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Abstract

We propose a q-analog of classical plethystic conjectures due to Foulkes. In
our conjectures, a divided difference of plethysms of Hall-Littlewood polynomials
Hn(x; q) replaces the analogous difference of plethysms of complete homogeneous
symmetric functions hn(x) in Foulkes’ conjecture. At q = 0, we get back the
original statement of Foulkes, and we show that our version holds at q = 1. We
discuss further supporting evidence, as well as various generalizations, including a
(q, t)-version.
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1 Introduction

The Foulkes’ conjecture, which dates back to 1950 (see [10]), has a long and interesting
history. Some headway has been made on it, but it remains open in general. A survey
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of the current state of affairs can be found in [6, 14], and related papers include [3, 5, 7,
17, 18, 19, 25]. In its original form, the conjecture states that, for any positive integers
a and b, with a < b, the difference of plethysms1 of complete homogeneous symmetric
polynomials

hb ◦ ha − ha ◦ hb, (1)

expands with positive (integer) coefficients in the Schur basis {sµ}µ`n of symmetric poly-
nomials (here µ runs over the set of partitions of n = a b). Instances of this positivity
are

h4 ◦ h2 − h2 ◦ h4 = s422 + s2222, and h4 ◦ h3 − h3 ◦ h4 = s732 + s5421 + s6222.

From the point of view of representation theory, one may interpret Foulkes’ conjecture
as saying that there is a GL(V )-module inclusion of the composite of symmetric powers
Sa(Sb(V )) inside Sb(Sa(V )). Therefore each GL(V )-irreducible occurs with smaller mul-
tiplicity in Sa(Sb(V )) than it does in Sb(Sa(V )), and the conjecture reflects this at the
level of the corresponding characters (with Schur polynomials appearing as characters of
irreducible representations). Many interesting point of view may be considered, and some
of these are nicely discussed in [14] both with an historical perspective2, and explanations
of ties with Geometric Complexity Theory.

Here, we consider symmetric “polynomials” (we will often say function) in a denumer-
able set of variables x = x1, x2, x3, . . ., which are typically not mentioned explicitly. This
makes it so that our statements hold irrespective of the number of variables occurring
in the symmetric functions considered (ergo the dimension of the vector space V ). No-
tice that the case of Foulke’s conjecture when this dimension is 2 is a theorem. Indeed,
it corresponds to Hermite’s Law of reciprocity (see [11]), which says that the modules
Sa(Sb(V )) and Sb(Sa(V )) coincide when V has dimension 2 (over C). Another fact that
is worth recalling is that Brion [4] has shown that (1) holds if b is large enough with
respect to a.

Our q-analog replaces the relevant homogeneous symmetric function hn = hn(x) by
the Macdonald (Hall-Littlewood) polynomial

Hn(x; q) :=
∑
µ`n

Kµ(q)sµ(x), where Kλ(q) =
∑
τ

qc(τ),

with τ running through the set of standard tableaux of shape λ, and c(τ) standing for
the charge statistic. As we will recall further below, one has Hn(x; 0) = hn(x). Hence we
are considering a slightly different notion of q-analog, in which it is the specialization at
q = 0 (rather than q = 1) that gives back the original statement.

Conjecture 1 (q-Foulkes). For any integers 0 < a 6 b, the Schur function expansion of
the divided difference

Fa,b(x; q) :=
Hb ◦Ha −Ha ◦Hb

1− q
(2)

1This is an important operation on symmetric functions which was introduced by Littlewood [15]. Its
explicit definition is recalled further below.

2Where it is underlined that the question raised by Foulkes apparently goes back to Hadamard [9].
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has coefficients in N[q].

For short, one says that Fa,b(x; q) is Schur positive. This has been checked to hold
whenever ab 6 25, and we will prove in the sequel that the conjecture is true at q = 1.
We have the specialization Fa,b(x; 0) = fa,b := hb ◦ ha − ha ◦ hb. We will show later that
it makes sense to divide by 1 − q. For instance, with a = 2 and b = 3, we find after
calculation that expression (2) expands in the Schur basis as as

F2,3(x; q) =
(
q2 + 2 q3 + q4

)
s33 +

(
1 + q + q2 + q3

)
s222

+
(
q + 2 q2 + 2 q3 + 2 q4 + q5

)
s321

+
(
q + 2 q2 + 3 q3 + 3 q4 + 2 q5 + q6

)
s2211

+
(
q2 + 2 q3 + q4

)
s3111 +

(
q2 + 2 q3 + 3 q4 + 2 q5

)
s21111

+
(
q3 + q4 + q5 + q6

)
s111111.

This does specialize, at q = 0, to the corresponding case of Foulkes’ conjecture:

f2,3 = h3 ◦ h2 − h2 ◦ h3 = s222

A second part of Foulkes’ conjecture, shown to be true by Brion [4], concerns the
stability of coefficients as b grows while a remains fixed. To simplify its statement, we
consider the linear operator which sends a Schur function sµ(x) to sµ(x), where µ is the
partition obtained by removing the largest part in µ. Let us write f for the effect of this
operator on a symmetric function f . For example, we get s622 + s442 + s4222 + s22222 =
s22 + s42 + s222 + s2222, which is clearly not homogeneous. Using this notation convention,
the second part of Foulkes’ conjecture states that, for all a 6 b, the Schur expansion of

fa,b+1 − fa,b = (hb+1 ◦ ha − ha ◦ hb+1)− (hb ◦ ha − ha ◦ hb) (3)

also affords positive integers polynomials as coefficients. Observe that the “Bar” operator
allows the comparison of homogeneous functions of different degrees, namely fa,b+1 of
degree a(b + 1) with fa,b of degree ab. For instances of, one calculates f2,4 − f2,3 = s222,

since the left-hand side is equal to (s422 + s2222)−s222, in which s422 cancels out with s222.
In [4], Brion has shown (3) reducing (see Appendix for notations) it to showing that

〈ha ◦ hb, sλ〉 6 〈ha ◦ hb+1, sλ+(a)〉,

where the sum λ + µ of two partitions λ and µ, is the partition whose parts are λi + µi
(with the convention that λi = 0 if i greater than the number of parts of λ). More results
along these lines may be found in [12, 19]. A similar phenomenon also seems to hold in
our context, leading us to state the following.

Conjecture 2 (q-stability). For any integers 0 < a 6 b, and any Schur function sλ, we
have

〈Fa,b+1(x; q)− Fa,b(x; q), sλ(x)〉 ∈ N[q]. (4)
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The smallest non-trivial example is:

F2,4(x; q)− F2,3(x; q) = (1 + q)
(

(q3 + 2 q4 + 2 q5 + q6) s3 + (q2 + 2 q3 + 3 q4 + 3 q5 + 2 q6 + q7) s21

+ (q3 + 2 q4 + 2 q5 + q6) s111 + (q2 + 2 q4 + q6) s4

+ (q + 2 q2 + 6 q3 + 7 q4 + 9 q5 + 6 q6 + 4 q7 + q8) s31

+ (q + 3 q2 + 4 q3 + 7 q4 + 5 q5 + 6 q6 + 2 q7 + 2 q8) s22

+ (2 q2 + 6 q3 + 10 q4 + 13 q5 + 11 q6 + 8 q7 + 3 q8 + q9) s211

+ (q3 + 4 q4 + 6 q5 + 7 q6 + 4 q7 + 2 q8) s1111

+ (q + 2 q2 + 5 q3 + 6 q4 + 8 q5 + 6 q6 + 5 q7 + 2 q8 + q9) s32

+ (3 q2 + 4 q3 + 10 q4 + 9 q5 + 11 q6 + 6 q7 + 4 q8 + q9) s311

+ (2 q + 4 q2 + 9 q3 + 12 q4 + 15 q5 + 13 q6 + 11 q7 + 6 q8 + 3 q9 + q10) s221

+ (2 q2 + 6 q3 + 11 q4 + 16 q5 + 17 q6 + 14 q7 + 9 q8 + 4 q9 + q10) s2111

+ (q3 + 3 q4 + 6 q5 + 7 q6 + 8 q7 + 5 q8 + 3 q9 + q10) s11111

+(1 + 2 q2 + q3 + 4 q4 + 2 q5 + 5 q6 + q7 + 3 q8 + q10) s222

+ (q + q2 + 4 q3 + 5 q4 + 9 q5 + 8 q6 + 9 q7 + 5 q8 + 4 q9 + q10 + q11) s2211

+ (q2 + q3 + 5 q4 + 5 q5 + 9 q6 + 7 q7 + 7 q8 + 3 q9 + 2 q10) s21111

+ (q3 + q4 + 3 q5 + 3 q6 + 4 q7 + 3 q8 + 3 q9 + q10 + q11) s111111

+ (q4 + q6 + q8 + q10) s1111111

)
,

and we do observe that this specializes to the (much simpler) classical Foulkes case when
we set q = 0. Another stability, in the vein of Manivel [18], that seems to hold in our
q-context is that

(Fa+1,b+1(x; q)− Fa+1,b(x; q))− (Fa,b+1(x; q)− Fa,b(x; q)),

is Schur positive, for all a < b.

Extensions

In her thesis, partly presented in [24], Vessenes attributes3 the following generalization of
Foulkes’ conjecture to Doran [8]. As before, let a < b and consider two extra integers c
and d, both lying between a and b, such that ab = cd (observe that we do not assume
that c < d). Then Vessenes’s extension of Foulkes’ conjecture states that

hc ◦ hd − ha ◦ hb (5)

expands with positive coefficients in the Schur basis. Setting c = b and d = a clearly gives
back the original statement of Foulkes. For example, one calculates that

h3 ◦ h4 − h2 ◦ h6 = s93 + s444 + s642 + s741 + s822.

3However, it is not clear in [8] where this exact statement can be found, if at all.
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Vessenes proves that (5) is indeed Schur positive whenever a = 2, and more instances
may be shown to hold using formulas of [13] for the plethysms sµ ◦ hk, for partitions µ of
3, 4 and 5. We have also checked it explicitlly for all cases when the overall degree is less
or equal to 36.

Extensive computer algebra experiments4 suggest that there are two natural (new)
extensions to this conjecture, namely

Conjecture 3. Assume that a 6 c, d 6 b, with ab = cd, and k is any positive integer,
then we have Schur positivity of both the differences

hc ◦ (hkd)− ha ◦ (hkb ), and hc ◦ sδ − ha ◦ sβ, (6)

where we consider the rectangular shape partitions

δ = dd · · · d︸ ︷︷ ︸
k

, and β = bb · · · b︸ ︷︷ ︸
k

.

More experiments (for all cases when the overall degree is less than 18) suggest that all the
above conjectures are all encompassed in the following one, which involves the (combina-
torial) two parameters Macdonald polynomials Hµ(x; q, t) indexed by rectangular shape
partitions.

Conjecture 4. Assume that a 6 c, d 6 b, with ab = cd, and k is any positive integer.
Then, we have N[q]-Schur positivity of

Hc ◦Hδ(x; q, t)−Ha ◦Hβ(x; q, t)

1− q
, with δ = dd · · · d︸ ︷︷ ︸

k

, and β = bb · · · b︸ ︷︷ ︸
k

. (7)

We will show why division by 1− q makes sense and how it implies previous conjectures
in the following section. It is interesting to observe that, at t = 1, formula (7) specializes
to the nice q-analog

F
(k)
a,b;c,d(x; q) :=

Hc ◦Hk
d (x; q)−Ha ◦Hk

b (x; q)

1− q
, (8)

which thus have to be Schur positive if Conjecture 4 is to hold.

2 Supporting facts and implications

To further discuss and exploit the several implications of conjectures 1 and 4, and their
ties to conjecture 3, we rapidly recall some properties and specializations of the symmetric
polynomials Hµ(x; q, t).

4For all cases when the overall degree if less or equal to 32.
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Combinatorial Macdonald polynomials

Recall that the polynomialHn(x; q) is a special instance of the “combinatorial” Macdonald
polynomials Hµ = Hµ(x; q, t). Since the parameter t only appears in the Hµ’s that are
indexed by partitions having at least 2 parts, it makes sense to avoid its mention in Hn.
For instance, we have

H3(x; q, t) = s3(x) +
(
q2 + q

)
s21(x) + q3s111(x),

H21(x; q, t) = s3(x) + (q + t) s21(x) + q t s111(x),

H111(x; q, t) = s3(x) +
(
t2 + t

)
s21(x) + t3s111(x).

The Hµ are orthogonal with respect to the scalar product defined on the power-sum basis
by the formula

〈pµ(x), pµ(x)〉q,t := (−1)n−`(µ) zµ
∏
k∈µ

(1− qk)(1− tk),

with 〈pµ(x), pλ(x)〉q,t = 0 whenever µ 6= λ. Here, `(µ) stands for the number of parts of
µ, and k runs over the parts of µ. They afford the following specializations:

a) Hµ(x; 0, 0) = hn(x), (9)

b) Hµ(x; 1, 1) = hn1 (x), (10)

c) Hµ(x; 0, 1) = hµ(x), (11)

d) Hµ(x; 0, t)
∣∣
tmaxdeg = sµ(x). (12)

Furthermore we have

Hµ(x; q, 1) =
∏
k∈µ

Hk(x; q), with Hk(x; q) =
n∏
i=1

(1− qi)hk
[

x

1− q

]
, (13)

which may be written in the following form using plethystic rules of calculation, and
formula (32):

Hn(x; q) =
∑
µ`n

[n]q!

zµ [µ1]q[µ2]q · · · [µ`]q
(1− q)n−`(µ) pµ(x), (14)

with ` = `(µ) standing for the number of parts of µ. We also have the symmetry

Hµ′(x; q, t) = Hµ(x; q, t). (15)

Hence it follows that
Hµ(x; 1, t) =

∏
k∈µ′

Hk(x; t). (16)

Now, we may show that division by 1 − q makes sense in formulas (2) and (7). Indeed,
for any a and b, formula (10) implies that we have (Ha ◦ Hb)(x; 1) = h1(x)ab, since the
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evaluation at q = 1 is compatible5 with plethysm. Hence, the numerator of the right-hand
side of (2) vanishes at q = 1, and is thus divisible by 1 − q. More generally, using (13)
with µ = bb · · · b and hence

µ′ = kk · · · k︸ ︷︷ ︸
b

,

one sees that
Ha ◦Hbb···b(x; 1, t) = ha1 ◦ (Hk(x; t)b) = Hk(x; t)ab,

it follows that the coefficients of each Schur function in the expression of (7) are polyno-
mials in q.

Several specializations of (7) are of interest. In particular, at q = 0, we get

ha ◦Hbb···b(x; 0, t) �s hc ◦Hdd···d(x; 0, t),

where we write f �s g if g − f is Schur positive. Comparing coefficients of the highest
power of t on both sides of this gives

ha ◦ sbb···b �s hc ◦ sdd···d,

which is precisely the second statement in (6). Likewise, setting t = 1 we get

ha ◦ (hkb ) �s hc ◦ (hkd),

Specializing at q = 0 and t = 0 also gives the following instance of (5)

ha ◦ h(kb) �s hc ◦ h(kd).

We will also consider in the sequel the following6 q-analog of Schur functions:

Sµ(x; q) := ω qn(µ
′)Hµ(x; 1/q, 0),

defined in terms of specialization at t = 0 of the combinatorial Macdonald polynomials7

Hµ(x; q, t), with ω standing for the “usual” linear involution that sends sµ(x) to sµ′(x).
In particular, one may check that Sµ(x; 0) = sµ(x) and Sµ(x; 1) = eµ′(x). For instance,
we have

S32(x; q) = s32(x) + q s311 + q (q + 1) s221(x) + q2 (q + 1) s2111(x) + q4s11111(x),

and S32(x; 1) = e1(x) e2(x)2. Observe that all terms in the Schur expansion of Sµ(x; q) :
are indexed by partitions that are dominated by µ. Moreover we get back our previous
context for µ = (a), since S(a)(x; q) = Ha(x, q).

5Meaning that they commute as operators. Observe that this is not so with the evaluation at q = −1.
6This is well-known in the theory of Macdonald polynomials, and all properties also mentioned.
7See Appendix A for various notations used here.
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Dimension Count

As mentioned previously, when a homogeneous degree n symmetric function f occurs as
a (graded) Frobenius transform of the character of a Sn-module, the dimension (Hilbert
series) of this module may be readily calculated by taking its scalar product with hn1 .
On the other hand, general principles insure that there exists such a module (albeit not
explicitly known) whenever f expands positively (with coefficients in N[q]) in the Schur
function basis. Finding an explicit formula for this “dimension” may give a clue on what
kind of module one should look for in order to prove the conjectures. With this in mind,
let us set the notation

dim(f) := 〈hn1 , f〉.
For instance, we may easily calculate that

dim(ha ◦ hb) =
(ab)!

a! b!a
, (17)

since hab1 may only occur in the plethysm ha ◦ hb as

ha1
a!

[
hb1
b!

]
=

hab1
a! b!a

.

In a classical combinatorial setup, formula (17) is easily interpreted as the number of
partitions of a set of cardinality ab, into blocks each having size b. We say that this is a
ba-partition. Indeed, using a general framework such as the Theory of Species (see [2]), it
is well understood that ha ◦ hb may be interpreted as the Polya cycle index enumerator
of such partitions, i.e.:

ha ◦ hb =
1

n!

∑
σ∈Sn

fixσ p
d1
1 p

d2
2 · · · pdnn ,

where n = ab, and dk denotes the number of cycles of size k in σ. Here, we further denote
by fixσ the number of ba-partitions that are fixed by a permutation σ, of the underlying
elements. It follows that

dim(Fa,b(x; 0)) = (ab)!

(
1

b! a!b
− 1

a! b!a

)
, (18)

is the difference between the number of ab-partitions and ba-partitions. Some authors
have attempted to exploit this fact to prove Foulkes’ conjecture (for positive and negative
results along these lines see [20, 21, 22, 23]).

It is interesting that we have the following very nice q-analog (at 0) of (18).

Proposition 5. For all a < b, we have

dim(Fa,b(x; q)) =
(ab)!

1− q

(
[b]q!

b!

([a]q!)
b

a!b
− [a]q!

a!

([b]q!)
a

b!a

)
, (19)

and, letting q 7→ 1, we find that

dim(Fa,b(x; 1)) =
(ab)!(a− 1)(b− 1)(b− a)

4
. (20)
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Proof. We first calculate dim(Ha ◦Hb) directly as follows
Now, exploiting classical properties of the logarithmic derivative Dlog f := f ′/f (with

respect to q), we easily calculate that

Dlog [b]q! ([a]q!)
b
∣∣∣
q=1

=
1

2

(
b− 1

2

)
+
b

2

(
a− 1

2

)
.

From this we may readily obtain that limq→1 dim(Fa,b(x; q)) gives (20).

3 The q-conjecture holds at q = 1

We start with an explicit formula that will be helpful in the sequel, setting the simplifying
notation

Eb := ((h2 + e2)
b + (h2 − e2)b)/2, and Ob :=

1

2

(
(h2 + e2)

b − (h2 − e2)b
)
, (21)

respectively for the even-part and odd-part of (h2 + e2)
b in the “variables” h2 and e2. We

thing of these as the homogenous and elementary symmetric functions, for which we have
the power-sum expansions p21 = h2 + e2 and p2 = h2 − e2.

Lemma 6. For all a, b and k, we have the divided difference evaluation

lim
q→1

habk1 −Ha ◦Hk
b

1− q
= ak

( b
2

)
habk−21 e2 +

(a
2

)
h
(a−2)bk
1 Obk. (22)

Proof. The limit on the left hand-side is the evaluation at 1 of the derivative of Ha ◦Hk
b

with respect to q. We use formula (14) to calculate this, exploiting the fact that the
evaluation at 1 of the q-derivative of g(q) = (1− q)mf(q) is

g′(1) =


f ′(1) if m=0,

−f(1) if m=1,

0 otherwise.

Using (14) and the rules of plethysm to expand Ha ◦ Hk
b , and observing that the only

partitions µ of a such that a − `(µ) 6 1 are either µ = 1a or µ = 21a−2, we find that we
have the expansion

Ha(x; q) =
[a]!q
a!

p1(x)a + (1− q) [a]!q
2(a− 2)!(1 + q)

p1(x)a−2 p2(x) + (1− q)2G(x; q),

with G(x; 1) 6= 0, and where [a]!q stands for the q-analog of a!. Thus, we get that the left
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hand-side of (22) evaluates as

(Ha ◦Hk
b )′(1) =

d

dq

(
[a]!q
a!

pa1 ◦Hk
b + (1− q)

[a]!q
2(a− 2)!(1 + q)

(pa−21 p2) ◦Hk
b

) ∣∣∣
q=1

,

=
d

dq

(
[a]!q
a!

Hak
b

) ∣∣∣
q=1

+
d

dq

(
(1− q)

[a]!q
2(a− 2)!(1 + q)

H
(a−2)k
b · (p2 ◦Hk

b )

) ∣∣∣
q=1

,

=
d

dq

(
[a]!q
a!

Hak
b

) ∣∣∣
q=1
−
(

[a]!q
2(a− 2)!(1 + q)

H
(a−2)k
b · (p2 ◦Hk

b )

) ∣∣∣
q=1

,

=
1

2

(
a

2

)
pabk1 + ak p

(ak−1)b
1

d

dq
(Hb)

∣∣∣
q=1
− 1

2

(
a

2

)
p
(a−2)bk
1 pbk2 ,

=
1

2

(
a

2

)
pabk1 + ak p

(ak−1)b
1

(
b

2

)
(pb1 − p

(b−2)
1 p2)

2
− 1

2

(
a

2

)
p
(a−2)bk
1 pbk2 ,

recalling that Hn(x; 1) = pn1 and that pn1 ◦ F = F n. Since p1 = h1, p
2
1 = h2 + e2 and

p2 = h2−e2, this last expression is clearly equal to the right-hand side of equation (22).

It immediately follows that we have the following formula as a difference of two ex-
pressions obtained from the lemma.

Proposition 7. For any 1 < a 6 c, d 6 b and k > 1, with n := abk = cdk, we have

F
(k)
a,b;c,d(x; 1) =

(
ak
( b

2

)
− ck

(d
2

))
hn−21 e2 +

(a
2

)
h
(a−2)bk
1 Obk −

( c
2

)
h
(c−2)dk
1 Odk. (23)

Moreover, this a positive integer coefficient polynomial in h1, h2 and e2; hence, it expands
positively in the Schur basis.

For instance, we get

F
(2)
2,6;3,4 = 24 e2

12 + 252 e2
11h2 + 1224 e2

10h2
2 + 3868 e2

9h2
3 + 7152 e2

8h2
4

+10680 e2
7h2

5 + 9744 e2
6h2

6 + 7512 e2
5h2

7 + 3192 e2
4h2

8

+1228 e2
3h2

9 + 168 e2
2h2

10 + 12 e2h2
11.

To make the positivity in the previous proposition more apparent, we exploit the following
recursive approach to the calculation of Fa,b = F

(1)
a,b;b,a, as a polynomial in h1, h2 and e2,

together with Appendix 4.

Proposition 8.
Fa,b+1(x; 1) = ha1 Fa,b(x; 1) + 2h

(a−2)b
1 Θa(b), (24)

with Θa(b) defined recursively as

Θa(b) = (3h2 + e2) Θa(b− 1)− h21 (3h2 − e2) Θa(b− 2) + h41 (h2 − e2) Θa(b− 3),

with initial conditions: Θa(a) = Θa−1(a), Θa(a+ 1) = (a2e2/2) Ea + (a h2/2)Oa, and

Θa(a+ 2) =
((a+ 1)2 − 2) e2

2
Ea+1 −

(a+ 1)h2
2

Oa+1 + e2 (a e2 + h2) (h2 − e2)a.

Moreover, Θa(b) lies in N[h1, h2, e2].
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Using these calculation techniques, we find that

F2,3 = 4 e32, F2,4 = 8 e32 (e2 + 2h2)

F2,5 = 8 e32 (2 e22 + 5h2 e2 + 5h22),

F3,4 = 24h41 e
3
2 h2, F3,5 = 8h51 e

3
2 (e22 + 5h2 e2 + 10h22),

F3,6 = 12h61 e
3
2 (e32 + 9 e22 h2 + 15 e2 h

2
2 + 15h32),

F4,5 = 16h101 e32 (e22 + 5h22), F4,6 = 24h121 e32 (e32 + 4 e22 h2 + 5 e2 h
2
2 + 10h32),

F4,7 = 24h141 e32 (2 e42 + 7 e32 h2 + 21 e22 h
2
2 + 21 e2 h

3
2 + 21h42).

In particular, for all b > a > 1, we have.

Fa,b+1(x; 1)− ha1Fa,b(x; 1) ∈ N[h1, h2, e2],

which implies the analog at q = 1 of the stability portion of Foulkes’ conjecture, namely

Proposition 9. For all a < b, and all partition λ, we have

〈Fa,b+1(x; 1)− Fa,b(x; 1), sλ(x)〉 ∈ N.

Proof. Indeed, using the classical Pieri rule for the calculation of h1 sλ, it is easy to see
that

ha1Fa,b(x; 1))− Fa,b(x; 1)

is Schur positive, since one of the terms in ha1sλ is the Schur function indexed by the
partition obtained from λ by adding a boxes to its first line. Hence the lemma directly
implies that

Fa,b+1(x; 1)− Fa,b(x; 1) = (Fa,b+1(x; 1)− ha1Fa,b(x; 1)) + (ha1Fa,b(x; 1))− Fa,b(x; 1))

is Schur positive.

It is interesting to calculate how Fa,b(x; q) expands explicitly as a polynomial in q.
Indeed, by a direct calculation, one gets

Fa,b(x; q) = (hb ◦ ha − ha ◦ hb) + ((hb−1 ◦ ha)ha−1 h1 − (ha−1 ◦ hb)hb−1 h1) q + . . .

with similar (but more intricate expressions as illustrated below) for higher degree terms.
Hence, the conjectured Schur-positivity of Fa,b(x; q) implies that we have Schur positivity
of

((hb−1 ◦ ha) · ha−1 − (ha−1 ◦ hb) · hb−1) · h1,

but we may show that in fact

(hb−1 ◦ ha) · ha−1 − (ha−1 ◦ hb) · hb−1 = h⊥1 (hb ◦ ha − ha ◦ hb). (25)
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Indeed, it follows readily from the definitions that

h⊥1 (hn ◦ hk) = hk−1 · (hn−1 ◦ hk). (26)

In a sense this is because h⊥1 acts as a derivation, sending hn to hn−1, and this is a form
of chain-rule. Hence the positivity of the coefficient of q in Fa,b(x; q) is a consequence
of the classical version Foulkes’ conjecture, since Schur positivity is preserved by both
operations of multiplication by h1 and its adjoint8 h⊥1 .

However, for higher degree, it does not seem that we can calculate coefficients as easily.
To illustrate, we have calculated that the coefficient of q2 in Fa,b(x; q) is equal to

(hb−2 ◦ ha) · (h2 ◦ ha−1 h1) + (hb−1 ◦ ha) · (h2 ha−2 + h1 ha−1 − ha)− hb ◦ ha
−(ha−2 ◦ hb) · (h2 ◦ hb−1 h1)− (ha−1 ◦ hb) · (h2 hb−2 + h1 hb−1 − hb) + ha ◦ hb

Property (25) extends to the wider context of (5), so that the coefficient of q in the right-
hand side of (7) (for k = 1) is indeed Schur positive (assuming that (5) holds), since it is
equal to h1 · h⊥1 (hc ◦ hd − ha ◦ hb).

4 Expanding Foulkes’ conjecture to more general diagrams

For partitions α, β, γ, and δ, none of which equal to (1) and such that |α|·|β| = |γ|·|δ| = n,
let us say that 〈α, β, γ, δ〉 is a Foulkes configuration for n, if and only if

sα ◦ sβ �s sγ ◦ sδ. (27)

Clearly, for a < b, Foulkes’ conjecture says that 〈a, b, b, a〉 is a Foulkes configuration.
Likewise statement (5), under the conditions there specified, is equivalent to saying that
〈a, b, c, d〉 is a Foulkes configuration. Other cases are possible. Indeed, by direct explicit
calculation we find the following:

〈2, 3, 3, 2〉, 〈11, 111, 3, 11〉, 〈111, 2, 11, 21〉, 〈111, 11, 2, 21〉,

〈2, 4, 4, 2〉, 〈2, 1111, 4, 11〉, 〈11, 4, 31, 2〉, 〈11, 22, 31, 2〉,

〈11, 22, 31, 11〉, 〈11, 31, 211, 2〉, 〈11, 211, 211, 11〉, 〈11, 1111, 31, 11〉,

〈22, 2, 2, 31〉, 〈22, 11, 2, 211〉, 〈211, 2, 11, 31〉, 〈211, 11, 11, 211〉,

〈1111, 2, 2, 31〉, 〈1111, 11, 2, 211〉, 〈2, 5, 5, 2〉, 〈2, 221, 311, 11〉,

〈2, 2111, 311, 11〉, 〈11, 32, 311, 2〉, 〈11, 41, 311, 2〉, 〈11, 11111, 5, 11〉,

〈11111, 2, 2, 311〉, 〈11111, 11, 11, 311〉.

Under the same assumptions as in (27) for the partitions involved, we say the we have a
q-Foulkes configuration denoted 〈α, β, γ, δ〉q, if and only if

0 �s
Sγ ◦ Sδ − Sα ◦ Sβ

1− q
, (28)

8For the usual scalar product on symmetric functions
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with the right-hand side having polynomial coefficients in q. In particular, this last
condition requires that, at q = 1 we have the equality

(Sα ◦ Sβ)
∣∣∣
q=1

= (Sγ ◦ Sδ)
∣∣∣
q=1

,

which is equivalent to
eα′ ◦ eβ′ = eγ′ ◦ eδ′ . (29)

For instance, it is easy to check that this last equality holds when

α = a, β = bb · · · b︸ ︷︷ ︸
k

, γ = c, and δ = dd · · · d︸ ︷︷ ︸
k

, (30)

for any a, b, c, d, k in N, such that ab = cd, since both sides of (29) evaluate to ea+bk .
Evidently, all q-Foulkes configurations are also Foulkes configurations, but most Foulkes
configurations do not satisfy the extra requirement that (30) holds. Explicit calculations
reveal that this condition significantly reduces the number of possibilities.

An intriguing development, explicitly checked out for all cases9 with n up to 30, is
that having both the necessary conditions (27) and (29) holding seems to be equivalent to
having the full q-Schur positivity (28) holding too. In other words, we have the following
general statement, which would reduce all q-versions to the q = 0 case.

Conjecture 10. For partitions α, β, γ, and δ, such that eα′ ◦ eβ′ = eγ′ ◦ eδ′ , we have

sα ◦ sβ �s sγ ◦ sδ, if and only if 0 �s
Sγ ◦ Sδ − Sα ◦ Sβ

1− q
. (31)

Clearly, when both α and γ are one part partitions, respectively equal to a and c, the
second condition in (31) is simply that eaβ′ = ecδ′ . Observe that this implies that β′ = µi

and δ′ = µj for some partition µ, and ai = cj. Only this simpler version is needed in
all cases explicitly calculated. In other words, all configurations that we have found to
satisfy

eα′ ◦ eβ′ = eγ′ ◦ eδ′

are such that α and γ are reduced to one part, and thus of the simple form stated. It
seems that this should be easy to prove.

Appendix A: Background on symmetric functions and plethysm

Trying to make this text self-contained, we now rapidly recall most of the necessary
background on symmetric functions. For more background, see [1, 16]. As is usual,
we often write symmetric functions without explicit mention of the variables. Thus, we
denote by pk (as in [16]) the power-sum symmetric functions

pk = pk(x1, x2, x3, . . .) := xk1 + xk2 + xk3 + . . . ,

9Involving 67 configurations in total.
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using which, we can expand the complete homogeneous symmetric functions as

hn =
∑
µ`n

pµ
zµ
, with pµ := pd11 p

d2
2 · · · pdnn , (32)

where dk = dk(µ) is the multiplicity of the part k in the partition µ of n, and zµ stands
for the integer

zµ :=
∏

jdj dj!.

For instance, we have the very classical expansions

h2 =
p21
2

+
p2
2
, h3 =

p31
6

+
p1p2

2
+
p3
3
.

As is also very well known, the homogeneous degree n component λn of the graded ring
Λ of symmetric functions, affords as a linear basis the set of Schur functions {sµ}µ`n,
indexed by partitions of n. Among the manifold interesting formulas regarding these, we
will need the Cauchy-kernel identity.

hn(xy) =
∑
µ`n

sµ(x)sµ(y) (33)

=
∑
µ`n

pµ(x)pµ(y)

zµ
, (34)

with hn(xy) = hn(. . . , xiyj, . . .) corresponding to the evaluation of hn in the “variables”
xiyj. Otherwise stated, we may express this by the generating function identity∑

n>0

hn(xy) zn =
∏
i,j

1

1− xiyj z
.

Rules of plethysm

Plethysm is an associative operation on symmetric functions, characterized by the follow-
ing properties. Let f1, f2, g1 and g2 be any symmetric functions, and α and β be in Q,
then

a) (α f1 + β f2) ◦ g = α (f1 ◦ g) + β (f2 ◦ g), (left linearity)

b) (f1 · f2) ◦ g = (f1 ◦ g) · (f2 ◦ g), (left multiplicativity)

c) pk ◦ (α g1 + β g2) = α (pk ◦ g1) + β (pk ◦ g2),

d) pk ◦ (g1 · g2) = (pk ◦ g1) · (pk ◦ g2),

e) pk ◦ pj = pkj.
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The first four properties reduce any calculation of plethysm to instances of the fifth one.
For a given symmetric function f , one may consider the plethysm f ◦ (−) as an operator
on symmetric functions. In fact, this operator may naturally be extended to any rational
fraction in the underlying variables. It is sometimes more convenient to use the alternate
notation f [−] for this operator and “add” the further rules

a) pk[g1/g2] = pk[g1]/pk[g2],

b) pk[x] = xk, if x is a variable,

c) pk[c] = c, if c is a constant.

Then, considering variable sets as sums x = x1 + x2 + x3 + . . ., one observes that f [x]
corresponds to the evaluation of the symmetric function f in the variables x. Moreover,
Cauchy’s formula gives an explicit expression for the expansion of

hn[xy] = hn[(x1 + x2 + x3 + . . .)(y1 + y2 + y3 + . . .)].

Likewise f [1/(1− q)] = f [1 + q + q2 + . . .], corresponds to the evaluation f(1, q, q2, . . .).
Another interesting classical property of Schur functions may be expressed as

sµ[A+B] =
∑
ν⊆µ

sµ/ν [A] sν [B], (35)

where sµ/ν stand for the skew Schur function characterized by

〈sµ/ν , sλ〉 = 〈sµ, s⊥ν sλ〉,

writing ν ⊆ µ if νi 6 µi for all i, and f⊥ standing for the dual operator of multiplication
by f for the usual scalar product 〈−,−〉 on symmetric functions (for which the Schur
functions form an orthonormal basis). It is well known that sµ/ν is Schur positive, and
sµ/0 = sµ.

Macdonald polynomials

With all this at hand, the polynomial Hn(x; q) can be explicitly defined as

Hn(x; q) := [n]q! (1− q)n hn
[

x

1− q

]
(36)

as before [n]q! stands for classical the q-analog of n!:

[n]q! := [1]q [2]q · · · [n]q, with [k]q = 1 + q + . . .+ qk−1.

To get a Schur expansion for Hn(x; q), we recall the hook length expression

sµ[1/(1− q)] = sµ(1, q, q2, q3, . . .)

= qn(µ)
∏

16i6µj

1

1− qhij
, (37)
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where hij = hij(µ) is the hook length of a cell (i, j) of the Ferrers diagram of µ, and
n(µ) :=

∑
(i,j) j. Now, using Cauchy’s formula (33), with y = 1 + q + q2 + . . ., we find

that

Hn(x; q) =
∑
µ`n

qn(µ)[n]q!∏
16i6µj

[hij]q
sµ(x). (38)

It is well known that the coefficient of sµ(x) occurring here is a positive integer polynomial
that q-enumerates standard tableaux with respect to the charge statistic. This is the q-
hook formula. Thus, we find the two expansions.

H3(x; q) =
[2]q[3]q

6
p1(x)3 +

[3]q
2

(1− q) p1(x)p2(x) +
[2]q
3

(1− q)2 p3(x),

= s3(x) + (q + q2)s21(x) + q3s111(x).

It is clear that Hn(x; 0) = hn. The Hn(x; q) function encodes, as a Frobenius transform,
the character of several interesting isomorphic graded Sn-modules such as: the coinvariant
space of Sn, the space of Sn-harmonic polynomials, and the cohomology ring of the full-
flag variety. More precisely, this makes explicit the graded decomposition into irreducibles
of these spaces. Thus, the coefficient of sµ(x) in formula (38) corresponds to the Hilbert
series10 of the isotropic component of type µ of this space. Using (34) to expand Hn, the
global Hilbert series of these modules can be simply obtained by computing the scalar
product

〈pn1 , Hn〉 =
∑
µ`n

〈pn1 , sµ〉 qn(µ)[n]q!
∏

(i,j)∈µ

1− q
1− qhij

, (39)

=
∑
µ`n

〈pn1 , pµ〉
pµ(1/(1− q))

zµ

n∏
k=1

(1− qk) (40)

=

(
1

1− q

)n n∏
k=1

(1− qk) (41)

= [n]q!. (42)

To see this, recall that 〈pµ, pλ〉 is zero if µ 6= λ, and 〈pµ, pµ〉 = zµ. To complete the
picture, let us also recall that 〈pµ, sλ〉 is equal to the value, on the conjugacy class µ, of
the character of the irreducible representation associated to λ. In particular, it follows
that

Hn(x; 1) = hn1 =
∑
µ`n

fµ sµ(x). (43)

This is the Frobenius characteristic of the regular representation of Sn, for which the
multiplicities fµ are given by the number of standard Young tableaux of shape µ. Beside
this notion of Frobenius transform that “formally” encodes Sn-irreducibles as Schur func-
tion, another more direct interpretation of the above formulas is in terms of characters

10Graded dimension.
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of polynomial representations of GL(V ), with V an N -dimensional space over C. Recall
that the character, of a representation ρ : GL(V ) → GL(W ), is a symmetric function
χρ(x1, x2, . . . , xN) of the eigenvalues of operators in GL(V ). Through Schur-Weyl duality,
out of any Sn-module R and any GL(V )-module U , one may construct a representation
of GL(V ):

R(U) := R⊗CSn U
⊗n,

where Sn acts on U⊗n by permutation of components. This construction is functorial:

R : GL(V )-Mod −→ GL(V )-Mod,

and the character of R(U) is the plethysm (f ◦ g)(x1x2, . . . , xN), where f is the Frobenius
characteristic of R and g the character of U . Furthermore, under this construction,
irreducible polynomial representations of GL(V ) correspond to irreducible Sn-modules R.
If such is the case, one writes Sλ(V ) when R is irreducible of type λ. The corresponding
character is the Schur function sλ(x1, x2, . . . , xN). For the special case λ = (n), we get
the symmetric power Sa(V ) whose character is ha(x1, x2, . . . , xN), hence the character of
Sa(Sb(V )) is the plethysm ha ◦ hb.

Appendix B: N-positivity of Θa(b)

The proof of N-positivity of the solution of the recurrence occurring in Proposition 8 may
be directly obtained as follows. Let us consider the positive integer coefficient series11

defined as:

ρ(z; a) :=
∞∑
k=1

k a

(
a+ 1

2k + 1

)
z2 k+1, (44)

and then define recursively θn(z) = θn(z; a) as follows

θn(z) = (3 + z) θn−1(z) + (1 + z) (z − 3) θn−2(z) + (1 + z)2 (1− z) θn−3(z),

with initial conditions θ0(z) := ρ(z; a− 1), θ1(z) := ρ(z; a), and

θ2(z) =
∞∑
k=1

(
k(a− 1)

(
a+ 2

2k + 1

)
z2k+1 + 2k

(
a+ 1

2k + 1

)
(1 + z) z2 k+1

)
.

For any a > 2 (in N), θn(z; a) is clearly a degree a+n polynomials in the variable z, with
positive integer coefficients. This makes it obvious that the expression Θa(b) occuring in
Proposition 8 is N-positive, since

Θa(b) = hb2 θb−a(e2/h2; a).

11Which is obviously terminating when a is an integer.
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[3] E. Briand. Polynômes multisymétriques, PhD dissertation. University Rennes I,
Rennes, France, 2002.

[4] M. Brion. Stable properties of plethysm: on two conjectures of Foulkes. Manuscripta
Mathematica, 80:347–371,1993.

[5] M. de Boeck. Relationships between plethysm coefficients. See arXiv:1409.0734.

[6] M.-W. Cheung, C. Ikenmeyer, and S. Mkrtchyan. Symmetrizing Tableaux and the
5th case of the Foulkes Conjecture. Journal of Symbolic Computation, 80(3): 833–
843, 2017. See arXiv:1509.03944.

[7] L. Colmenarejo. Stability Properties of the Plethysm: a Combinatorial Approach.
DMTCS Proceedings FPSAC’15 877–888, 2015. See arXiv:1505.03842.

[8] W. F. Doran IV. On Foulkes’ conjecture. Journal of Pure and Applied Algebra,
130:85–98,1998.

[9] J. Hadamard. Sur les conditions de décomposition des formes. Bull. Soc. Math.
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