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Abstract

We give a bijection between the symmetric group Sn, and the set of standard
Young tableaux of rectangular shape mn, m > n, that have order n under jeu de
taquin promotion.

1 Introduction

Fix positive integers m > n, and let be either the m × n rectangle, or the n × m
rectangle. The promotion map ∂ : SYT

( )
→ SYT

( )
defines an action of (Z,+) on

the set of standard Young tableaux of shape . For T ∈ SYT( ), ∂T is computed by
deleting the entry 1 from T , decrementing each entry by 1, rectifying, and finally adding
an entry mn in the lower-right corner. For example,

T =
1 2 5
3 4 6

→ 2 5
3 4 6

→ 1 4
2 3 5

→ 1 3 4
2 5

→ 1 3 4
2 5 6

= ∂T .

Interest in this action stems from its connections to geometry and representation theory,
and its striking combinatorial properties (see [2, 9, 11, 15, 16]).

Let Or := {T ∈ SYT
( )

| ∂rT = T} denote the set of tableaux whose order under
promotion divides r. By a theorem of Haiman [5], ∂mnT = T for all T ∈ SYT

( )
; hence

Or is empty if r is coprime to mn. It is also not hard to show that Or is empty for r < n;
this is implicit in the proof of Theorem 3. The minimal orbits of promotion, therefore,
have order n.

The action of promotion on SYT
( )

exhibits a cyclic sieving phenomenon, as defined
in [14]: we have |Or| = F (ζr), where F (q) is a q-analogue of the hook length formula
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Figure 1: An example of a diagonal of : here n = 4, m = 6, λ+ = 5431 and λ− = 432.

for |SYT
( )
|, and ζ is a primitive (mn)th root of unity. The quantity F (ζr) appears in

a number of other places in representation theory and combinatorics, which proffers a
variety of avenues of proof for this cyclic sieving theorem. It was first proved by Rhoades
using Kazhdan-Lusztig theory [11]. Subsequently other proofs were found using repre-
sentation theory of SLn [16], and the geometry of the Grassmannian [9] and the affine
Grassmannian [2]. Simpler, more combinatorial proofs are known in special cases when
n = 2, 3 [8]. The survey [12] discusses of a number of related results. However, at present
there is no known combinatorial proof in general, nor any proof that gives an effective
description of the sets Or.

The purpose of this paper is to give an explicit combinatorial construction of the
orbits in On, i.e. the minimal orbits of promotion. We will assume that the reader
is familiar with basic definitions from the combinatorial theory of Young tableau, such
as Schensted insertion, jeu de taquin operations (sliding, reverse-sliding, rectification),
Knuth equivalence and dual equivalence; all of these may be found in [3].

Using Rhoades’ cyclic sieving theorem, one can compute that |On| = n!. Our main
result gives a bijection between the symmetric group Sn and On. Under this bijection
promotion corresponds to right-multiplication by the n-cycle (1 n n−1 . . . 2). There
are a number of arbitrary choices involved in constructing the bijection, and much of the
proof is concerned with showing that the construction is in fact well-defined.

To begin, choose a skew shape λ+/λ− ⊂ , consisting of n boxes 1, 2, . . . , n, such
that i+1 is strictly above and strictly right of i, for i = 1, . . . , n − 1. We call λ+/λ− a
diagonal of , (see Figure 1). For each permutation w ∈ Sn, we define a tableau T λ+w
of shape λ+, using a procedure similar to rectification. In the following algorithm, T is a
tableau under construction. If is a box of λ+, we write ∈ λ+, and T [ ] denotes the
entry of T in box .

Algorithm A. INPUT: A permutation w ∈ Sn.

Begin with T [ i] := w(i), for i = 1, . . . , n, leaving all boxes of λ− unfilled;
while shape(T ) 6= λ+ do

Let µ ⊂ λ+ be the unfilled boxes to the left of T ;
Choose any corner box ∈ µ;
Let T ′ be the tableau obtained by sliding through T ;
If the final position of the sliding path is i, then set T ′[ i] := T [ i] + n;
Set T := T ′;

end while
return the resulting tableau, T λ+w := T .
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2
4

1
3

→

2
1 4
5

3

→

2
1 4

5 9
3

→

2 6
1 4

5 9
3

→

1 2 6
4 8

5 9
3

→

1 2 6
4 8

3 5 9
7

→

1 2 6
4 8 12

3 5 9
7

→

1 2 6 10
4 8 12

3 5 9
7

→

1 2 6 10
3 4 8 12
5 9 13
7

→

1 2 6 10 14
3 4 8 12
5 9 13
7

Figure 2: Construction of T λ+w , with w = 3142, and λ+ = 5431.

An example of Algorithm A is given in Figure 2. Note that in this example, T λ+w is
not a standard Young tableau, since the entries are not {1, . . . , |λ+|}.

The key difference is between Algorithm A and rectification is that as we slide empty
boxes of λ− through T , we are also refilling the boxes of λ+/λ−. If we were not refilling
these boxes, we would be performing ordinary rectification on a tableau with reading
word w, which produces the insertion tableau of w. Since this difference involves only
entries greater that n, the insertion tableau of w is the subtableau T λ+w formed by entries
1, . . . , n.

Theorem 1. The definition of T λ+w is independent of the choices in Algorithm A.

Theorem 1 is analogous to the well known fact that ordinary rectification is well-defined
[13]. However, despite the apparent similarity between Algorithm A and rectification,
one cannot easily deduce one fact from the other. We discuss some of the difficulties in
Section 5.

Similarly, we define a tableau T
/λ−

w of shape /λ−, using reverse slides.

Algorithm B. INPUT: A permutation w ∈ Sn.

Begin with T [ i] := w(i) + (m− 1)n, for i = 1, . . . , n, and all boxes of /λ+ unfilled;
while shape(T ) 6= /λ− do

Let µ ⊂ /λ− be the unfilled boxes to the right of T ;
Choose any corner box of µ;
Let T ′ be the tableau obtained by reverse-sliding through T ;
If final position of the sliding path is i, then set T ′[ i] := T [ i]− n;
Set T := T ′;
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22
24

21
23

→

22
20

21 24
23

→

22
20

21 24
19 23

→

22
20

21 24
15 19 23

→ . . . →

14 18
12 16 20

13 17 21 22
7 11 15 19 23 24

Figure 3: Construction of T
/λ−

w , with w = 3142, m = 6, and λ+ = 5431.

end while
return the resulting tableau, T

/λ−
w := T .

An example is given in Figure 3. Since Algorithm B is essentially “Algorithm A turned
upside-down”, Theorem 1 implies that the definition of T

/λ−
w is independent of choices.

We combine these two constructions to produce a tableau Tw of shape : for each
box ∈ , let

Tw[ ] :=

{
T λ+w [ ] if ∈ λ+
T

/λ−
w [ ] otherwise.

For example, for w = 3142, m = 6, we combine the tableaux in Figures 2 and 3 to obtain

Tw =

1 2 6 10 14 18
3 4 8 12 16 20
5 9 13 17 21 22
7 11 15 19 23 24

.

Since the definition of Tw is piecewise, it is not immediately clear that this is always a
sensible construction. We will show that the constructions in Algorithms A and B agree
on the diagonal, i.e. T λ+w [ i] = T

/λ−
w [ i], for i = 1, . . . , n. This is the first step in proving:

Theorem 2. Tw is a standard Young tableau. Moreover, the definition of Tw is indepen-
dent of the choice of diagonal λ+/λ−.

Our main result states that this construction gives the minimal orbits of promotion.

Theorem 3. The map w 7→ Tw defines a bijection between Sn and On. Specifically the
following hold:

(i) For all w ∈ Sn, ∂Tw = Twc, where c = (1 n n−1 . . . 2). In particular Tw ∈ On.

(ii) If w,w′ ∈ Sn and w(i) 6= w′(i), then Tw[ i] 6= Tw′ [ i]. In particular w 7→ Tw is
injective.
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1 3 6 7 2
2 4 9 4
5 8 1
3

→

1 1 3 7 2
2 4 6 4
5 8 5
3

→

1 2 1 3 6
2 4 6 4
5 8 5
3

→

1 2 1 3 6
3 4 6 4
2 8 5
7

→

1 2 1 3 6
3 4 4 8
2 8 5
7

→

1 2 1 3 6
3 4 4 8
5 2 9
7

→

1 2 6 1 10
3 4 4 8
5 2 9
7

→

1 2 6 1 10
3 4 8 12
5 2 9
7

→

1 2 6 1 10
3 4 8 12
5 9 13
7

→

1 2 6 10 14
3 4 8 12
5 9 13
7

Figure 4: An alternative way to compute T
λ+
3142, using the same order for the boxes of λ−

as the example in Figure 2.

(iii) For each T ∈ On, consider the function w : {1, . . . , n} → {1, . . . , n} such that
w(i) ≡ T [ i] (mod n), for i = 1, . . . , n. We have w ∈ Sn, and Tw = T . In particular
w 7→ Tw is surjective.

The rest of this paper is organized as follows. In Section 2 we develop a reduction
strategy for proving Theorems 1 and 2. This strategy is implemented in Section 3, where
we prove two lemmas: the first reducing the problem to one we can solve, and the second
solving it. All three theorems are proved in Section 4. Finally, in Section 5 we discuss
some additional facts that are true, and some that we would like to be true.

2 Strategy

To prove Theorem 1, we need to formulate it in a different way. As with ordinary rec-
tification, each possible sequence of choices of boxes in Algorithm A can be encoded by
a standard Young tableau U ∈ SYT(λ−), by putting U [ ] := |λ−| + 1 − k if is the box
chosen in the kth iteration of the loop. Let TUw denote the result of applying Algorithm A
with order of boxes encoded by U . For example, Figure 2 computes TU3142, with

U =
1 3 6 7
2 4 9
5 8

.

Theorem 1 states that TUw is independent of U ∈ SYT(λ−).
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The steps of a rectification-type algorithm can be performed in a variety of different
but equivalent orders. In particular, instead of sliding the entries of U through T , from
largest to smallest, one can reverse-slide the entries of T though U , from smallest to
largest, (see [1] for full details). Figure 4 illustrates this in the context of Algorithm A,
using the example from Figure 2.

This perspective not only gives a reformulation of Algorithm A, but allows us generalize
it to inputs that are not permutations. Let σ = σ1σ2σ3 . . . be an infinite sequence, with
σk ∈ {1, . . . , n} for k = 1, 2, 3, . . . . We construct a sequence U

σ = 1 2 3 . . . of boxes of
λ+, as follows.

Algorithm C. INPUT: The pair (σ, U).

Let U0 := U ;
for k = 1, 2, 3, . . . do

Let Uk be the tableau obtained by reverse-sliding box σk through Uk−1;
Define k to be the final position of the sliding path;
Delete the entry in σk from Uk, if one exists;

end for
return U

σ := 1 2 3 . . . .

We use this sequence to define a function δUσ : {1, . . . , n} → Z>0,

δUσ (i) := #{k | σk = i and k 6= i} ,

where U
σ = 1 2 3 . . . . This function will be key in proving Theorem 2. If U

σ is
independent of U ∈ SYT(λ−), we write λ+

σ := U
σ , and δλ+σ := δUσ .

Strictly speaking, Algorithm C is not a proper algorithm, in that it does not terminate;
however, we are really only interested in a finite part of U

σ . Once k is sufficiently large,
we have k = σk . For N > 0, denote the truncation of a sequence at its N th term by
TruncN(a1a2a3 . . . ) := (a1a2 . . . aN).

For w ∈ Sn, define w∗ to be the repeating sequence

w∗ := a1a2 . . . an a1a2 . . . an a1a2 . . . ,

where a1a2 . . . an is the word representing w−1 in one line notation (i.e. ai = w−1(i)
for i = 1, . . . , n). The following proposition precisely states the relationship between
Algorithms A and C.

Proposition 4. Write U
w∗ = 1 2 3 . . . . For each box ∈ λ+, TUw [ ] is the smallest k

such that k = . Hence, for some N > 0, TruncN
(

U
w∗

)
determines TUw . In addition, we

have TUw [ i] = w(i) + n · δUw∗(i).

Proof. The first two statements are simply a more precise formulation of the remarks at
the beginning of this section. For the third, note that the kth term of w∗ is equal to i,
for k = w(i), w(i) + n,w(i) + 2n, . . . . By the definition of δUσ , the (δUw∗ + 1)th term in this
sequence is the smallest k such that k = i. The former is w(i)+n · δUw∗(i), and the latter
is TUw [ i].
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Partially order the boxes of λ+: let 6 ′ if ′ is both weakly right of and weakly
above .

Proposition 5. Write U
σ = 1 2 3 . . . . If σk < σk+1 then k < k+1; if σk > σk+1 then

k > k+1.

Proof. This follows from the fact that jeu de taquin preserves horizontal (and vertical)
strips.

For a sequence a1a2a3 . . . with terms from a partially ordered set (e.g. the numbers
{1, . . . , n} or the boxes of λ+), define the strict Knuth transformations to be the
operations

κk(a1a2a3 . . . ) = a1a2 . . . ak−1xyzak+3ak+4 . . . ,

where

xyz =


akak+2ak+1 if ak+1 < ak < ak+2 or ak+2 < ak < ak+1

ak+1akak+2 if ak < ak+2 < ak+1 or ak+1 < ak+2 < ak

undefined otherwise.

In the third case κk(a1a2a3 . . . ) is also undefined. These are similar to elementary Knuth
transformations on sequences, except that the inequalities are required to be strict. We
define two sequences a1a2a3 . . . and b1b2b3 . . . to be equivalent if for every N > 0, there
exists a finite sequence κk1 , κk2 , . . . , κkm of strict Knuth transformations such that

TruncN
(
κk1 ◦ κk2 ◦ · · · ◦ κkm(a1a2a3 . . . )

)
= TruncN

(
b1b2b3 . . .

)
.

When a1a2a3 . . . is a sequence of boxes, this generalizes of the notion of dual equivalence
on tableaux [5].

Proposition 6. Let σ be a sequence with terms from {1, . . . , n}. If κk(σ) is defined, then
κk(

U
σ ) is defined, and

(i) U
κk(σ)

= κk(
U
σ );

(ii) δUκk(σ)(i) = δUσ (i), for i = 1, . . . , n.

Proof. Write σ̂ := κk(σ). Let U
σ = 1 2 3 . . . , and let U0, U1, U2, . . . be the sequence

of tableaux produced in Algorithm C. Let U
σ̂ = ̂1 ̂2 ̂3 . . . , and Û0, Û1, Û2, . . . be the

corresponding objects for σ̂. Since σj = σ̂j for j < k, we have j = ̂j and Uj = Ûj,

for j < k. In particular Uk−1 = Ûk−1. Given 3 boxes , ′, ′′ let T ( , ′, ′′) denote the
standard Young tableau with entries 1, 2, and 3, in boxes , ′ and ′′ respectively. The
pair of tableaux T ( σk , σk+1

, σk+2
) and T ( σ̂k , σ̂k+1

, σ̂k+2
) form a dual equivalence class.

It follows from [5, Corollary 2.8] that Uk+2 = Ûk+2, and since σj = σ̂j for j > k + 2 we
have j = ̂j for j > k+2. By [5, Lemma 2.3], T ( k, k+1, k+2) and T (̂k,̂k+1,̂k+2) also
form a dual equivalence class, which implies that the three-term sequences ( k, k+1, k+2)
and (̂k,̂k+1,̂k+2) are related by a strict Knuth transformation. This proves (i), and (ii)
is straightforward.
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This leads to our strategy for proving Theorems 1 and 2, which is outlined in the
next proposition. For the second statement in Theorem 2 we will need to consider how
the constructions in Algorithms A and B are related for different choices of diagonal.
This is facilitated by the following definition. Let λ′+/λ

′
− be another diagonal of . Let

1 2 3 . . . be a sequence of boxes of λ+, and let ′
1
′
2
′
3 . . . be a sequence of boxes of λ′+.

We say that these sequences are compatible if ′
k = k whenever ′

k ∈ λ+ and k ∈ λ′+.

Proposition 7. Suppose that σ is equivalent to w∗, and λ+
σ is well-defined (i.e. U

σ is
independent U ∈ SYT(λ−)). Then the following are true.

(i) T λ+w is well-defined (i.e. TUw is independent of U ∈ SYT(λ−)).

(ii) T λ+w [ i] = w(i) + n · δλ+σ (i).

(iii) Suppose λ′+ is obtained from λ+ by adding one box. If λ′+
σ is well-defined and

compatible with λ+
σ , then the tableaux T λ+w and T λ+

′

w coincide on λ+.

Proof. Let U, Û ∈ SYT( ). To prove (i), we must show that TUw = T Ûw . By Proposition 4,

there exists N > 0 so that TUw and T Ûw are determined by TruncN( U
w∗) and TruncN( Û

w∗);
therefore it is enough to show that the latter two are equal. Since w∗ is equivalent to σ
there is a sequence κk1 , κk2 , . . . , κkM of strict Knuth transformations such that

TruncN
(
κk1 ◦ κk2 ◦ · · · ◦ κkM (σ)

)
= TruncN

(
w∗
)

Since λ+
σ = U

σ = Û
σ , by Proposition 6(i) we have

TruncN
(

U
w∗

)
= TruncN

(
κk1 ◦ κk2 ◦ · · · ◦ κkM ( λ+

σ )
)

= TruncN
(

Û
w∗

)
,

as required. Similarly, (ii) follows from Proposition 4 and Proposition 6(ii). For (iii),
it is easy to see that λ+

σ is compatible with λ′+
σ if and only if κk(

λ+
σ ) is compatible

with κk(
λ′+
σ ). By Proposition 6(i),

λ+
w∗ is compatible with

λ′+
w∗ ; the result follows by

Proposition 4.

In the next section we will construct a suitable σ for each permutation w, enabling
us to prove Theorems 1 and 2. The construction of σ is based on the cyclage operation
of Lascoux and Schützenberger [7]. The following two facts will be used to establish
equivalence:

Proposition 8. Let w, ŵ ∈ Sn be two permutations. If w−1 and ŵ−1 have the same
insertion tableau, then w∗ is equivalent to ŵ∗.

Proof. Fix N > 0. Let a1a2 . . . an and b1b2 . . . bn be the words representing w−1 and ŵ−1

respectively. Since these words have the same insertion tableau, they are related by a
finite sequence of elementary Knuth transformations, and since ai 6= aj for i 6= j, each of
these is a strict Knuth transformation. It follows that w∗ can be transformed into any
sequence of the form

b1b2 . . . bn b1b2 . . . bn · · · b1b2 . . . bn a1a2 . . . an a1a2 . . . an a1a2 . . .

using a finite sequence of strict Knuth transformations. If there are at least N/n copies
of b1b2 . . . bn, then truncating at the N th term gives TruncN(ŵ∗), as required.
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Proposition 9. Let a1a2a3 . . . and b1b2b3 . . . be positive integer sequences. Let Ak be
the insertion tableau of the finite word a1a2 . . . ak, and let Bk be the insertion tableau of
b1b2 . . . bk. Suppose there exists a number M such that the following hold: AM = BM ;
ak = bk for all k > M ; and Ak and Bk are row-strict for all k 6 M . Then a1a2a3 . . . is
equivalent to b1b2b3 . . . .

Proof. Let Ak,1Ak,2 . . . Ak,k denote the reading word of Ak. For k 6 M there is a finite
sequence of elementary Knuth transformations taking

Ak−1,1Ak−1,2 . . . Ak−1,k−1ak 7→ Ak,1Ak,2 . . . Ak,k−1Ak,k ;

the precise sequence can be found in many references (e.g. [3, Section 2.1] or [6, Section
6.1]). It is easy to verify that if Ak is row-strict, then all of the transformations in this
sequence are strict Knuth transformations. This shows that a1a2a3 . . . is equivalent to

AM,1AM,2 . . . AM,Mam+1am+2 · · · = BM,1BM,2 . . . BM,Mbm+1bm+2 . . .

which, by the same argument, is equivalent to b1b2b3 . . . .

3 Descent sequences

Recall that i ∈ {1, . . . , n − 1} is a descent of w if w(i) > w(i + 1); if w(i) < w(i + 1),
then i is an ascent of w. Let id ∈ Sn denote the identity element, and let w0 ∈ Sn denote
the long element, w0 = nn−1 . . . 2 1. The major index of w is defined to be the sum of
the descents of w. For example, id is the unique permutation with major index 0, w0 is
the unique permutation with major index n(n− 1)/2.

Lemma 10. Let d1 > d2 > · · · > dt be the descents of w in decreasing order, and let
di = 0 for i > t. Then w∗ is equivalent to the sequence

σd1d2d3... := (d1+1, d1+2, . . . , n, d2+1, d2+2, . . . , n, d3+1, d3+2, . . . , n, . . . ) . (1)

Proof. For a permutation w ∈ Sn define εw ∈ {1, . . . , n} and permutations ŵ, w′ ∈ Sn as
follows. Let b1b2 . . . bn be the reading word of the insertion tableau of w−1. Let εw := b1.
Let ŵ and w′ be the permutations whose inverses are represented by the words b1b2 . . . bn
and b2b3 . . . bnb1, respectively, in one line notation. Thus(

εw, (w
′)∗
)

= b1b2 . . . bn b1b2 . . . bn b1b2 . . . = ŵ∗ .

By Proposition 8, w∗ is equivalent to ŵ∗ =
(
εw, (w

′)∗
)
. Using this argument repeatedly,

w∗ is equivalent to the sequence(
εw, εw′ , εw′′ , . . . , εw(M−1) , (w(M))∗

)
for any M > 0. Since Knuth transformations preserve the descents of the inverse of a
permutation, the descents of w are the same as descents of ŵ.
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Let M(w) be the major index of w0ww0, which is equal to (n − d1) + · · · + (n − dt).
Suppose w 6= id. Then εw > 1. Since ŵ(εw) = 1, and w′(εw) = n, εw−1 is a descent of
w and an ascent of w′. If εw < n, then εw is an ascent of w and a descent of w′. For
i /∈ {εw−1, εw}, i is a descent of w if and only if i is a descent of w′. It follows from these
remarks that M(w′) = M(w)− 1.

Since M(w(M(w))) = 0, w(M(w)) = id. Thus we have shown w∗ is equivalent (w#, id∗),
where

w# :=
(
εw, εw′ , εw′′ , . . . , εw(M(w)−1)

)
.

We now show, by induction on M(w), that (w#, id∗) is equivalent to σd1d2d3.... If w = id,
the result is trivial. Suppose M(w) > 1 and assume the result is true for w′. Then
(w#, id∗) = (εw, (w

′)#, id∗) is equivalent to (εw, σd′1d′2d′3...), where d′1 > · · · > d′t′ are the
descents of w′, and d′i = 0 for i > t′. The arguments above show that εw = ds+1 for some
s 6 t; if εw < n, then d′i = di for i 6= s, and d′s = εw; if εw = n, then d′i = di+1 for all
i. In either case, σd′1d′2d′3... is obtained from σd1d2d3... by deleting the first occurrence of εw.
With this in mind, it follows readily from Proposition 9 that (εw, σd′1d′2d′3...) is equivalent
to σd1d2d3....

Lemma 11. Assume that n is the number of columns of . Let σ = σd1d2d3... be the
sequence in (1).

(i) λ+
σ is well-defined: the kth box of this sequence is in column ck, where

c1c2c3 . . . := (1, 2, . . . , n−d1, 1, 2, . . . , n−d2, 1, 2, . . . , n−d3, . . . ) .

(ii) If Ci is the length of the ith column of λ+, then

δλ+σ (i) = Ci −#
{
j
∣∣ dj > i

}
+ #

{
j
∣∣ dj > n+1−i

}
− 1 for i = 1, . . . , n.

(iii) For any other diagonal λ′+/λ
′
− of , λ′+

σ is compatible with λ+
σ .

Proof. We introduce the notation

[i, j] := i+

j−1∑
s=1

(n− ds) , for 1 6 i 6 n−dj and j > 1.

Thus c[i,j] = i and σ[i,j] = dj + i for all i, j. Fix U ∈ SYT(λ−), and write U
σ = 1 2 3 . . . .

Suppose k is in column ek. To prove (i), we need to show that e[i,j] = i for all i, j. We
will do this by strong induction on j.

Fix j > 0. Assume that e[i,s] = i for 1 6 s 6 j, 1 6 i 6 n−ds. Let d0 := n, j′ := j+1,
p := n− dj, p′ := n− dj′ . We will prove the following:

(a) e[i,j′] > i for 1 6 i 6 p′;

(b) e[i,j′] = e[i−1,j′] + 1 for p < i 6 p′ (where e[0,1] := 0);

(c) e[i,j′] 6 e[i,j] for 1 6 i 6 p.
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These imply that e[i,j′] = i for i = 1, . . . , p′.
Since

σ[1,j′]σ[2,j′] . . . σ[p′,j′] = (dj′+1 < dj′+2 < . . . < n) ,

by Proposition 5 we have [1,j′] < [2,j′] < · · · < [p′,j′]. Because of the order in which the
slides are performed, [i+1,j′] cannot be above [i,j] and in the same column. It follows
that e[1,j′] < e[2,j′] < · · · < e[p′,j′], which proves (a). Since all boxes 1 , . . . , [p,j] are in the
first p columns, any box [i,j′] which is not in the first p columns must be in the first row.
In particular this applies when i > p, which proves (b).

If p′ = n, then (c) follows immediately from (a). To complete the proof of (i), suppose
that p′ < n. Then dj > dj′ . Let ai := σ[i,j] = dj + i and let bi := σ[i,j′] = dj′ + i. Consider
sequence obtained from σ by changing the subsequence of length 2p starting at σ[1,j] from

(a1 < a2 < . . . < ap > b1 < b2 < · · · < bp)

to
(a1 > b1 < a2 > b2 < . . . < ap > bp) .

This transformation can be realized as Kp−1 ◦Kp−2 ◦ · · · ◦K1(σ), where

Ki := κ[1,j]+2i−2 ◦ κ[1,j]+2i−1 ◦ κ[1,j]+2i · · · ◦ κ[1,j]+i+p−3

is the composition of strict Knuth transformations that moves bi next to ai. For example,
K1 performs the following sequence of transformations:

(a1 < . . . < ap−2 < ap−1 < ap > b1 < b2 < . . . < bp)

7→ (a1 < . . . < ap−2 < ap−1 > b1 < ap > b2 < . . . < bp)

7→ (a1 < . . . < ap−2 > b1 < ap−1 < ap > b2 < . . . < bp)

. . .

7→ (a1 > b1 < a2 < . . . < ap > b2 < . . . < bp) .

Here we have recorded only the subsequence of length 2p starting at [1, j] — the remaining
terms are unaffected by these transformations.

Let αi := [i,j] and let βj := [i,j′]. The corresponding subsequence of U
σ is

(α1 < α2 < . . . < αp > β1 < β2 < . . . < βp) .

By Proposition 6, Kp−1 ◦Kp−2 ◦ · · · ◦K1(
U
σ ) is defined, and by Proposition 5, each strict

Knuth transformation must produce a sequence with the correct descent pattern. Using
these two facts, one can deduce (by a straightforward inductive argument) that for all
r = 1, . . . , p− 1, the corresponding subsequence of Kr ◦ · · · ◦K1(

U
σ ) must be of the form

(αq1 > γ1 < αq2 < γ2 > . . . < αqr > γr < γr+1 < . . . < γp > βr+1 < . . . < βp) ,

where 1 6 q1 < q2 < · · · < qr 6 p and (γ1 < γ2 < · · · < γp) is obtained from α1α2 . . . αp
by replacing αqi replaced by βi for i = 1, . . . , r. In particular, when r = p − 1, we have
γp > βp; thus γp = αp, and qi = i for all i. This shows that

Kp−1 ◦ · · · ◦K1(
U
σ ) = (. . . α1 > β1 < α2 > β2 < . . . < αp > βp . . . ) .
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The descent pattern of this sequence establishes that αi > βi, which proves (c).
For (ii), suppose that Ci

th occurrence of i in the sequence c1c2c3 . . . occurs at [s, i].
Since the subsequence

c[1,j]c[2,j] . . . c[n−dj ,j] = (1, 2, . . . , n−dj)

excludes i if and only if dj > n + 1 − i, s = Ci + #{j | dj > n+1−i}. By (i), k is in
column ck, if and only if k = [j, i] for some j, and k = i when j > s; therefore δλ+σ (i) is
the number of occurrences of i in the sequence Trunc[n−ds−1,s−1](σ). Since the subsequence

σ[1,j] . . . σ[n−dj ,j] = (dj+1, dj+2, . . . , n)

excludes i if and only if dj > i, δλ+σ (i) = s− 1−#{j | dj > i}, as required.
Finally, (iii) follows immediately from (i).

4 Proofs

We now prove Theorems 1, 2 and 3.

Proof of Theorem 1. Since the result is symmetrical with respect to rows and columns,
we may assume, without loss of generality, that n is the number of columns of . By
Lemma 10 and Lemma 11(i), w∗ is equivalent to a sequence σ such that λ+

σ is well-defined.
The theorem therefore follows from Proposition 7(i).

Proof of Theorem 2. Again, assume, without loss of generality, that n is the number of
columns of . Using Lemma 10, Lemma 11(ii), Proposition 7(ii), and Proposition 4, we
compute that

T λ+w [ i] = w(i) + n ·
(
Ci −#{j | dj > i}+ #{j | dj > n+1−i} − 1

)
,

where d1 > d2 > · · · > dt are the descents of w, and Ci is the length of column i in λ+.
For a partition λ ⊂ , with row lengths (λ1, . . . , λm), let λ∨ denote the partition with
row lengths (n−λm, . . . , n−λ1). If is the box of in column i and row j, let ∨ denote
the box in column n+ 1− i and row m+ 1− j. For a skew tableau T of shape λ/µ ⊂ ,
let T∨ denote the tableau of shape µ∨/λ∨ with entries T∨[ ] := mn + 1 − T [ ∨]. The
relationship between Algorithms A and B is

T /λ−
w = (T λ

∨−
w0ww0

)∨ . (2)

Note that m+1−Ci is the length of column n+1−i in λ∨−, and n−d1 < n−d2 < · · · < n−dt
are the descents of w0ww0. We compute:

T /λ−
w [ i] = (T λ

∨−
w0ww0

)∨[ i]

= mn+ 1− T λ∨−w0ww0
[ ∨i ]

= mn+ 1−
(
w0ww0(n+1−i) + n · δλ

∨−
(w0ww0)∗

(n+1−i)
)

the electronic journal of combinatorics 24(1) (2017), #P1.41 12



= mn+ 1−

(
n+1−w(i) + n ·

(
(m+1−Ci) + #{j | n−dj > n+1−i}

− #{j | n−dj > i} − 1

))
= w(i) + n ·

(
Ci −#{j | n−dj > n+1−i}+ #{j | n−dj > i} − 1

)
= T λ+w [ i] ,

i.e. T λ+w and T
/λ−

w agree on λ+/λ−. For each vertically adjacent pair of boxes, either both
are in λ+ or both are in /λ−. Thus the agreement on λ+/λ− shows that Tw is column
strict. It also follows now, from Lemma 10, Lemma 11(iii) and Proposition 7(iii), that
Tw is independent of the choice of λ+. Thus we may we assume λ+ = (n, n−1, . . . , 2, 1),
which allows us to see that Tw is row-strict.

Let D := {Tw[ i] | i = 1, . . . , n} be the set of diagonal entries of Tw. Algorithm A
ensures that Tw[ i] ≡ w(i) (mod n), so D contains one number from each congruence
class, modulo n. Since the entries of T λ+w are{

k > 1
∣∣ k + nj ∈ D for some j > 0

}
and the entries of T

/λ−
w are{

k 6 mn
∣∣ k − nj ∈ D for some j > 0

}
,

we see that every number in {1, 2, . . . ,mn} is an entry of Tw. Therefore Tw is a standard
Young tableau.

Proof of Theorem 3. For (i), we may assume that λ+ = (n, n−1, . . . , 2, 1). This ensures
that the sliding path of promotion on any T ∈ SYT

( )
passes through exactly one box of

λ+/λ−. Suppose that T λ+w is computed using Algorithm A by a sequence of slides whose
first step moves the entry 1. After this first step, if we delete the entry 1 and decrement
all entries by 1, we are computing T λ+wc instead. This can be done immediately, or at
any point during Algorithm A. Compare this with the behaviour of ∂ : Tw → ∂Tw on
the entries in λ+. Suppose the sliding path passes through λ+/λ− at s. Since the first
two steps of promotion delete the entry 1 and decrement all entries by 1, this produces
the penultimate step in the construction of T λ+wc . Next, we slide the empty box in the
upper-left corner of through the tableau, which is the almost the same as the final of
step in the construction of T λ+wc , except that do not yet know what number will appear
in ∂Tw[ s]. This shows that for all boxes of λ+, with the possible exception of s, Twc
coincides with ∂Tw. Note that s is the unique number such that Twc[ s]− Tw[ s] 6= −1.

Applying the same argument to /λ− and the sliding path of ∂−1 : Twc → ∂−1Twc, we
see that with the possible exception of one box s′ , Tw coincides with ∂−1Twc on /λ−.
Since s′ is the unique number such that Twc[ s′ ]−Tw[ s′ ] 6= −1, we must have s = s′. This
shows that these two sliding paths are in fact inverse to each other, and hence ∂Tw = Twc.

Since Tw[ i] ≡ w(i) (mod n), (ii) is immediate.
To prove (iii), we use another reformulation of Algorithm A.
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Algorithm D. INPUT: A permutation w ∈ Sn.

Begin with T := ∅, the empty tableau, and µ := ;
while µ is not the empty partition do

Choose a corner box ∈ µ;
if = i for some i then

Set T [ i] := w(i);
end if
if ∈ λ− then

Let T ′ be the tableau obtained by sliding through T ;
If the final position of the sliding path is i, then set T ′[ i] := T [ i] + n;
Set T := T ′;

end if
Delete the box from µ;

end while
return the resulting tableau, T λ+w := T .

It is clear that Algorithm D is equivalent to Algorithm A: when /∈ λ+ nothing
happens; when ∈ λ+/λ− we create the initial entries of T ; when ∈ λ− we proceed
exactly as before.

Suppose T ∈ On. For i, k = 1, . . . , n, let ∆ik := ∂kT [ i] − ∂k−1T [ i]. Thus ∆ik > 0
if and only if the sliding path of ∂ : ∂k−1T 7→ ∂kT , passes through i, and ∆ik = −1
otherwise. The former can happen for at most one value of i. Since ∂nT = T ,

∆i1 + ∆i2 + . . .∆in = 0 .

Therefore, for each i, there must be at least one k such that ∆ik > 0. It follows that for
each k there is exactly one i such that ∆ik > 0, and for each i there is exactly one k such
that ∆ik > 0. From this we see that if ∆ik > 0 then ∆ik = n − 1, and therefore, for all
k > 0,

∂kT [ i]− (mn− k) ≡ w(i) (mod n) .

For k = 1, . . . ,mn, construct a tableau Tk by starting with ∂kT , subtracting mn − k
from all entries, and deleting any entries for which the result is less than or equal to 0.
Let µk be the shape formed by the unfilled boxes of Tk. Thus T0 is empty, µ0 = , and
Tk is obtained by Tk−1 as follows: let k ∈ µk−1 be the corner of µk−1 on the sliding path
of ∂ : ∂k−1T 7→ ∂kT ; slide k through Tk−1; add entry k in the lower-right corner of .

Let w : {1, . . . , n} → {1, . . . , n} be the function defined in the statement of (iii). If
Tk[ i] is non-empty, then Tk[ i] ≡ w(i) (mod n). Since ∆ik < n for all k, if k = i then
Tk[ i] 6 n, i.e. Tk[ i] = w(i); and if k ∈ λ− and the sliding path of k passes through

i, then Tk[ i] = Tk−1[ i] + n. Thus if we restrict the sequence T0, T1, . . . , Tmn to λ+, we
obtain precisely a sequence of tableaux produced by Algorithm D. Since ∂mnT = T , this
shows that T λ+w is the restriction of T to λ+. Since T has no repeated entries, w ∈ Sn.

By a similar argument T
/λ−

w is the restriction of T to /λ−. Thus T = Tw.

the electronic journal of combinatorics 24(1) (2017), #P1.41 14



5 Remarks

Here is another way to compute T λ+w . Assume that n is the number of rows of . Define
the augmented word of w to be:

aug(w) :=w(1), w(1) + n,w(1) + 2n, . . . w(1) + (m− 1)n,

w(2), w(2) + n,w(2) + 2n, . . . w(2) + (m− 1)n,

. . .

w(n), w(n) + n,w(n) + 2n, . . . w(n) + (m− 1)n .

Theorem 12. T λ+w is the insertion tableau of aug(w) restricted to λ+.

Proof. Let λ′+ := (m,m+ 1,m+ 2, . . . ,m+n− 1), and compute T λ
′
+

w using Algorithm A.
Choose a sequence of boxes beginning with m−1 boxes from row n, followed m−1 boxes
from row n − 1, and so on. (After the m − 1 boxes from row 1, the last n(n − 1)/2
boxes may be taken in any order.) The first (m − 1)n slides produce a tableau whose
reading word is aug(w). Therefore if we restrict T λ

′
+

w to entries 1, 2, . . . ,mn, we obtain
the insertion tableau of aug(w). By Theorem 2, T λ+w can be obtained as the restriction of
T λ
′
+

w to λ+. Since the entries of T λ+w are a subset of {1, 2, . . . ,mn}, the result follows.

Theorem 12 provides an alternate definition of T λ+w . It has the advantage of being
well-defined, and Theorem 2 can be proved by using Greene’s theorem [4] to compute
the entries T [ i], (see [10, Section 5.2]). Unfortunately, things start to break down at the
proof of Theorem 3, which is intimately connected to Algorithm A. The problem is that
although the first and last steps of Algorithm A are related to aug(w), the intermediate
steps may not be. For instance, if T is a tableau from one of the intermediate steps
it is tempting to define aug(T ) to be the tableau obtained by adding entries T [ i] +
n, T [ i] + 2n, . . . w(i) + (m − 1)n. to the right of i. Unfortunately, it is not true the
Knuth class of aug(T ) is invariant for all T . There are a number of variations on this
idea, and none of them appear to work. We do not know how to construct an invariant
of Algorithm A, analogous to the Knuth class of the reading word. In particular, the
intermediate tableaux in Algorithm A are not produced by ordinary jeu de taquin in any
obvious way. This makes it difficult to prove Theorem 3, if one takes Theorem 12 as the
definition of Tw.

Another way in which our situation behaves quite differently from ordinary rectifica-
tion concerns dual equivalence. Consider a generalization of Algorithm C, in which we
allow U ∈ SYT(λ−/µ) to be a skew shape, but otherwise the algorithm is performed the

same way. This generalization does not have the property that U
w∗ = Û

w∗ , when U is

dual equivalent to Û . If this were true, it would provide a more straightforward proof of
Theorem 1. We do not know a set of elementary relations that generate the equivalence
relation U ∼ Û ⇐⇒ U

w∗ = Û
w∗ for all w ∈ Sn.

Despite the aforementioned difficulties, Theorem 12 can be used as a definition of T λ+w
when λ+ is an arbitrary partition with at most n rows — even in cases where Algorithm A
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does not make sense. In particular, we can sometimes use this idea to define Tw, when
m < n. We illustrate this with an example. Take n = 3, m = 2, λ+ = 211, λ− = 1, and
w = 132. The insertion tableau of aug(w) is

1 2 5
3 6
4

=⇒ T λ+w =
1 2
3
4

.

Similarly, using (2) as the definition, we compute:

T /λ−
w =

2
3 5
4 6

=⇒ Tw =
1 2
3 5
4 6

,

which, indeed, has order 3 under promotion. This is very suggestive, but it is unclear
what to do with the proof of Theorem 3, when m < n.

In the thesis [10], the second author observed that a procedure based on rectification
can be used construct the set Omn/2, when one of m, n is even. In this case, other
bijections are known, (see [9, Proposition 3.10]); however it is not obvious that they are
equivalent. This provides a new perspective, and gives further hints that the methods
introduced in this paper may apply beyond the case of minimal orbits.
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