GN :

· · · -u01
-u11

-u21
- · · · -uN−11

-uN1
-uN+11

- · · ·
· · · -u02

-u12
-u22

- · · · -uN−12
-uN2

-uN+12
- · · ·

· · · -u03
-u13

-u23
- · · · -uN−13

-uN3
-uN+13

- · · ·

where
{
uk1, u

k
2, u

k
3

}
= Vk for all k ∈ Z. We also write uki = uk(i).

As already observed, the yellow edges in GN form one admissible cycle of length 3N
(since three N -cycles or 2N -cycle plus N -cycle imply losing). Since V0 = VN , we have
uN(i) = u0(σ(i)) for i ∈ Z3, where σ : Z3 → Z3 is a permutation without fixed points,
σ(i) = i± 1. Since the yellow edges establish a correspondence between uki and uk±1i , we
have inductively

uk+N(i) = uk(σ(i)) for all k ∈ Z, i ∈ Z3.

Hence, the diagram shows twisted coordinates. We will use functions fk : Z2
3 → Z3 repre-

senting individual strategies Fk in the diagram coordinates.
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By definition, the yellow edges have unique admissible continuations to the right,
namely iii. Hence we have fk(i, j) = i whenever i 6= j. That is, fk(i, j) 6= s whenever
s 6= i 6= j and equivalently,

uk−1(i)uk(s)uk+1(j) ∈ A whenever s 6= i 6= j.

This holds, in particular, for i = s + 1 = j + 2 and i = s− 1 = j − 2. It follows that for
each fixed u = u0s ∈ V0 the following two periodic paths (xk) and (zk) starting at u in GN

are F -admissible (apart from the path yk = uk( s)):

xk = uk(s+ k) and zk = uk(s− k). (12)

By Lemma 8(a), (xk) and (zk) start at u with a red and a blue edge. Then by (d), the
path (xk) is red and (zk) is blue (or conversely). They pass through the vertices

xN = uN(s+N) = u0(σ(s+N)) and zN = uN(s−N) = u0(σ(s−N))

Now, if N is not divisible by 3, the numbers s, s+N, s−N are distinct (mod 3) while
σ(s) 6= s, which implies that s = σ(s±N) for some choice of sign. It follows that x0 = xN
or z0 = zN . We also have xk = xk+N for all k > 0 (or the same for zk) since both
paths have one colour and there is only one edge to choose from left-incident edges (by
Lemma 8(a)). Consequently, F is losing and this contradiction closes the case χ(F ) = 3.
See also Fig. 5.
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Figure 5: Part of a hypothetical strategy of characteristic 3 on C5. However, the
undirected path has period 5 in G5.

3.4 Characteristic 2

Lemma 8(a)(b) implies the following arrangement of all the yellow edges and some blue
edges in graph GN :

· · · -u01
-u11

-u21
- · · · -uN−11

-uN1
-uN+1

1
- · · ·

· · · u00 u10 u20 · · · uN−10 uN0 uN+1
0 · · ·

· · · -u02
-u12

-u22
- · · · -uN−12

-uN2
-uN+1

2
- · · ·

where
{
uk1, u

k
0, u

k
2

}
= Vk for all k ∈ Z. We also write uki = uk(i).
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Since Vk = Vk+N and since the yellow edges establish a correspondence between Vk and
Vk±1, we have uk+N(i) = uk(σ(i)) for all k and i, where σ is a permutation independent
of k. Since F is winning, GN contains one yellow cycle with period 2N and σ is a
transposition, σ(i) = −i. Consequently, the diagram shows transposed coordinates.

By the incidence property (Lemma 8(a)), the red edges are precisely uk(i)uk+1(−i)
with i = ±1 (connecting the yellow paths). Since F is winning, these left-directed edges
also form one cycle of length 2N in GN , which implies that N is even. The roles of red
and yellow edges are analogous.

These conditions determine the matrix Mk = [fk(i, j)]i,j=1,0,2 of each individual strat-

egy Fk in the diagram coordinates. Indeed, the admissible paths i i i, i − i i ∈ AF

(i, j = 1,−1) are directed, which implies two conclusions: Mk =

 ∗ 1 1
2 ∗ 1
2 2 ∗

 (since the

remaining forward continuations i i x and x − i i are non-admissible), and f(i, i) 6= ±1
for i ∈ {1,−1}. Finally, since 00 ∈ E0, the equation fk(0, x) = 0 has a solution, x = 0. It
follows that

Mk = [fk(i, j)]i,j=1,0,2 =

 0 1 1
2 0 1
2 2 0

 (k ∈ Z) (13)

and that (exactly) eight kinds of undirected paths are admissible:

∓1, 0,±1, 0,±1, 0, 0, 0± 1, ±1, 0, 0 ∈ A (14)

This suffices to construct admissible blue cycles of length N :

• For N = 4n + 2, the path with period 0102 in Γ is admissible and has period N
over GN .

• For N = 4n (n > 1), the path with period [(0010)Xn−1][(0020)Xn−1] in Γ, where
X = 0102 or X = 0201, is admissible and has period N over GN .

This contradiction concludes the case χ(F ) = 2 and completes the proof of Theorem 1.
The situation for N = 8 is illustrated in the diagram (Fig. 6). Any strategy given by

(13) in some transposed coordinates where i 7→ −i will be denoted S2(N). Using (13)
or (14), it is easy to check that S2(4) is winning on C4.

4 Conclusions and remarks

4.1 Uniqueness of winning strategies

Proposition 10. For n > 1, strategy S3(3n) is unique as a winning strategy up to
permutations of colours for each player.

Proof. Section 3.3 presents the unique configuration (up to permutations) where the tran-
sition σ(i) = ±1 may be assumed σ(i) = i+ 1 as we can change the direction of all cycles
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Figure 6: Part of a hypothetical strategy of characteristic 2 on C8, showing all the
directed edges. However, the undirected path (whose next segment of length 8 will look
reversed in the diagram) has period 8 in the graph G8.

Vk. If fk denotes the individual strategy in the diagram coordinates, the horizontal posi-
tion of right-directed edges implies fk(i, j) = i for i 6= j. Each other admissible path of
the form tk = s + εk is red or blue depending on ε ∈ {−1, 1} by Lemma 8(a)(d). If the
left-directed edges have slope ε, then fk(i, j) = j − ε for i 6= j − 2ε.

It follows that individual strategies fk with their matrices M(fk) = [fk(i, j)]i,j=0,1,2 do
not depend on k and may have two forms:

fk(i, j) =

{
i for i 6= j

i+ ε for i = j,
M(fk) =

 1 0 0
1 2 1
2 2 0

 or

 2 0 0
1 0 1
2 2 1


where ε = ±1. In fact, one form is obtained from the other by reversing the cycle Z3.

For N = 3n, the three cycles tk = αk (for α ∈ Z3) discussed in section 3.3 may be
assigned three colours in six ways. Hence the strategy S3(3n) has six regular forms:

f(i, j) = fδ,ε(i, j) =

{
i+ ε+ δ for j = i+ 2ε
i+ ε for j 6= i+ 2ε

(15)

where ε ∈ Z3 is the slope of the yellow cycle, δ ∈ {1,−1} and ε − δ is the slope of
the red cycle. Matrix transposition MT

f is obtained by the substitution ε′ = −ε+ δ and
corresponds to reversing the orientation of CN .

The winning strategy S2(4) with matrix

 0 1 1
−1 0 1
−1 −1 0

 , obtained in section 3.4,

is also unique as a winning strategy with χ = 2 for the cycle C4 up to permutations.
In total, we have obtained the following winning strategies: S0(3), S1(4), S2(4) and
S3(3n) for n = 1, 2, 3, . . .

4.2 Minimality of assumptions

The configuration of three colours for each player is a maximal solvable one. If we increase
the number of colours guessed by some player, there is no winning strategy even if N = 3n.
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Proposition 11. If, in the round table hat game on any cycle CN N > 4, the number
of colours is increased to 4 for one player and stays 3 for all the other players, then the
team has no winning strategy.

Proof. If F were a winning strategy for this game, then it would also be winning for any
of its 3-colour restrictions. It follows that removing any value c of the four colours to
be guessed by the distinguished Player k — such that c was among the values actually
assumed by Fk — and changing all assignments Fk(a, b) = c into Fk(a, b) 6= c (while Fk−1
and Fk+1 simply restict their domains) would result in a winning strategy for the 3-colour
game. However, by Proposition 10, such a strategy is unique up to permutations and
requires Fk to assume each value exactly three times. Some arbitrary choice of Fk(a, b) 6= c
can always violate that requirement, contrary to the fact that F should remain a winning
strategy.

4.3 Stochastic variant

Even if N is not divisible by 3, the probability of winning by using a purely random

strategy equals 1−
(
2
3

)N
. However, a much more effective strategy can be designed.

Proposition 12. For the randomized three-colour game on any cycle CN there exists a
strategy whose winning probability is > 1− 3−N+1.

Proof. This follows from the fact that strategy S3(N) has at most three admissible N -
periodic paths. If the colours are randomly re-labelled by the team, the adversary will
have no information about the admissability of any given path.

4.4 Hat games on graphs

In a more general setting an arbitrary visibility pattern can be assumed. For other
presentations of those models, see [6], [5], [10], [15], [13], [17]. We assume that the directed

visibility graph C has N vertices corresponding to the players, and edges ~AB ∈ E(Γ) = E
wherever player A is seen by player B. For each vertex v ∈ V (C) = V a nonempty set of
‘colours’ Vv is known to all. For each assignment of colours, i.e., a selector S : V →

⋃
v Vv

with S(v) ∈ Vv, each player u ∈ V tries to guess S(u) by using a function

Fu :
∏
Vv → Vu (product taken over ~vu ∈ E).

as an individual strategy. The combined, or collective, strategy is the collection F =
{Fu : u ∈ V }. The game is thus played against an opponent assigning colours — whom
we may called Wizard, Demon, etc. — or the assignement may be stochastic. In our
approach, the notion of winnig or losing refers to the cooperative players. The strategy
effectiveness depends only on the numbers of possible colours, i.e., the height function h
given by h(v) = |Vv|. Let Xh(F, S) denote the number of the correct guesses. For three
colour games we have h(v) = const = 3. The deterministic minimax approach defines the
value of the game as

µ(C, h) = max
F

min
S
Xh(F, S).
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The mimimal requirement of µ > 0 has been the subject of this paper. The µ-value in
general has a distant parallel for the stochastic case as the Riis guessing number : see [5],
[7], [12], [16].

Question 13. Is it possible to characterize in simple terms all those hat guessing games
— particularly three colour ones — for which the team is winning? Are those games
algorithmically recognizable in polynomial time?

Question 14. Is it possible to characterize in simple terms some winning strategy for
every hat guessing game — particularly a three colour one — assuming the team is
winning? Is such a strategy algorithmically constructible in polynomial time?
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