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Abstract

We consider the classical Mahonian statistics on the set Bn(Σ) of signed per-
mutations in the hyperoctahedral group Bn which avoid all patterns in Σ, where
Σ is a set of patterns of length two. In 2000, Simion gave the cardinality of Bn(Σ)
in the cases where Σ contains either one or two patterns of length two and showed
that |Bn(Σ)| is constant whenever |Σ| = 1, whereas in most but not all instances
where |Σ| = 2, |Bn(Σ)| = (n + 1)!. We answer an open question of Simion by
providing bijections from Bn(Σ) to Sn+1 in these cases where |Bn(Σ)| = (n + 1)!.
In addition, we extend Simion’s work by providing a combinatorial proof in the
language of signed permutations for the major index on Bn(21, 2̄1̄) and by giving
the major index on Dn(Σ) for Σ = {21, 2̄1̄} and Σ = {12, 21}. The main result of
this paper is to give the inversion generating functions for Bn(Σ) for almost all sets
Σ with |Σ| 6 2.

Keywords: signed permutations, pattern avoiding permutations, inversion statis-
tic, major index, generating function

1 Introduction

The hyperoctahedral group Bn is the set of signed permutations of [n], that is, words of
the form b = b1b2 · · · bn where each of the symbols 1, 2, . . . , n appears, possibly barred.
The cardinality of Bn is n!2n. The group Dn is the subset of Bn containing all signed
permutations with an even number of barred elements. In 1993, Reiner introduced the
notion of permutation statistics for signed permutations and Egge and Mansour have
studied the notion of pattern avoidance on signed permutations [1, 2, 3]. In the present
paper, we combine these notions for a study of permutation statistics on pattern avoiding
signed permutations.

Let b = b1b2 · · · bn ∈ Bn and σ = σ1σ2 · · ·σk ∈ Bk. We say b avoids the pattern
σ if there is no subsequence b∗ = bi1bi2 · · · bik of b for which (1) bi1bi2 · · · bik with all bars
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removed is order isomorphic to σ with all bars removed (that is, b∗ matches σ order-wise)
and (2) bij is barred in b if and only if σj is barred in σ (that is, b∗ matches σ bar-wise).

Given a collection Σ of patterns, let Bn(Σ) denote the set of all signed permutations in
Bn that simultaneously avoid all signed patterns in Σ. Simion [4] studied the case where Σ
contains one or two signed patterns of length 2. As in her paper, we let βn(Σ) = |Bn(Σ)| .

Proposition 1 (Simion, [4]). If σ is any signed pattern of length 2, then for each n,

βn(σ) =
n∑
k=0

(
n

k

)2

· k!

For patterns of length 2, Simion proved (we made a correction to her proposition):

Proposition 2 (Simion, [4]).

βn(12, 21) = βn(21̄, 1̄2) = βn(21̄, 12̄) = βn(12, 12̄) = (n+ 1)!

n! < βn(12, 2̄1) < (n+ 1)! for n > 3

βn(21, 2̄1̄) =

(
2n

n

)
βn(12̄, 1̄2) = 2

∑
(a1,...,ak)

a1+···+ak=n

a1!a2! · · · ak!

As Simion indicates in [4], it is sufficient to consider these seven pairs of signed
patterns as all other pairs are in the orbit of one of these seven under the involutions
reversal, barring and complementation. For b = b1 · · · bn ∈ Bn, complementation means
bi is replaced with the value n + 1 − |bi|, which is barred if an only if bi is barred, and
the absolute value notation means |bi| = bi if the symbol bi is barred and |bi| = bi if bi
is unbarred. Simion left the open question of finding explicit bijections between the sets
of these signed permutations that are counted by (n+ 1)! and in Section 2 of this paper
we answer this open question by giving bijections from each class counted by (n+ 1)! to
Sn+1.

With respect to the total ordering 1 < 2 < · · · < n < n̄ < · · · < 2̄ < 1̄, we say b ∈ Bn

has a descent at i (less than n) when bi > bi+1 and b has a descent at n when bn is barred.
The descent set of b is

DesB(b) = {i ∈ [n] : b has a descent at i}

and we define the major index of b as

majB(b) :=
∑

i∈DesB(b)

i.

With respect to the same total ordering, we say (bi, bj) where i < j is an inversion pair
in b iff bi > bj. We define the inversion statistic of b as

invB(b) := # of inversion pairs in b.
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When π ∈ Sn, we use majA(π) and invA(π) to denote the major index and the number
of inversion pairs of π with respect to the standard total ordering of 1, . . . , n. We recall
here the celebrated result of MacMahon which gives the equidistribution of major index
and inversion statistic over Sn as a q-factorial, that is,∑

π∈Sn

qmajA(π) =
∑
π∈Sn

qinvA(π) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1) =: [n]!q.

Given a statistic f on Bn, define

Bf
n(Σ)(q) :=

∑
b∈Bn(Σ)

qf(b)

Simion studied relations between statistics on type-B noncrossing partitions and restricted
signed permutations and gave the following explicit generating function for the type Bn

major index statistic on signed permutations in Bn avoiding both 21 and 2̄1̄.

Theorem 3 (Simion, [4]).

BmajB

n (21, 2̄1̄)(q) =
n∑
k=0

(
n

k

)[
n
k

]
q

q(
k+1
2 )

In Section 3, we give the generating function for the major index on signed permu-
tations avoiding the patterns 12 and 21, as well as the major index on the type Dn

permutations that avoid Σ = {12, 21} and Σ = {21, 2̄1̄}. In Section 4, we give the gener-
ating function for the inversion statistic for one of the two classes of type Bn permutations
that avoid a single pattern of length two and for all but two of the classes of the type Bn

permutations that avoid two such patterns.

2 Bijective Proofs

In this section, we answer an open question of Simion to give bijections between each
of the sets of restricted permutations given by Bn(12, 21), Bn(21̄, 1̄2), Bn(21̄, 12̄), and
Bn(12, 12̄). Since Simion proved that each of these sets is counted by (n + 1)!, we will
give explicit bijections between each of these sets and Sn+1. In Theorem 8 we provide a
correction to the enumeration of Bn(12̄, 1̄2) given in [4].

Theorem 4. There is a bijection from Bn(12, 21) to Sn+1.

Proof. Let σ ∈ Bn(12, 21). Any permutation in Bn(12, 21) has either all elements barred
or exactly one element unbarred. If σ has all elements barred, then let πi = σi (without
the bar) and let πn+1 = n+ 1. Then π ∈ Sn+1.

If σ has one element unbarred, say j, then let πj = n + 1, let πi = σi (without the
bar) for 1 6 i 6 j − 1 and let πi+1 = σi (without the bar) for j 6 i 6 n.

For the reverse map, let π ∈ Sn+1 and suppose πj = n + 1, that is, j is the position
of n + 1. If j = n + 1, delete n + 1 from π and place a bar on every remaining element
of π. If j < n+ 1, delete n+ 1 and place a bar on every remaining element except πj+1.
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Theorem 5. There is a bijection between Bn(1̄2, 21̄) and Sn+1.

Proof. If σ ∈ Bn(1̄2, 21̄), then the unbarred numbers in σ must be less than the barred
numbers in σ (in absolute value). So either all numbers in σ are barred or the numbers
1 through k are unbarred and the numbers k+ 1 through n are barred, for 1 6 k 6 n. If
the numbers 1 through k are unbarred, then create π ∈ Sn+1 by letting πk = n + 1 and
placing the numbers 1, . . . , n into π in the same relative order as the elements of σ. If all
numbers in σ are barred, then let πn+1 = n+ 1 and place the numbers 1 through n into
π in the same relative order as the elements of σ.

Now let π ∈ Sn+1. For the reverse map, if πk = n+ 1, then place the numbers 1, . . . , k
and k + 1, . . . , n̄ into σ in the same relative position as the elements 1, . . . , n of π.

Theorem 6. There is a bijection from Bn(12̄, 21̄) to Sn+1.

Proof. If σ ∈ Bn(12̄, 21̄), then σ consists of j barred numbers followed by n− j unbarred
numbers, for 0 6 j 6 n. To create π ∈ Sn+1, let πj+1 = n+ 1 and πi = |σi| for 1 6 i 6 j
and πi+1 = σi for j < i 6 n.

For the reverse map, if πj+1 = n + 1, then let σi = πi for 1 6 i 6 j and let σi = πi+1

for j < i 6 n.

Theorem 7. There is a bijection from Bn(12, 12̄) to Sn+1.

Proof. If σ ∈ Bn(12, 12̄) then the unbarred elements of σ must followed by numbers
smaller in absolute value. To form π ∈ Sn+1, first let πj = i whenever σj = ī. Now place
the remaining k unbarred numbers of σ into the rightmost k available positions of π (due
to the pattern restriction, these numbers will appear in decreasing order). Place n+ 1 in
the last remaining open position.

For the reverse map, suppose π ∈ Sn+1 and n+ 1 = πj. First, if πl = i, then let σl = ī
for 1 6 l < j. Now suppose πn+1 = k1. For each i < k1, if πl = i then let σl = ī. Place k1

(unbarred) in the first (from the right) available position in σ, say position m1. Suppose
πm1 = k2. And now for each i < k2, if πl = i then let σl = ī. Place k2 (unbarred) in the
first (from the right) available position in σ, say position m2. Now iterate this process
until mi = j for some i.

Theorem 8.
βn(12̄, 1̄2) = 2

∑
(a1,...,ak)

a1+···+ak=n

a1!a2! · · · ak!.

Proof. Each σ ∈ Bn(12̄, 1̄2) can be considered as a sequence of blocks of integers which
alternate between barred and unbarred. Each block of integers is preceded by numbers
which are larger (in absolute value) and followed by numbers which are smaller (in abso-
lute value), however within each block, the integers may appear in any order. So given the
length of each block, the numbers that must appear in each block are determined. Hence,
π is in direct correspondence with a composition of n into some number of parts (blocks),
where each part of size i has i! colors. Since σ can start with a barred or unbarred block,
we double the count.
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3 Major index generating functions on Bn(Σ) and Dn(Σ)

Simion proved the following result using a bijection between signed permutations and
non-crossing partitions:

Theorem 9 (Simion, [4]).

Bmaj
n (21, 2̄1̄)(q) =

n∑
k=0

(
n

k

)[
n
k

]
q

q(
k+1
2 )

Using standard recurrences for the binomial and q-binomial coefficients, that is,[
n
k

]
q

=

[
n− 1
k

]
q

+

[
n− 1
k − 1

]
q

qn−k

one can show that Theorem 9 equates to:

n−1∑
k=0

(
n− 1

k

)[
n− 1
k

]
q

q(
k+1
2 ) +

(
n− 1

k − 1

)[
n− 1
k

]
q

q(
k+1
2 )

(
n− 1

k

)[
n− 1
k − 1

]
q

q(
k+1
2 )−kqn +

(
n− 1

k − 1

)[
n− 1
k − 1

]
q

q(
k+1
2 )−kqn

We now give a combinatorial interpretation of this recurrence using signed permutations.
It is well-known that the q-binomial coefficient satisfies[

n
k

]
q

q(
k+1
2 ) =

∑
{a1,...,ak}

qa1+···+ak

where the sum is over all possible k-subsets of [n].
The first two terms of the recurrence correspond to the set of restricted signed per-

mutation with k descents in which the last position is unbarred. In this case, either n is
barred or n is unbarred. First, suppose n is unbarred. To create such a restricted signed
permutation, we will first choose k numbers from {1, . . . , n − 1} that will be barred in(
n−1
k

)
ways, then we will choose the k positions from {1, . . . , n − 1} to place the barred

numbers. Since these permutations avoid the patterns 21 and 2̄1̄, once we have chosen the
numbers and positions for the barred elements, the permutation is uniquely determined
and each barred position is a position where a descent occurs. Hence, the generating
function for majB for this set of permutations is

n∑
k=0

(
n− 1

k

)[
n− 1
k

]
q

q(
k+1
2 )

Under the same conditions, if n is barred, the generating function for majB is

n−1∑
k=0

(
n− 1

k − 1

)[
n− 1
k

]
q

q(
k+1
2 )
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The last two terms of the recurrence correspond to the set of restricted signed permu-
tation with k descents in which the last position is barred. Again, n is either unbarred
or barred. In this case, we choose k− 1 positions from the set {1, . . . , n− 1} to place our
barred numbers. Given that the last position corresponds to a descent and we pick up a
factor of qn to account for the descent in the last position.

We can extend this result for the major index on signed permutations to the set of
permutations in Dn (the signed permutations with an even number of signs) avoiding the
set (21, 2̄1̄).

Corollary 10.

DmajD

n (21, 2̄1̄)(q) =

bn−1
2
c∑

j=0

(
n− 1

2j

)[
n− 1

2j

]
q

q(
2j+1

2 ) +

bn−1
2
c∑

j=0

(
n− 1

2j

)[
n− 1
2j − 1

]
q

q(
2j
2 ) +

bn−1
2
c∑

j=0

(
n− 1

2j − 1

)[
n− 1

2j

]
q

q(
2j+1

2 )qn +

bn−1
2
c∑

j=0

(
n− 1

2j − 1

)[
n− 1
2j − 1

]
q

q(
2j
2 )qn

Proof. The four terms in the generating function correspond to the four cases where the
last element is unbarred and n is unbarred, the last element is unbarred and n is barred,
the last element is barred and n is unbarred and the last element is barred and n is
barred, using the same reasoning as in the proof of the theorem.

Simion notes in [4] that G. Andrews asked whether it is possible to derive a p, q-
analogue in which the other binomial coefficient in Theorem 9 becomes a p-binomial
coefficient. We now define a statistic on Bn which allows us to obtain the desired p, q-
analogue.

Definition 11. For b = b1 · · · bn ∈ Bn, let sum(b) denote the sum of the barred elements
of b. That is,

sum(b) =
n∑
i=1

|bi| · χ(bi barred)

Theorem 12. ∑
b∈Bn(21,2̄1̄)

psum(b)qmaj(b) =
n∑
k=0

[
n
k

]
p

[
n
k

]
q

p(
k+1
2 )q(

k+1
2 )

Proof. The proof follows from the combinatorial proof of Theorem 9 and the definition
of sum(b).

We now give the major index generating function on the class of signed permutations
avoiding the patterns 12 and 21.
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Theorem 13.

BmajB

n (12, 21)(q) =

(∑
π∈Sn

qmajA(π)

)
qn + (n− 1)

(∑
π∈Sn

qmajA(π)

)
qn

+

(∑
π∈Sn

qmajA(π)

)
= (nqn + 1)[n]!q

Proof. A signed permutation that avoids the patterns 12 and 21 is either all barred or
has one element that is unbarred. If a permutation has all barred elements, then we can
biject it with a permutation in Sn whose elements appear in the same relative order, thus
majB on all barred signed permutations is the same as majA on unsigned permutations,
except that we pick up a factor of qn for the descent in the last position. This accounts
for the first term in the sum.

If the signed permutation σ has exactly one unbarred element, first suppose this
element is not in the last position. Then we have (n− 1) choices of where the unbarred
element appears. Now we may associate this permutation with a permutation π ∈ Sn
so that the unbarred element of σ corresponds to the 1 element of π and the remaining
elements of σ are replaced with the numbers 2, . . . , n in relative order according to σ.
Hence, to get majB on this set, we can compute majA on Sn and multiply by qn, since
the last element is barred, giving us the second term in the sum.

If the signed permutation σ has exactly one unbarred element and it is in the last
position, then we can again associate this permutation with a permutation π ∈ Sn so that
the unbarred element of σ corresponds to the 1 element of π and the remaining elements
of σ are replaced with the numbers 2, . . . , n in relative order according to σ. Hence, to
get majB on this set, we can simply compute majA on Sn, giving us the final term in the
sum.

Corollary 14. If n is even,

DmajD

n (12, 21)(q) = qn

(∑
π∈Sn

qmajA(π)

)
= qn[n]!q

and if n is odd,

DmajD

n (12, 21)(q) = (n− 1)

(∑
π∈Sn

qmajA(π)

)
qn +

(∑
π∈Sn

qmajA(π)

)
= (1 + (n− 1)qn)[n]!q.

4 Inversion generating functions on Bn(Σ)

In this section, we give generating functions for the inversion statistic on classes of signed
permutations that avoid one or two signed patterns. The operations of reversal and
barring change the inversion statistic in a well-defined way, but complementation does
not, so when working with the inversion statistic, there are only two classes of signed
permutations that avoid a single pattern of length two to consider, Bn(12) and Bn(12̄)
and we give the inversion generating function for Bn(12). However, for classes that avoid
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two signed permutations, there are three additional classes to consider beyond those
enumerated in Proposition 2. They are Bn(12, 2̄1̄), Bn(12, 1̄2) and Bn(12, 21̄). Of the
ten classes under consideration for the inversion statistic, we give inversion generating
functions for all but Bn(12̄, 1̄2) and Bn(12, 21̄).

Theorem 15. BinvB

n (12)(q) =
n∑
k=0

(
n

k

)[
n
k

]
q

q(
k
2) [n− k]!q

Proof. A permutation in Bn(12) contains k unbarred elements which appear in decreasing
order and n− k barred elements which can appear anywhere in the permutation and in
any order. We can choose the k unbarred elements in

(
n
k

)
ways and then choose the k

places where these elements will appear in the permutation. Any unbarred element in
position k forms k − 1 inversions with each of the elements before it in the permutation,
thus to determine the inversions created by the unbarred elements we need to sum the

positions of the k unbarred elements and subtract k. We can do this in

[
n
k

]
q

q(
k+1
2 )−k

ways. Finally, the barred elements are isomorphic to a permutation in Sn−k so we can
compute the inversions created between the barred elements by computing invA on the
corresponding permutation, which gives [n− k]!q.

Determining the generating function for the inversion statistic on Bn(12̄) remains
an open problem. We now give the inversion generating function for classes of signed
permutations that avoid two signed patterns of length two.

Theorem 16. BinvB

n (12, 21)(q) = (n+ 1)[n]!q

Proof. As in Section 3, a permutation in Bn(12, 21) has either all barred elements or
only one unbarred element. If the permutation is all barred, we can associate it with a
permutation in Sn whose elements appear in the same relative order, thus we can compute

invB as
(∑

π∈Sn
qinvA(π)

)
. If the permutation has exactly one unbarred element, then we

have n choices for the element in the unbarred position. As before, we now associate this
permutation with a permutation π ∈ Sn so that the unbarred element of σ corresponds
to the 1 element of π and the remaining elements of σ are replaced with the numbers
2, . . . , n in relative order according to σ. Hence to compute invB on this set, we can

compute invA on Sn, giving n
(∑

π∈Sn
qinvA(π)

)
.

Theorem 17. BinvB

n (1̄2, 21̄)(q) = (n+ 1)[n]!q

Proof. Any permutation in BinvB

n (1̄2, 21̄) has the k largest elements (in absolute value)
barred since a barred element can not be preceded or followed by a larger (in absolute
value) unbarred element. This permutation can be associated with a permutation in Sn
whose elements appear in the same relative order, thus we can compute invB on this
permutation as invA on the associated permutation. This gives us

∑n
k=0

∑
π∈Sn

qinvA(π) =

(n+ 1)
∑

π∈Sn
qinvA(π).

Theorem 18. BinvB

n (12̄, 21̄)(q) =
n∑
k=0

(
n

k

)
[k]!q[n− k]!qq

k(n−k)
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Proof. Any permutation in Bn(12̄, 21̄) has k barred elements followed by n− k unbarred
elements since an unbarred element can not be followed by any barred elements. The
initial k barred elements can be associated with a permutation in Sk whose elements
appear in the same relative order, thus we can compute invB on this permutation as invA

on the associated permutation. The n− k unbarred elements can similarly be associated
with a permutation in Sn−k whose elements appear in the same relative order, thus we
can compute invB on this permutation as invA on the associated permutation. Since all
of the k barred elements form inversions with all of the n−k unbarred elements, we have
an additional k(n − k) inversions, thus we need to multiply by qn(n−k). Summing from
k = 0 to k = n gives the desired sum.

Theorem 19. BinvB

n (12, 12̄)(q) = qn−1BinvB

n−1 (12, 12̄) +
n−1∑
k=0

qkBinvB

n−1 (12, 12̄)

Proof. For any σ ∈ Bn(12, 12̄), the 1 element is either unbarred or barred. If the 1 element
is unbarred then it must appear in position n, which contributes n − 1 to the inversion
statistic. The permutation in positions 1 through n − 1 must then be a permutation
(after relabeling) in Bn−1(12, 12̄), giving the first term in the recurrence. If the 1 element
is barred, then it can appear in any of the positions 1 through n. If the 1 is barred and
in position k, it contributes n − k to the inversion statistic and the permutation in the
remaining n− 1 positions must be a permutation (after relabeling) in Bn−1(12, 12̄), thus
giving the second term in the recurrence.

Theorem 20. BinvB

n (12, 2̄1)(q) =
n−1∑
k=0

((
n− 1

k

)
[n− 1− k]!qq

(k+1
2 ) + qkBinvB

n−1 (12, 2̄1)(q)

)
Proof. For any permutation in Bn(12, 2̄1), the 1 element is either unbarred or barred. If
the 1 element is unbarred, then the permutation has k unbarred elements in decreasing
order, which can be chosen in

(
n−1
k

)
ways, followed by 1, followed by n − 1 − k barred

elements in any order. To compute invB on this permutation, the first k unbarred elements
in decreasing order contribute (k − 1) + (k − 2) + · · · + 2 + 1 to the inversion statistic,
the 1 element forms k inversions with the k elements before it and then we compute invB

on the remaining n − 1 − k barred elements by associated them with a permutation in
Sn−1−k whose elements appear in the same relative order. This gives the first term in the
sum.

If the 1 element is barred, then we can insert it into any of n positions in a permutation
σ in Bn−1(12, 2̄1) by first relabeling the elements in σ as elements 2 through n in the same
relative order and with the same barring scheme as in σ. If 1̄ is inserted in position n−k,
it contributes k to the inversion statistic since it creates inversions with every element
after it. Thus we obtain the second term in the sum.

Theorem 21. BinvB

n (12, 1̄2̄)(q) =
n∑
k=0

(
n

k

)[
n
k

]
q

q(
k
2)

Proof. For π ∈ Bn(12, 1̄2̄), all of the unbarred numbers are in decreasing order and all of
the barred numbers are in increasing order (relative to the total ordering). An unbarred
number in position k is smaller than each of the k− 1 elements preceding it and a barred
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number in position j is larger than each of the j− 1 elements preceding it. Thus we need
only to sum the positions of the unbarred elements and subtract the number of total
positions (since each position k contributes k − 1 to the inversion statistic) to determine
the total number of inversions. We first choose which k numbers will be unbarred in

(
n
k

)
ways, then sum their positions and subtract k, which gives

[
n
k

]
q

q(
k+1
2 )−k =

[
n
k

]
q

q(
k
2).

Theorem 22. BinvB

n (1̄2̄, 21)(q) =
n∑
k=0

(
n

k

)[
n
k

]
( 1
q )
qk(n−k)

Proof. For π ∈ Bn(1̄2̄, 21), all unbarred numbers increase, so an unbarred number is
either followed by unbarred numbers which are bigger, or by barred numbers which
are bigger because of the total ordering. Thus no unbarred number contributes to the
inversion statistic. Any barred number is either followed by larger (with respect to the
total ordering) barred numbers, which don’t contribute to the inversion statistic, or by
unbarred numbers, each of which contributes to the inversion statistic. We may choose the
k numbers which will be barred in

(
n
k

)
ways. Given the k positions of the barred numbers,

we can determine the number of inversions as follows. Let pi denote the position of the
ith barred number, where i = 1, . . . , k. Noting that a barred number in position pi is
followed by n − pi numbers, some of which may be barred, we first take the sum of the
positions of the barred numbers and subtract this amount from kn, and we have so far
an overcount of the number of inversions. To correct the overcount, at each position for
a barred number, we need to subtract the number of barred numbers that follow. For
each barred number in position pi, there are k− i barred numbers that follow. Hence, we
have kn−

∑k
i=1 pi−

∑k
i=1 (k − i) = kn−

∑k
i=1 pi+

(
k+1

2

)
−k2 =

(
k+1

2

)
−
∑k

i=1 pi+kn−k2

inversions for a given set of k positions for the barred numbers. Summing over all possible

positions for the barred numbers gives

[
n
k

]
( 1
q )
qkn−k

2
.

Theorem 23. BinvB

n (12, 1̄2)(q) =
n∑
k=1

(
n− 1

n− k

)
(qk−1 + qn−k)[n− k]!qB

invB

k−1 (12, 1̄2)(q)

Proof. For σ ∈ Bn(12, 1̄2), wherever the 1 element appears (barred or unbarred), all
elements following it must be barred. If the 1 is unbarred and in position k, it contributes
k−1 inversions since all the elements preceding it are larger. The n−k elements following
the 1 can be chosen in

(
n−1
n−k

)
ways and correspond to a permutation in Sn−k, thus the

inversion statistic for these elements can be counted by invA. The k − 1 remaining
elements preceding the 1 correspond to a permutation in Bk−1(12, 1̄2). If the 1 element
is barred, the argument is similar, however the 1 element contributes n − k inversions
rather than k − 1 inversions.

5 Future Work

We have been able to extend Simion’s work by providing a recurrence for the major
index on Bn(21, 2̄1̄) and also by giving a recurrence for the major index on Dn(Σ) for
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Σ = {21, 2̄1̄} and Σ = {12, 21}. Our goal is to develop recurrence relations for the major
index statistic on Bn(Σ) for all sets Σ with |Σ| = 2. Naturally, we would also like to
give the inversion generating functions on Bn(12̄) as well as the two classes of signed
permutations avoiding two patterns of length two that remain open questions at this
time.
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