Minimal orbits of promotion

Kevin Purbhoo*
Combinatorics and Optimization Department
University of Waterloo
Waterloo ON, Canada
kpurbhoo@uwaterloo.ca

Donguk Rhee
Lunarch Studios
144 Park Street, Unit 1702
Waterloo ON, Canada.
david@lunarchstudios.com.

Submitted: Jan 22, 2016; Accepted: Feb 15, 2017; Published: Mar 3, 2017
Mathematics Subject Classifications: 05E10, 05A19

Abstract

We give a bijection between the symmetric group S_{n}, and the set of standard Young tableaux of rectangular shape $m^{n}, m \geqslant n$, that have order n under jeu de taquin promotion.

1 Introduction

Fix positive integers $m \geqslant n$, and let \square be either the $m \times n$ rectangle, or the $n \times m$ rectangle. The promotion map $\partial: \operatorname{SYT}(\square) \rightarrow$ SYT (\square) defines an action of $(\mathbb{Z},+)$ on the set of standard Young tableaux of shape \square. For $T \in \operatorname{SYT}(\square), \partial T$ is computed by deleting the entry 1 from T, decrementing each entry by 1 , rectifying, and finally adding an entry $m n$ in the lower-right corner. For example,

$$
T=\begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline & 2 & 5 \\
\hline 3 & 4 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline & 1 & 4 \\
\hline 2 & 3 & 5 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array}=\partial T .
$$

Interest in this action stems from its connections to geometry and representation theory, and its striking combinatorial properties (see $[2,9,11,15,16]$).

Let $\mathcal{O}_{r}:=\left\{T \in \operatorname{SYT}(\square) \mid \partial^{r} T=T\right\}$ denote the set of tableaux whose order under promotion divides r. By a theorem of Haiman [5], $\partial^{m n} T=T$ for all $T \in \operatorname{SYT}(\square)$; hence \mathcal{O}_{r} is empty if r is coprime to $m n$. It is also not hard to show that \mathcal{O}_{r} is empty for $r<n$; this is implicit in the proof of Theorem 3. The minimal orbits of promotion, therefore, have order n.

The action of promotion on $\mathrm{SYT}(\square)$ exhibits a cyclic sieving phenomenon, as defined in [14]: we have $\left|\mathcal{O}_{r}\right|=F\left(\zeta^{r}\right)$, where $F(q)$ is a q-analogue of the hook length formula

[^0]

Figure 1: An example of a diagonal of \square : here $n=4, m=6, \lambda_{+}=5431$ and $\lambda_{-}=432$.
for $|\operatorname{SYT}(\square)|$, and ζ is a primitive $(m n)^{\text {th }}$ root of unity. The quantity $F\left(\zeta^{r}\right)$ appears in a number of other places in representation theory and combinatorics, which proffers a variety of avenues of proof for this cyclic sieving theorem. It was first proved by Rhoades using Kazhdan-Lusztig theory [11]. Subsequently other proofs were found using representation theory of SL_{n} [16], and the geometry of the Grassmannian [9] and the affine Grassmannian [2]. Simpler, more combinatorial proofs are known in special cases when $n=2,3$ [8]. The survey [12] discusses of a number of related results. However, at present there is no known combinatorial proof in general, nor any proof that gives an effective description of the sets \mathcal{O}_{r}.

The purpose of this paper is to give an explicit combinatorial construction of the orbits in \mathcal{O}_{n}, i.e. the minimal orbits of promotion. We will assume that the reader is familiar with basic definitions from the combinatorial theory of Young tableau, such as Schensted insertion, jeu de taquin operations (sliding, reverse-sliding, rectification), Knuth equivalence and dual equivalence; all of these may be found in [3].

Using Rhoades' cyclic sieving theorem, one can compute that $\left|\mathcal{O}_{n}\right|=n$!. Our main result gives a bijection between the symmetric group S_{n} and \mathcal{O}_{n}. Under this bijection promotion corresponds to right-multiplication by the n-cycle (1 n $n-1 \ldots 2$). There are a number of arbitrary choices involved in constructing the bijection, and much of the proof is concerned with showing that the construction is in fact well-defined.

To begin, choose a skew shape $\lambda_{+} / \lambda_{-} \subset \square$, consisting of n boxes $\square_{1}, \square_{2}, \ldots, \square_{n}$, such that \square_{i+1} is strictly above and strictly right of \square_{i}, for $i=1, \ldots, n-1$. We call $\lambda_{+} / \lambda_{-}$a diagonal of \square, (see Figure 1). For each permutation $w \in S_{n}$, we define a tableau $T_{w}^{\lambda_{+}}$ of shape λ_{+}, using a procedure similar to rectification. In the following algorithm, T is a tableau under construction. If \square is a box of λ_{+}, we write $\square \in \lambda_{+}$, and $T[\square]$ denotes the entry of T in box \square.

Algorithm A. INPUT: A permutation $w \in S_{n}$.
Begin with $T\left[\square_{i}\right]:=w(i)$, for $i=1, \ldots, n$, leaving all boxes of λ_{-}unfilled;
while shape $(T) \neq \lambda_{+}$do
Let $\mu \subset \lambda_{+}$be the unfilled boxes to the left of T;
Choose any corner box $\square \in \mu$;
Let T^{\prime} be the tableau obtained by sliding \square through T;
If the final position of the sliding path is \square_{i}, then set $T^{\prime}\left[\square_{i}\right]:=T\left[\square_{i}\right]+n$;
Set $T:=T^{\prime}$;
end while
return the resulting tableau, $T_{w}^{\lambda_{+}}:=T$.

\rightarrow| | | 1 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| | | 4 | 8 | |
| | 5 | 9 | | |
| 3 | | | | |\rightarrow| | | 1 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| | | 4 | 8 | |
| 3 | 5 | 9 | | |
| 7 | | | | |\rightarrow| | | 1 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| | 4 | 8 | 12 | |
| 3 | 5 | 9 | | |
| 7 | | | | |

Figure 2: Construction of $T_{w}^{\lambda_{+}}$, with $w=3142$, and $\lambda_{+}=5431$.

An example of Algorithm A is given in Figure 2. Note that in this example, $T_{w}^{\lambda_{+}}$is not a standard Young tableau, since the entries are not $\left\{1, \ldots,\left|\lambda_{+}\right|\right\}$.

The key difference is between Algorithm A and rectification is that as we slide empty boxes of λ_{-}through T, we are also refilling the boxes of $\lambda_{+} / \lambda_{-}$. If we were not refilling these boxes, we would be performing ordinary rectification on a tableau with reading word w, which produces the insertion tableau of w. Since this difference involves only entries greater that n, the insertion tableau of w is the subtableau $T_{w}^{\lambda_{+}}$formed by entries $1, \ldots, n$.

Theorem 1. The definition of $T_{w}^{\lambda_{+}}$is independent of the choices in Algorithm A.
Theorem 1 is analogous to the well known fact that ordinary rectification is well-defined [13]. However, despite the apparent similarity between Algorithm A and rectification, one cannot easily deduce one fact from the other. We discuss some of the difficulties in Section 5.

Similarly, we define a tableau $T_{w}^{\square / \lambda_{-}}$of shape \square / λ_{-}, using reverse slides.
Algorithm B. INPUT: A permutation $w \in S_{n}$.
Begin with $T\left[\square_{i}\right]:=w(i)+(m-1) n$, for $i=1, \ldots, n$, and all boxes of \square / λ_{+}unfilled;
while shape $(T) \neq \square / \lambda_{-}$do
Let $\mu \subset \square / \lambda_{-}$be the unfilled boxes to the right of T;
Choose any corner box \square of μ;
Let T^{\prime} be the tableau obtained by reverse-sliding \square through T;
If final position of the sliding path is \square_{i}, then set $T^{\prime}\left[\square_{i}\right]:=T\left[\square_{i}\right]-n$;
Set $T:=T^{\prime}$;

Figure 3: Construction of $T_{w}^{\square / \lambda_{-}}$, with $w=3142$, $m=6$, and $\lambda_{+}=5431$.
end while
return the resulting tableau, $T_{w}^{\square / \lambda_{-}}:=T$.
An example is given in Figure 3. Since Algorithm B is essentially "Algorithm A turned upside-down", Theorem 1 implies that the definition of $T_{w}^{\square / \lambda_{-}}$is independent of choices.

We combine these two constructions to produce a tableau T_{w} of shape \square : for each box $\square \in \square$, let

$$
T_{w}[\square]:= \begin{cases}T_{w}^{\lambda_{+}}[\square] & \text { if } \square \in \lambda_{+} \\ T_{w}^{\square / \lambda_{-}}[\square] & \text { otherwise } .\end{cases}
$$

For example, for $w=3142, m=6$, we combine the tableaux in Figures 2 and 3 to obtain

$$
T_{w}=\begin{array}{|c|c|c|c|c|c|}
\hline 1 & 2 & 6 & 10 & 14 & 18 \\
\hline 3 & 4 & 8 & 12 & 16 & 20 \\
\hline 5 & 9 & 13 & 17 & 21 & 22 \\
\hline 7 & 11 & 15 & 19 & 23 & 24 \\
\hline
\end{array} .
$$

Since the definition of T_{w} is piecewise, it is not immediately clear that this is always a sensible construction. We will show that the constructions in Algorithms A and B agree on the diagonal, i.e. $T_{w}^{\lambda_{+}}\left[\square_{i}\right]=T_{w}^{\square / \lambda_{-}}\left[\square_{i}\right]$, for $i=1, \ldots, n$. This is the first step in proving:

Theorem 2. T_{w} is a standard Young tableau. Moreover, the definition of T_{w} is independent of the choice of diagonal $\lambda_{+} / \lambda_{-}$.

Our main result states that this construction gives the minimal orbits of promotion.
Theorem 3. The map $w \mapsto T_{w}$ defines a bijection between S_{n} and \mathcal{O}_{n}. Specifically the following hold:
(i) For all $w \in S_{n}, \partial T_{w}=T_{w c}$, where $c=(1 n n-1 \ldots 2)$. In particular $T_{w} \in \mathcal{O}_{n}$.
(ii) If $w, w^{\prime} \in S_{n}$ and $w(i) \neq w^{\prime}(i)$, then $T_{w}\left[\square_{i}\right] \neq T_{w^{\prime}}\left[\square_{i}\right]$. In particular $w \mapsto T_{w}$ is injective.

Figure 4: An alternative way to compute $T_{3142}^{\lambda_{+}}$, using the same order for the boxes of λ_{-} as the example in Figure 2.
(iii) For each $T \in \mathcal{O}_{n}$, consider the function $w:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $w(i) \equiv T\left[\square_{i}\right](\bmod n)$, for $i=1, \ldots, n$. We have $w \in S_{n}$, and $T_{w}=T$. In particular $w \mapsto T_{w}$ is surjective.

The rest of this paper is organized as follows. In Section 2 we develop a reduction strategy for proving Theorems 1 and 2. This strategy is implemented in Section 3, where we prove two lemmas: the first reducing the problem to one we can solve, and the second solving it. All three theorems are proved in Section 4. Finally, in Section 5 we discuss some additional facts that are true, and some that we would like to be true.

2 Strategy

To prove Theorem 1, we need to formulate it in a different way. As with ordinary rectification, each possible sequence of choices of boxes in Algorithm A can be encoded by a standard Young tableau $U \in \operatorname{SYT}\left(\lambda_{-}\right)$, by putting $U[\square]:=\left|\lambda_{-}\right|+1-k$ if \square is the box chosen in the $k^{\text {th }}$ iteration of the loop. Let T_{w}^{U} denote the result of applying Algorithm A with order of boxes encoded by U. For example, Figure 2 computes T_{3142}^{U}, with

$$
U= .
$$

Theorem 1 states that T_{w}^{U} is independent of $U \in \operatorname{SYT}\left(\lambda_{-}\right)$.

The steps of a rectification-type algorithm can be performed in a variety of different but equivalent orders. In particular, instead of sliding the entries of U through T, from largest to smallest, one can reverse-slide the entries of T though U, from smallest to largest, (see [1] for full details). Figure 4 illustrates this in the context of Algorithm A, using the example from Figure 2.

This perspective not only gives a reformulation of Algorithm A, but allows us generalize it to inputs that are not permutations. Let $\sigma=\sigma_{1} \sigma_{2} \sigma_{3} \ldots$ be an infinite sequence, with $\sigma_{k} \in\{1, \ldots, n\}$ for $k=1,2,3, \ldots$. We construct a sequence $\mathbf{\square}_{\sigma}^{U}=\square_{1} \square_{2} \square_{3} \ldots$ of boxes of λ_{+}, as follows.

Algorithm C. INPUT: The pair (σ, U).
Let $U_{0}:=U$;
for $k=1,2,3, \ldots$ do
Let U_{k} be the tableau obtained by reverse-sliding box $\square_{\sigma_{k}}$ through U_{k-1};
Define \square_{k} to be the final position of the sliding path;
Delete the entry in $\square_{\sigma_{k}}$ from U_{k}, if one exists;
end for
return $\square_{\sigma}^{U}:=\square_{1} \square_{2} \square_{3} \ldots$.
We use this sequence to define a function $\delta_{\sigma}^{U}:\{1, \ldots, n\} \rightarrow \mathbb{Z}_{\geqslant 0}$,

$$
\delta_{\sigma}^{U}(i):=\#\left\{k \mid \sigma_{k}=i \text { and } \square_{k} \neq \square_{i}\right\},
$$

where $\mathbf{\square}_{\sigma}^{U}=\square_{1} \square_{2} \square_{3} \ldots$. This function will be key in proving Theorem 2. If $\mathbf{\square}_{\sigma}^{U}$ is independent of $U \in \operatorname{SYT}\left(\lambda_{-}\right)$, we write $\mathbf{\square}_{\sigma}^{\lambda_{+}}:=\mathbf{\square}_{\sigma}^{U}$, and $\delta_{\sigma}^{\lambda_{+}}:=\delta_{\sigma}^{U}$.

Strictly speaking, Algorithm C is not a proper algorithm, in that it does not terminate; however, we are really only interested in a finite part of $\mathbf{\square}_{\sigma}^{U}$. Once k is sufficiently large, we have $\square_{k}=\square_{\sigma_{k}}$. For $N \geqslant 0$, denote the truncation of a sequence at its $N^{\text {th }}$ term by $\operatorname{Trunc}_{N}\left(a_{1} a_{2} a_{3} \ldots\right):=\left(a_{1} a_{2} \ldots a_{N}\right)$.

For $w \in S_{n}$, define w^{*} to be the repeating sequence

$$
w^{*}:=a_{1} a_{2} \ldots a_{n} a_{1} a_{2} \ldots a_{n} a_{1} a_{2} \ldots,
$$

where $a_{1} a_{2} \ldots a_{n}$ is the word representing w^{-1} in one line notation (i.e. $a_{i}=w^{-1}(i)$ for $i=1, \ldots, n)$. The following proposition precisely states the relationship between Algorithms A and C.

Proposition 4. Write $\square_{w^{*}}^{U}=\square_{1} \square_{2} \square_{3} \ldots$. For each box $\square \in \lambda_{+}, T_{w}^{U}[\square]$ is the smallest k such that $\square_{k}=\square$. Hence, for some $N \geqslant 0, \operatorname{Trunc}_{N}\left(\mathbf{\square}_{w^{*}}^{U}\right)$ determines T_{w}^{U}. In addition, we have $T_{w}^{U}\left[\square_{i}\right]=w(i)+n \cdot \delta_{w^{*}}^{U}(i)$.

Proof. The first two statements are simply a more precise formulation of the remarks at the beginning of this section. For the third, note that the $k^{\text {th }}$ term of w^{*} is equal to i, for $k=w(i), w(i)+n, w(i)+2 n, \ldots$ By the definition of δ_{σ}^{U}, the $\left(\delta_{w^{*}}^{U}+1\right)^{\text {th }}$ term in this sequence is the smallest k such that $\square_{k}=\square_{i}$. The former is $w(i)+n \cdot \delta_{w^{*}}^{U}(i)$, and the latter is $T_{w}^{U}\left[\square_{i}\right]$.

Partially order the boxes of λ_{+}: let $\square \leqslant \square^{\prime}$ if \square^{\prime} is both weakly right of \square and weakly above \square.

Proposition 5. Write $\square_{\sigma}^{U}=\square_{1} \square_{2} \square_{3} \ldots$. If $\sigma_{k}<\sigma_{k+1}$ then $\square_{k}<\square_{k+1}$; if $\sigma_{k}>\sigma_{k+1}$ then $\square_{k}>\square_{k+1}$.

Proof. This follows from the fact that jeu de taquin preserves horizontal (and vertical) strips.

For a sequence $a_{1} a_{2} a_{3} \ldots$ with terms from a partially ordered set (e.g. the numbers $\{1, \ldots, n\}$ or the boxes of λ_{+}), define the strict Knuth transformations to be the operations

$$
\kappa_{k}\left(a_{1} a_{2} a_{3} \ldots\right)=a_{1} a_{2} \ldots a_{k-1} x y z a_{k+3} a_{k+4} \ldots,
$$

where

$$
x y z= \begin{cases}a_{k} a_{k+2} a_{k+1} & \text { if } a_{k+1}<a_{k}<a_{k+2} \\ \text { or } a_{k+2}<a_{k}<a_{k+1} \\ a_{k+1} a_{k} a_{k+2} & \text { if } a_{k}<a_{k+2}<a_{k+1} \\ \text { or } a_{k+1}<a_{k+2}<a_{k} \\ \text { undefined } & \text { otherwise } .\end{cases}
$$

In the third case $\kappa_{k}\left(a_{1} a_{2} a_{3} \ldots\right)$ is also undefined. These are similar to elementary Knuth transformations on sequences, except that the inequalities are required to be strict. We define two sequences $a_{1} a_{2} a_{3} \ldots$ and $b_{1} b_{2} b_{3} \ldots$ to be equivalent if for every $N \geqslant 0$, there exists a finite sequence $\kappa_{k_{1}}, \kappa_{k_{2}}, \ldots, \kappa_{k_{m}}$ of strict Knuth transformations such that

$$
\operatorname{Trunc}_{N}\left(\kappa_{k_{1}} \circ \kappa_{k_{2}} \circ \cdots \circ \kappa_{k_{m}}\left(a_{1} a_{2} a_{3} \ldots\right)\right)=\operatorname{Trunc}_{N}\left(b_{1} b_{2} b_{3} \ldots\right) .
$$

When $a_{1} a_{2} a_{3} \ldots$ is a sequence of boxes, this generalizes of the notion of dual equivalence on tableaux [5].

Proposition 6. Let σ be a sequence with terms from $\{1, \ldots, n\}$. If $\kappa_{k}(\sigma)$ is defined, then $\kappa_{k}\left(\mathbf{\square}_{\sigma}^{U}\right)$ is defined, and
(i) $\mathbf{\square}_{\kappa_{k}(\sigma)}^{U}=\kappa_{k}\left(\mathbf{\square}_{\sigma}^{U}\right)$;
(ii) $\delta_{\kappa_{k}(\sigma)}^{U}(i)=\delta_{\sigma}^{U}(i)$, for $i=1, \ldots, n$.

Proof. Write $\widehat{\sigma}:=\kappa_{k}(\sigma)$. Let $\mathbf{a}_{\sigma}^{U}=\square_{1} \square_{2} \square_{3} \ldots$, and let $U_{0}, U_{1}, U_{2}, \ldots$ be the sequence of tableaux produced in Algorithm C. Let $\mathbf{\square} \stackrel{U}{U}=\widehat{\square}_{1} \widehat{\square}_{2} \widehat{\square}_{3} \ldots$, and $\widehat{U}_{0}, \widehat{U}_{1}, \widehat{U}_{2}, \ldots$ be the corresponding objects for $\widehat{\sigma}$. Since $\sigma_{j}=\widehat{\sigma}_{j}$ for $j<k$, we have $\square_{j}=\widehat{\square}_{j}$ and $U_{j}=\widehat{U}_{j}$, for $j<k$. In particular $U_{k-1}=\widehat{U}_{k-1}$. Given 3 boxes $\square, \square^{\prime}, \square^{\prime \prime}$ let $T\left(\square, \square^{\prime}, \square^{\prime \prime}\right)$ denote the standard Young tableau with entries 1,2 , and 3 , in boxes $\square, \square^{\prime}$ and $\square^{\prime \prime}$ respectively. The pair of tableaux $T\left(\square_{\sigma_{k}}, \square_{\sigma_{k+1}}, \square_{\sigma_{k+2}}\right)$ and $T\left(\square_{\widehat{\sigma}_{k}}, \square_{\widehat{\sigma}_{k+1}}, \square_{\widehat{\sigma}_{k+2}}\right)$ form a dual equivalence class. It follows from [5, Corollary 2.8] that $U_{k+2}=\widehat{U}_{k+2}$, and since $\sigma_{j}=\widehat{\sigma}_{j}$ for $j>k+2$ we have $\square_{j}=\widehat{\square}_{j}$ for $j>k+2$. By [5, Lemma 2.3], $T\left(\square_{k}, \square_{k+1}, \square_{k+2}\right)$ and $T\left(\widehat{\square}_{k}, \widehat{\square}_{k+1}, \widehat{\square}_{k+2}\right)$ also form a dual equivalence class, which implies that the three-term sequences ($\square_{k}, \square_{k+1}, \square_{k+2}$) and $\left(\widehat{\square}_{k}, \widehat{\square}_{k+1}, \widehat{\square}_{k+2}\right)$ are related by a strict Knuth transformation. This proves (i), and (ii) is straightforward.

This leads to our strategy for proving Theorems 1 and 2, which is outlined in the next proposition. For the second statement in Theorem 2 we will need to consider how the constructions in Algorithms A and B are related for different choices of diagonal. This is facilitated by the following definition. Let $\lambda_{+}^{\prime} / \lambda_{-}^{\prime}$ be another diagonal of \square. Let $\square_{1} \square_{2} \square_{3} \ldots$ be a sequence of boxes of λ_{+}, and let $\square_{1}^{\prime} \square_{2}^{\prime} \square_{3}^{\prime} \ldots$ be a sequence of boxes of λ_{+}^{\prime}. We say that these sequences are compatible if $\square_{k}^{\prime}=\square_{k}$ whenever $\square_{k}^{\prime} \in \lambda_{+}$and $\square_{k} \in \lambda_{+}^{\prime}$.
Proposition 7. Suppose that σ is equivalent to w^{*}, and $\mathbf{\square}_{\sigma}^{\lambda_{+}}$is well-defined (i.e. $\mathbf{\square}_{\sigma}^{U}$ is independent $U \in \operatorname{SYT}\left(\lambda_{-}\right)$). Then the following are true.
(i) $T_{w}^{\lambda_{+}}$is well-defined (i.e. T_{w}^{U} is independent of $U \in \operatorname{SYT}\left(\lambda_{-}\right)$).
(ii) $T_{w}^{\lambda_{+}}\left[\square_{i}\right]=w(i)+n \cdot \delta_{\sigma}^{\lambda_{+}}(i)$.
(iii) Suppose λ_{+}^{\prime} is obtained from λ_{+}by adding one box. If $\mathbf{\square}_{\sigma}^{\lambda_{+}^{\prime}}$ is well-defined and compatible with $\mathbf{\square}_{\sigma}^{\lambda_{+}}$, then the tableaux $T_{w}^{\lambda_{+}}$and $T_{w}^{\lambda^{+}}{ }^{\prime}$ coincide on λ_{+}.
Proof. Let $U, \widehat{U} \in \operatorname{SYT}(\square)$. To prove (i), we must show that $T_{w}^{U}=T_{w}^{\hat{U}}$. By Proposition 4, there exists $N \geqslant 0$ so that T_{w}^{U} and $T_{w}^{\widehat{U}}$ are determined by $\operatorname{Trunc}_{N}\left(\mathbf{\square}_{w^{*}}^{U}\right)$ and $\operatorname{Trunc}_{N}\left(\mathbf{\square}_{w^{*}}^{\widehat{U}}\right)$; therefore it is enough to show that the latter two are equal. Since w^{*} is equivalent to σ there is a sequence $\kappa_{k_{1}}, \kappa_{k_{2}}, \ldots, \kappa_{k_{M}}$ of strict Knuth transformations such that

$$
\operatorname{Trunc}_{N}\left(\kappa_{k_{1}} \circ \kappa_{k_{2}} \circ \cdots \circ \kappa_{k_{M}}(\sigma)\right)=\operatorname{Trunc}_{N}\left(w^{*}\right)
$$

Since $\mathbf{\square}_{\sigma}^{\lambda_{+}}=\mathbf{\square}_{\sigma}^{U}=\mathbf{\square}_{\sigma}^{\widehat{U}}$, by Proposition 6(i) we have

$$
\operatorname{Trunc}_{N}\left(\mathbf{\square}_{w^{*}}^{U}\right)=\operatorname{Trunc}_{N}\left(\kappa_{k_{1}} \circ \kappa_{k_{2}} \circ \cdots \circ \kappa_{k_{M}}\left(\mathbf{a}_{\sigma}^{\lambda_{+}}\right)\right)=\operatorname{Trunc}_{N}\left(\mathbf{\square}_{w^{*}}^{\widehat{U}}\right),
$$

as required. Similarly, (ii) follows from Proposition 4 and Proposition 6(ii). For (iii), it is easy to see that $\mathbf{\square}_{\sigma}^{\lambda_{+}}$is compatible with $\mathbf{\square}_{\sigma}^{\lambda_{+}^{\prime}}$ if and only if $\kappa_{k}\left(\mathbf{\square}_{\sigma}^{\lambda_{+}}\right)$is compatible with $\kappa_{k}\left(\mathbf{\square}_{\sigma}^{\lambda^{\prime}+}\right)$. By Proposition 6(i), $\boldsymbol{\square}_{w^{*}}^{\lambda_{+}}$is compatible with $\boldsymbol{\square}_{w^{*}}^{\lambda^{\prime}}$; the result follows by Proposition 4.

In the next section we will construct a suitable σ for each permutation w, enabling us to prove Theorems 1 and 2. The construction of σ is based on the cyclage operation of Lascoux and Schützenberger [7]. The following two facts will be used to establish equivalence:

Proposition 8. Let $w, \widehat{w} \in S_{n}$ be two permutations. If w^{-1} and \widehat{w}^{-1} have the same insertion tableau, then w^{*} is equivalent to \widehat{w}^{*}.

Proof. Fix $N \geqslant 0$. Let $a_{1} a_{2} \ldots a_{n}$ and $b_{1} b_{2} \ldots b_{n}$ be the words representing w^{-1} and \widehat{w}^{-1} respectively. Since these words have the same insertion tableau, they are related by a finite sequence of elementary Knuth transformations, and since $a_{i} \neq a_{j}$ for $i \neq j$, each of these is a strict Knuth transformation. It follows that w^{*} can be transformed into any sequence of the form

$$
b_{1} b_{2} \ldots b_{n} b_{1} b_{2} \ldots b_{n} \ldots b_{1} b_{2} \ldots b_{n} a_{1} a_{2} \ldots a_{n} a_{1} a_{2} \ldots a_{n} a_{1} a_{2} \ldots
$$

using a finite sequence of strict Knuth transformations. If there are at least N / n copies of $b_{1} b_{2} \ldots b_{n}$, then truncating at the $N^{\text {th }}$ term gives $\operatorname{Trunc}_{N}\left(\widehat{w}^{*}\right)$, as required.

Proposition 9. Let $a_{1} a_{2} a_{3} \ldots$ and $b_{1} b_{2} b_{3} \ldots$ be positive integer sequences. Let A_{k} be the insertion tableau of the finite word $a_{1} a_{2} \ldots a_{k}$, and let B_{k} be the insertion tableau of $b_{1} b_{2} \ldots b_{k}$. Suppose there exists a number M such that the following hold: $A_{M}=B_{M}$; $a_{k}=b_{k}$ for all $k>M$; and A_{k} and B_{k} are row-strict for all $k \leqslant M$. Then $a_{1} a_{2} a_{3} \ldots$ is equivalent to $b_{1} b_{2} b_{3} \ldots$.

Proof. Let $A_{k, 1} A_{k, 2} \ldots A_{k, k}$ denote the reading word of A_{k}. For $k \leqslant M$ there is a finite sequence of elementary Knuth transformations taking

$$
A_{k-1,1} A_{k-1,2} \ldots A_{k-1, k-1} a_{k} \mapsto A_{k, 1} A_{k, 2} \ldots A_{k, k-1} A_{k, k}
$$

the precise sequence can be found in many references (e.g. [3, Section 2.1] or [6, Section 6.1]). It is easy to verify that if A_{k} is row-strict, then all of the transformations in this sequence are strict Knuth transformations. This shows that $a_{1} a_{2} a_{3} \ldots$ is equivalent to

$$
A_{M, 1} A_{M, 2} \ldots A_{M, M} a_{m+1} a_{m+2} \cdots=B_{M, 1} B_{M, 2} \ldots B_{M, M} b_{m+1} b_{m+2} \ldots
$$

which, by the same argument, is equivalent to $b_{1} b_{2} b_{3} \ldots$

3 Descent sequences

Recall that $i \in\{1, \ldots, n-1\}$ is a descent of w if $w(i)>w(i+1)$; if $w(i)<w(i+1)$, then i is an ascent of w. Let id $\in S_{n}$ denote the identity element, and let $w_{0} \in S_{n}$ denote the long element, $w_{0}=n n-1 \ldots 21$. The major index of w is defined to be the sum of the descents of w. For example, id is the unique permutation with major index $0, w_{0}$ is the unique permutation with major index $n(n-1) / 2$.

Lemma 10. Let $d_{1}>d_{2}>\cdots>d_{t}$ be the descents of w in decreasing order, and let $d_{i}=0$ for $i>t$. Then w^{*} is equivalent to the sequence

$$
\begin{equation*}
\sigma_{d_{1} d_{2} d_{3} \ldots}:=\left(d_{1}+1, d_{1}+2, \ldots, n, d_{2}+1, d_{2}+2, \ldots, n, d_{3}+1, d_{3}+2, \ldots, n, \ldots\right) . \tag{1}
\end{equation*}
$$

Proof. For a permutation $w \in S_{n}$ define $\epsilon_{w} \in\{1, \ldots, n\}$ and permutations $\widehat{w}, w^{\prime} \in S_{n}$ as follows. Let $b_{1} b_{2} \ldots b_{n}$ be the reading word of the insertion tableau of w^{-1}. Let $\epsilon_{w}:=b_{1}$. Let \widehat{w} and w^{\prime} be the permutations whose inverses are represented by the words $b_{1} b_{2} \ldots b_{n}$ and $b_{2} b_{3} \ldots b_{n} b_{1}$, respectively, in one line notation. Thus

$$
\left(\epsilon_{w},\left(w^{\prime}\right)^{*}\right)=b_{1} b_{2} \ldots b_{n} b_{1} b_{2} \ldots b_{n} b_{1} b_{2} \ldots=\widehat{w}^{*}
$$

By Proposition $8, w^{*}$ is equivalent to $\widehat{w}^{*}=\left(\epsilon_{w},\left(w^{\prime}\right)^{*}\right)$. Using this argument repeatedly, w^{*} is equivalent to the sequence

$$
\left(\epsilon_{w}, \epsilon_{w^{\prime}}, \epsilon_{w^{\prime \prime}}, \ldots, \epsilon_{w^{(M-1)}},\left(w^{(M)}\right)^{*}\right)
$$

for any $M \geqslant 0$. Since Knuth transformations preserve the descents of the inverse of a permutation, the descents of w are the same as descents of \widehat{w}.

Let $M(w)$ be the major index of $w_{0} w w_{0}$, which is equal to $\left(n-d_{1}\right)+\cdots+\left(n-d_{t}\right)$. Suppose $w \neq \mathrm{id}$. Then $\epsilon_{w}>1$. Since $\widehat{w}\left(\epsilon_{w}\right)=1$, and $w^{\prime}\left(\epsilon_{w}\right)=n, \epsilon_{w}-1$ is a descent of w and an ascent of w^{\prime}. If $\epsilon_{w}<n$, then ϵ_{w} is an ascent of w and a descent of w^{\prime}. For $i \notin\left\{\epsilon_{w}-1, \epsilon_{w}\right\}, i$ is a descent of w if and only if i is a descent of w^{\prime}. It follows from these remarks that $M\left(w^{\prime}\right)=M(w)-1$.

Since $M\left(w^{(M(w))}\right)=0, w^{(M(w))}=\mathrm{id}$. Thus we have shown w^{*} is equivalent $\left(w^{\#}, \mathrm{id}^{*}\right)$, where

$$
w^{\#}:=\left(\epsilon_{w}, \epsilon_{w^{\prime}}, \epsilon_{w^{\prime \prime}}, \ldots, \epsilon_{w^{(M(w)-1)}}\right) .
$$

We now show, by induction on $M(w)$, that $\left(w^{\#}, \mathrm{id}^{*}\right)$ is equivalent to $\sigma_{d_{1} d_{2} d_{3} \ldots}$. If $w=\mathrm{id}$, the result is trivial. Suppose $M(w)>1$ and assume the result is true for w^{\prime}. Then $\left(w^{\#}, \mathrm{id}^{*}\right)=\left(\epsilon_{w},\left(w^{\prime}\right)^{\#}, \mathrm{id}^{*}\right)$ is equivalent to $\left(\epsilon_{w}, \sigma_{d_{1}^{\prime} d_{2}^{\prime} d_{3}^{\prime} . .}\right)$, where $d_{1}^{\prime}>\cdots>d_{t^{\prime}}^{\prime}$ are the descents of w^{\prime}, and $d_{i}^{\prime}=0$ for $i>t^{\prime}$. The arguments above show that $\epsilon_{w}=d_{s}+1$ for some $s \leqslant t$; if $\epsilon_{w}<n$, then $d_{i}^{\prime}=d_{i}$ for $i \neq s$, and $d_{s}^{\prime}=\epsilon_{w}$; if $\epsilon_{w}=n$, then $d_{i}^{\prime}=d_{i+1}$ for all i. In either case, $\sigma_{d_{1}^{\prime} d_{2}^{\prime} d_{3} \ldots .}$ is obtained from $\sigma_{d_{1} d_{2} d_{3} \ldots \text {.. }}$ by deleting the first occurrence of ϵ_{w}. With this in mind, it follows readily from Proposition 9 that $\left(\epsilon_{w}, \sigma_{d_{1}^{\prime} d_{2}^{\prime} d_{3}^{\prime} \ldots}\right)$ is equivalent to $\sigma_{d_{1} d_{2} d_{3} \ldots}$.

Lemma 11. Assume that n is the number of columns of \square. Let $\sigma=\sigma_{d_{1} d_{2} d_{3} \ldots}$ be the sequence in (1).
(i) $\mathbf{\square}_{\sigma}^{\lambda_{+}}$is well-defined: the $k^{\text {th }}$ box of this sequence is in column c_{k}, where

$$
c_{1} c_{2} c_{3} \ldots:=\left(1,2, \ldots, n-d_{1}, 1,2, \ldots, n-d_{2}, 1,2, \ldots, n-d_{3}, \ldots\right) .
$$

(ii) If C_{i} is the length of the $i^{\text {th }}$ column of λ_{+}, then
(iii) For any other diagonal $\lambda_{+}^{\prime} / \lambda_{-}^{\prime}$ of $\square, \square_{\sigma}^{\lambda_{+}^{\prime}}$ is compatible with $\boldsymbol{\square}_{\sigma}^{\lambda_{+}}$.

Proof. We introduce the notation

$$
[i, j]:=i+\sum_{s=1}^{j-1}\left(n-d_{s}\right), \quad \text { for } 1 \leqslant i \leqslant n-d_{j} \text { and } j \geqslant 1 .
$$

Thus $c_{[i, j]}=i$ and $\sigma_{[i, j]}=d_{j}+i$ for all i, j. Fix $U \in \operatorname{SYT}\left(\lambda_{-}\right)$, and write $\boldsymbol{\square}_{\sigma}^{U}=\square_{1} \square_{2} \square_{3} \ldots$ Suppose \square_{k} is in column e_{k}. To prove (i), we need to show that $e_{[i, j]}=i$ for all i, j. We will do this by strong induction on j.

Fix $j \geqslant 0$. Assume that $e_{[i, s]}=i$ for $1 \leqslant s \leqslant j, 1 \leqslant i \leqslant n-d_{s}$. Let $d_{0}:=n, j^{\prime}:=j+1$, $p:=n-d_{j}, p^{\prime}:=n-d_{j^{\prime}}$. We will prove the following:
(a) $e_{\left[i, j^{\prime}\right]} \geqslant i$ for $1 \leqslant i \leqslant p^{\prime}$;
(b) $e_{\left[i, j^{\prime}\right]}=e_{\left[i-1, j^{\prime}\right]}+1$ for $p<i \leqslant p^{\prime}\left(\right.$ where $\left.e_{[0,1]}:=0\right)$;
(c) $e_{\left[i, j^{\prime}\right]} \leqslant e_{[i, j]}$ for $1 \leqslant i \leqslant p$.

These imply that $e_{\left[i, j^{\prime}\right]}=i$ for $i=1, \ldots, p^{\prime}$.
Since

$$
\sigma_{\left[1, j^{\prime}\right]} \sigma_{\left[2, j^{\prime}\right]} \ldots \sigma_{\left[p^{\prime}, j^{\prime}\right]}=\left(d_{j^{\prime}}+1<d_{j^{\prime}}+2<\ldots<n\right),
$$

by Proposition 5 we have $\square_{\left[1, j^{\prime}\right]}<\square_{\left[2, j^{\prime}\right]}<\cdots<\square_{\left[p^{\prime}, j^{\prime}\right]}$. Because of the order in which the slides are performed, $\square_{\left[i+1, j^{\prime}\right]}$ cannot be above $\square_{[i, j]}$ and in the same column. It follows that $e_{\left[1, j^{\prime}\right]}<e_{\left[2, j^{\prime}\right]}<\cdots<e_{\left[p^{\prime}, j^{\prime}\right]}$, which proves (a). Since all boxes $\square_{1}, \ldots, \square_{[p, j]}$ are in the first p columns, any box $\square_{\left[i, j^{\prime}\right]}$ which is not in the first p columns must be in the first row. In particular this applies when $i>p$, which proves (b).

If $p^{\prime}=n$, then (c) follows immediately from (a). To complete the proof of (i), suppose that $p^{\prime}<n$. Then $d_{j}>d_{j^{\prime}}$. Let $a_{i}:=\sigma_{[i, j]}=d_{j}+i$ and let $b_{i}:=\sigma_{\left[i, j^{\prime}\right]}=d_{j^{\prime}}+i$. Consider sequence obtained from σ by changing the subsequence of length $2 p$ starting at $\sigma_{[1, j]}$ from

$$
\left(a_{1}<a_{2}<\ldots<a_{p}>b_{1}<b_{2}<\cdots<b_{p}\right)
$$

to

$$
\left(a_{1}>b_{1}<a_{2}>b_{2}<\ldots<a_{p}>b_{p}\right) .
$$

This transformation can be realized as $K_{p-1} \circ K_{p-2} \circ \cdots \circ K_{1}(\sigma)$, where

$$
K_{i}:=\kappa_{[1, j]+2 i-2} \circ \kappa_{[1, j]+2 i-1} \circ \kappa_{[1, j]+2 i} \cdots \circ \kappa_{[1, j]+i+p-3}
$$

is the composition of strict Knuth transformations that moves b_{i} next to a_{i}. For example, K_{1} performs the following sequence of transformations:

$$
\begin{aligned}
\left(a_{1}<\right. & \left.\ldots<a_{p-2}<a_{p-1}<a_{p}>\boldsymbol{b}_{\mathbf{1}}<b_{2}<\ldots<b_{p}\right) \\
& \mapsto\left(a_{1}<\ldots<a_{p-2}<a_{p-1}>\boldsymbol{b}_{\mathbf{1}}<a_{p}>b_{2}<\ldots<b_{p}\right) \\
& \mapsto\left(a_{1}<\ldots<a_{p-2}>\boldsymbol{b}_{\mathbf{1}}<a_{p-1}<a_{p}>b_{2}<\ldots<b_{p}\right) \\
& \ldots \\
& \mapsto\left(a_{1}>\boldsymbol{b}_{\mathbf{1}}<a_{2}<\ldots<a_{p}>b_{2}<\ldots<b_{p}\right) .
\end{aligned}
$$

Here we have recorded only the subsequence of length $2 p$ starting at $[1, j]$ - the remaining terms are unaffected by these transformations.

Let $\alpha_{i}:=\square_{[i, j]}$ and let $\beta_{j}:=\square_{\left[i, j^{\prime}\right]}$. The corresponding subsequence of $\mathbf{\square}_{\sigma}^{U}$ is

$$
\left(\alpha_{1}<\alpha_{2}<\ldots<\alpha_{p}>\beta_{1}<\beta_{2}<\ldots<\beta_{p}\right) .
$$

By Proposition 6, $K_{p-1} \circ K_{p-2} \circ \cdots \circ K_{1}\left(\mathbf{\square}_{\sigma}^{U}\right)$ is defined, and by Proposition 5, each strict Knuth transformation must produce a sequence with the correct descent pattern. Using these two facts, one can deduce (by a straightforward inductive argument) that for all $r=1, \ldots, p-1$, the corresponding subsequence of $K_{r} \circ \cdots \circ K_{1}\left(\mathbf{\square}_{\sigma}^{U}\right)$ must be of the form

$$
\left(\alpha_{q_{1}}>\gamma_{1}<\alpha_{q_{2}}<\gamma_{2}>\ldots<\alpha_{q_{r}}>\gamma_{r}<\gamma_{r+1}<\ldots<\gamma_{p}>\beta_{r+1}<\ldots<\beta_{p}\right),
$$

where $1 \leqslant q_{1}<q_{2}<\cdots<q_{r} \leqslant p$ and $\left(\gamma_{1}<\gamma_{2}<\cdots<\gamma_{p}\right)$ is obtained from $\alpha_{1} \alpha_{2} \ldots \alpha_{p}$ by replacing $\alpha_{q_{i}}$ replaced by β_{i} for $i=1, \ldots, r$. In particular, when $r=p-1$, we have $\gamma_{p}>\beta_{p}$; thus $\gamma_{p}=\alpha_{p}$, and $q_{i}=i$ for all i. This shows that

$$
K_{p-1} \circ \ldots \circ K_{1}\left(\mathbf{\square}_{\sigma}^{U}\right)=\left(\ldots \alpha_{1}>\beta_{1}<\alpha_{2}>\beta_{2}<\ldots<\alpha_{p}>\beta_{p} \ldots\right) .
$$

The descent pattern of this sequence establishes that $\alpha_{i}>\beta_{i}$, which proves (c).
For (ii), suppose that $C_{i}^{\text {th }}$ occurrence of i in the sequence $c_{1} c_{2} c_{3} \ldots$ occurs at $[s, i]$. Since the subsequence

$$
c_{[1, j]} c_{[2, j]} \ldots c_{\left[n-d_{j}, j\right]}=\left(1,2, \ldots, n-d_{j}\right)
$$

excludes i if and only if $d_{j} \geqslant n+1-i, s=C_{i}+\#\left\{j \mid d_{j} \geqslant n+1-i\right\}$. By (i), \square_{k} is in column c_{k}, if and only if $k=[j, i]$ for some j, and $\square_{k}=\square_{i}$ when $j \geqslant s$; therefore $\delta_{\sigma}^{\lambda+}(i)$ is the number of occurrences of i in the sequence $\operatorname{Trunc}_{\left[n-d_{s-1}, s-1\right]}(\sigma)$. Since the subsequence

$$
\sigma_{[1, j]} \ldots \sigma_{\left[n-d_{j}, j\right]}=\left(d_{j}+1, d_{j}+2, \ldots, n\right)
$$

excludes i if and only if $d_{j} \geqslant i, \delta_{\sigma}^{\lambda_{+}}(i)=s-1-\#\left\{j \mid d_{j} \geqslant i\right\}$, as required.
Finally, (iii) follows immediately from (i).

4 Proofs

We now prove Theorems 1, 2 and 3 .
Proof of Theorem 1. Since the result is symmetrical with respect to rows and columns, we may assume, without loss of generality, that n is the number of columns of \square. By Lemma 10 and Lemma 11(i), w^{*} is equivalent to a sequence σ such that $\mathbf{\square}_{\sigma}^{\lambda_{+}}$is well-defined. The theorem therefore follows from Proposition 7(i).

Proof of Theorem 2. Again, assume, without loss of generality, that n is the number of columns of \square. Using Lemma 10, Lemma 11(ii), Proposition 7(ii), and Proposition 4, we compute that

$$
T_{w}^{\lambda_{+}}\left[\square_{i}\right]=w(i)+n \cdot\left(C_{i}-\#\left\{j \mid d_{j} \geqslant i\right\}+\#\left\{j \mid d_{j} \geqslant n+1-i\right\}-1\right),
$$

where $d_{1}>d_{2}>\cdots>d_{t}$ are the descents of w, and C_{i} is the length of column i in λ_{+}. For a partition $\lambda \subset \square$, with row lengths $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, let λ^{\vee} denote the partition with row lengths $\left(n-\lambda_{m}, \ldots, n-\lambda_{1}\right)$. If \square is the box of \square in column i and row j, let \square^{\vee} denote the box in column $n+1-i$ and row $m+1-j$. For a skew tableau T of shape $\lambda / \mu \subset \square$, let T^{\vee} denote the tableau of shape $\mu^{\vee} / \lambda^{\vee}$ with entries $T^{\vee}[\square]:=m n+1-T\left[\square^{\vee}\right]$. The relationship between Algorithms A and B is

$$
\begin{equation*}
T_{w}^{\square / \lambda-}=\left(T_{w_{0} w w_{0}}^{\lambda \vee}\right)^{\vee} . \tag{2}
\end{equation*}
$$

Note that $m+1-C_{i}$ is the length of column $n+1-i$ in $\lambda-$, and $n-d_{1}<n-d_{2}<\cdots<n-d_{t}$ are the descents of $w_{0} w w_{0}$. We compute:

$$
\begin{aligned}
T_{w}^{\square} \bar{\square} / \square_{-}\left[\square_{i}\right] & =\left(T_{w_{0} w w_{0}}^{\lambda \stackrel{\vee}{v}}\right)^{\vee}\left[\square_{i}\right] \\
& =m n+1-T_{w_{0} w w_{0}}^{\lambda \underline{\vee}}\left[\square_{i}^{\vee}\right] \\
& =m n+1-\left(w_{0} w w_{0}(n+1-i)+n \cdot \delta_{\left(w_{0} w w_{0}\right)^{*}}^{\lambda \stackrel{\vee}{v}}(n+1-i)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =m n+1-\left(n+1-w(i)+n \cdot\binom{\left(m+1-C_{i}\right)+\#\left\{j \mid n-d_{j} \geqslant n+1-i\right\}}{-\#\left\{j \mid n-d_{j} \geqslant i\right\}-1}\right) \\
& =w(i)+n \cdot\left(C_{i}-\#\left\{j \mid n-d_{j} \geqslant n+1-i\right\}+\#\left\{j \mid n-d_{j} \geqslant i\right\}-1\right) \\
& =T_{w}^{\lambda_{+}}\left[\square_{i}\right],
\end{aligned}
$$

i.e. $T_{w}^{\lambda_{+}}$and $T_{w}^{\square / \lambda_{-}}$agree on $\lambda_{+} / \lambda_{-}$. For each vertically adjacent pair of boxes, either both are in λ_{+}or both are in \square / λ_{-}. Thus the agreement on $\lambda_{+} / \lambda_{-}$shows that T_{w} is column strict. It also follows now, from Lemma 10, Lemma 11(iii) and Proposition 7(iii), that T_{w} is independent of the choice of λ_{+}. Thus we may we assume $\lambda_{+}=(n, n-1, \ldots, 2,1)$, which allows us to see that T_{w} is row-strict.

Let $D:=\left\{T_{w}\left[\square_{i}\right] \mid i=1, \ldots, n\right\}$ be the set of diagonal entries of T_{w}. Algorithm A ensures that $T_{w}\left[\square_{i}\right] \equiv w(i)(\bmod n)$, so D contains one number from each congruence class, modulo n. Since the entries of $T_{w}^{\lambda_{+}}$are

$$
\{k \geqslant 1 \mid k+n j \in D \text { for some } j \geqslant 0\}
$$

and the entries of $T_{w}^{\square / \lambda_{-}}$are

$$
\{k \leqslant m n \mid k-n j \in D \text { for some } j \geqslant 0\},
$$

we see that every number in $\{1,2, \ldots, m n\}$ is an entry of T_{w}. Therefore T_{w} is a standard Young tableau.

Proof of Theorem 3. For (i), we may assume that $\lambda_{+}=(n, n-1, \ldots, 2,1)$. This ensures that the sliding path of promotion on any $T \in \operatorname{SYT}(\square)$ passes through exactly one box of $\lambda_{+} / \lambda_{-}$. Suppose that $T_{w}^{\lambda_{+}}$is computed using Algorithm A by a sequence of slides whose first step moves the entry 1. After this first step, if we delete the entry 1 and decrement all entries by 1 , we are computing $T_{w c}^{\lambda_{+}}$instead. This can be done immediately, or at any point during Algorithm A. Compare this with the behaviour of $\partial: T_{w} \rightarrow \partial T_{w}$ on the entries in λ_{+}. Suppose the sliding path passes through $\lambda_{+} / \lambda_{-}$at \square_{s}. Since the first two steps of promotion delete the entry 1 and decrement all entries by 1 , this produces the penultimate step in the construction of $T_{w_{c}}^{\lambda_{+}}$. Next, we slide the empty box in the upper-left corner of \square through the tableau, which is the almost the same as the final of step in the construction of $T_{w c}^{\lambda_{+}}$, except that do not yet know what number will appear in $\partial T_{w}\left[\square_{s}\right]$. This shows that for all boxes of λ_{+}, with the possible exception of $\square_{s}, T_{w c}$ coincides with ∂T_{w}. Note that s is the unique number such that $T_{w c}\left[\square_{s}\right]-T_{w}\left[\square_{s}\right] \neq-1$.

Applying the same argument to \square / λ_{-}and the sliding path of $\partial^{-1}: T_{w c} \rightarrow \partial^{-1} T_{w c}$, we see that with the possible exception of one box $\square_{s^{\prime}}, T_{w}$ coincides with $\partial^{-1} T_{w c}$ on \square / λ_{-}. Since s^{\prime} is the unique number such that $T_{w c}\left[\square_{s^{\prime}}\right]-T_{w}\left[\square_{s^{\prime}}\right] \neq-1$, we must have $s=s^{\prime}$. This shows that these two sliding paths are in fact inverse to each other, and hence $\partial T_{w}=T_{w c}$.

Since $T_{w}\left[\square_{i}\right] \equiv w(i)(\bmod n)$, (ii) is immediate.
To prove (iii), we use another reformulation of Algorithm A.

Algorithm D. INPUT: A permutation $w \in S_{n}$.
Begin with $T:=\varnothing$, the empty tableau, and $\mu:=\square$;
while μ is not the empty partition do
Choose a corner box $\square \in \mu$; if $\square=\square_{i}$ for some i then

Set $T\left[\square_{i}\right]:=w(i) ;$
end if
if $\square \in \lambda_{-}$then
Let T^{\prime} be the tableau obtained by sliding \square through T;
If the final position of the sliding path is \square_{i}, then set $T^{\prime}\left[\square_{i}\right]:=T\left[\square_{i}\right]+n$;
Set $T:=T^{\prime}$;
end if
Delete the box \square from μ;
end while
return the resulting tableau, $T_{w}^{\lambda_{+}}:=T$.
It is clear that Algorithm D is equivalent to Algorithm A : when $\square \notin \lambda_{+}$nothing happens; when $\square \in \lambda_{+} / \lambda_{-}$we create the initial entries of T; when $\square \in \lambda_{-}$we proceed exactly as before.

Suppose $T \in \mathcal{O}_{n}$. For $i, k=1, \ldots, n$, let $\Delta_{i k}:=\partial^{k} T\left[\square_{i}\right]-\partial^{k-1} T\left[\square_{i}\right]$. Thus $\Delta_{i k} \geqslant 0$ if and only if the sliding path of $\partial: \partial^{k-1} T \mapsto \partial^{k} T$, passes through \square_{i}, and $\Delta_{i k}=-1$ otherwise. The former can happen for at most one value of i. Since $\partial^{n} T=T$,

$$
\Delta_{i 1}+\Delta_{i 2}+\ldots \Delta_{i n}=0 .
$$

Therefore, for each i, there must be at least one k such that $\Delta_{i k} \geqslant 0$. It follows that for each k there is exactly one i such that $\Delta_{i k} \geqslant 0$, and for each i there is exactly one k such that $\Delta_{i k} \geqslant 0$. From this we see that if $\Delta_{i k} \geqslant 0$ then $\Delta_{i k}=n-1$, and therefore, for all $k \geqslant 0$,

$$
\partial^{k} T\left[\square_{i}\right]-(m n-k) \equiv w(i) \quad(\bmod n) .
$$

For $k=1, \ldots, m n$, construct a tableau T_{k} by starting with $\partial^{k} T$, subtracting $m n-k$ from all entries, and deleting any entries for which the result is less than or equal to 0 . Let μ_{k} be the shape formed by the unfilled boxes of T_{k}. Thus T_{0} is empty, $\mu_{0}=\square$, and T_{k} is obtained by T_{k-1} as follows: let $\square_{k} \in \mu_{k-1}$ be the corner of μ_{k-1} on the sliding path of $\partial: \partial^{k-1} T \mapsto \partial^{k} T$; slide \square_{k} through T_{k-1}; add entry k in the lower-right corner of \square.

Let $w:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be the function defined in the statement of (iii). If $T_{k}\left[\square_{i}\right]$ is non-empty, then $T_{k}\left[\square_{i}\right] \equiv w(i)(\bmod n)$. Since $\Delta_{i k}<n$ for all k, if $\square_{k}=\square_{i}$ then $T_{k}\left[\square_{i}\right] \leqslant n$, i.e. $T_{k}\left[\square_{i}\right]=w(i)$; and if $\square_{k} \in \lambda_{-}$and the sliding path of \square_{k} passes through \square_{i}, then $T_{k}\left[\square_{i}\right]=T_{k-1}\left[\square_{i}\right]+n$. Thus if we restrict the sequence $T_{0}, T_{1}, \ldots, T_{m n}$ to λ_{+}, we obtain precisely a sequence of tableaux produced by Algorithm D. Since $\partial^{m n} T=T$, this shows that $T_{w}^{\lambda_{+}}$is the restriction of T to λ_{+}. Since T has no repeated entries, $w \in S_{n}$. By a similar argument $T_{w}^{\square / \lambda_{-}}$is the restriction of T to \square / λ_{-}. Thus $T=T_{w}$.

5 Remarks

Here is another way to compute $T_{w}^{\lambda_{+}}$. Assume that n is the number of rows of \square. Define the augmented word of w to be:

$$
\begin{aligned}
\operatorname{aug}(w):= & w(1), w(1)+n, w(1)+2 n, \ldots w(1)+(m-1) n, \\
& w(2), w(2)+n, w(2)+2 n, \ldots w(2)+(m-1) n, \\
& \quad \ldots \\
& w(n), w(n)+n, w(n)+2 n, \ldots w(n)+(m-1) n .
\end{aligned}
$$

Theorem 12. $T_{w}^{\lambda_{+}}$is the insertion tableau of $\operatorname{aug}(w)$ restricted to λ_{+}.
Proof. Let $\lambda_{+}^{\prime}:=(m, m+1, m+2, \ldots, m+n-1)$, and compute $T_{w}^{\lambda_{+}^{\prime}}$ using Algorithm A. Choose a sequence of boxes beginning with $m-1$ boxes from row n, followed $m-1$ boxes from row $n-1$, and so on. (After the $m-1$ boxes from row 1 , the last $n(n-1) / 2$ boxes may be taken in any order.) The first $(m-1) n$ slides produce a tableau whose reading word is $\operatorname{aug}(w)$. Therefore if we restrict $T_{w}^{\lambda^{\prime}+}$ to entries $1,2, \ldots, m n$, we obtain the insertion tableau of $\operatorname{aug}(w)$. By Theorem $2, T_{w}^{\lambda_{+}}$can be obtained as the restriction of $T_{w}^{\lambda^{\prime}+}$ to λ_{+}. Since the entries of $T_{w}^{\lambda_{+}}$are a subset of $\{1,2, \ldots, m n\}$, the result follows.

Theorem 12 provides an alternate definition of $T_{w}^{\lambda_{+}}$. It has the advantage of being well-defined, and Theorem 2 can be proved by using Greene's theorem [4] to compute the entries $T\left[\square_{i}\right]$, (see [10, Section 5.2]). Unfortunately, things start to break down at the proof of Theorem 3, which is intimately connected to Algorithm A. The problem is that although the first and last steps of Algorithm A are related to $\operatorname{aug}(w)$, the intermediate steps may not be. For instance, if T is a tableau from one of the intermediate steps it is tempting to define $\operatorname{aug}(T)$ to be the tableau obtained by adding entries $T\left[\square_{i}\right]+$ $n, T\left[\square_{i}\right]+2 n, \ldots w(i)+(m-1) n$. to the right of \square_{i}. Unfortunately, it is not true the Knuth class of $\operatorname{aug}(T)$ is invariant for all T. There are a number of variations on this idea, and none of them appear to work. We do not know how to construct an invariant of Algorithm A, analogous to the Knuth class of the reading word. In particular, the intermediate tableaux in Algorithm A are not produced by ordinary jeu de taquin in any obvious way. This makes it difficult to prove Theorem 3, if one takes Theorem 12 as the definition of T_{w}.

Another way in which our situation behaves quite differently from ordinary rectification concerns dual equivalence. Consider a generalization of Algorithm C, in which we allow $U \in \operatorname{SYT}\left(\lambda_{-} / \mu\right)$ to be a skew shape, but otherwise the algorithm is performed the same way. This generalization does not have the property that $\mathbf{\square}_{w^{*}}^{U}=\mathbf{\square}_{w^{*}}^{\widehat{U}}$, when U is dual equivalent to \widehat{U}. If this were true, it would provide a more straightforward proof of Theorem 1. We do not know a set of elementary relations that generate the equivalence relation $U \sim \widehat{U} \Longleftrightarrow \mathbf{\square}_{w^{*}}^{U}=\mathbf{\square}_{w^{*}}^{\widehat{U}}$ for all $w \in S_{n}$.

Despite the aforementioned difficulties, Theorem 12 can be used as a definition of $T_{w}^{\lambda_{+}}$ when λ_{+}is an arbitrary partition with at most n rows - even in cases where Algorithm A
does not make sense. In particular, we can sometimes use this idea to define T_{w}, when $m<n$. We illustrate this with an example. Take $n=3, m=2, \lambda_{+}=211, \lambda_{-}=1$, and $w=132$. The insertion tableau of $\operatorname{aug}(w)$ is

1	2	5			
3	6		$\quad \Longrightarrow \quad T_{w}^{\lambda_{+}}=$	1	2
:---	:---				
4					
3					
4		.			

Similarly, using (2) as the definition, we compute:

$$
T_{w}^{\square / \lambda-}=\begin{array}{|l|l|}
\cline { 2 - 3 } & 2 \\
\hline 3 & 5 \\
\hline 4 & 6 \\
\hline
\end{array} \quad \Longrightarrow \quad T_{w}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 5 \\
\hline 4 & 6 \\
\hline
\end{array},
$$

which, indeed, has order 3 under promotion. This is very suggestive, but it is unclear what to do with the proof of Theorem 3, when $m<n$.

In the thesis [10], the second author observed that a procedure based on rectification can be used construct the set $\mathcal{O}_{m n / 2}$, when one of m, n is even. In this case, other bijections are known, (see [9, Proposition 3.10]); however it is not obvious that they are equivalent. This provides a new perspective, and gives further hints that the methods introduced in this paper may apply beyond the case of minimal orbits.

References

[1] G. Benkart, F. Sottile and J. Stroomer, Tableau Switching: Algorithms and Applications, J. Combin. Theory Ser. A, 76 (1996) no. 1, 11-43.
[2] B. Fontaine and J. Kamnitzer, Cyclic sieving, rotation, and geometric representation theory, Selecta Math. 20 (2014) no. 2, 609-624.
[3] W. Fulton, Young tableaux with applications to representation theory and geometry, Cambridge U.P., New York, 1997.
[4] C. Greene, An extension of Schensted's theorem, Adv. Math., 14 (1974), 254-265.
[5] M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), 79-113.
[6] A. Lascoux, B. Leclerc, and J.-Y. Thibon, The plactic monoid in "Algebraic combinatorics on words", Cambridge U.P. Cambridge (2002), 164-196.
[7] A. Lascoux, M. P. Schützenberger, Le monoide plaxique, in "Combinatorial Mathematics, Optimal Designs and Their Applications", Ann. Discrete Math., 6 (1980), 251-255.
[8] T. K. Petersen, P. Pylyavskyy and B. Rhoades, Promotion and cyclic sieving via webs, J. Alg. Combin., 30 (2009) no. 1, 19-41.
[9] K. Purbhoo, Wronskians, cyclic group actions, and ribbon tableaux, Trans. Amer. Math. Soc. 365 (2013), 1977-2030.
[10] D. Rhee, Cyclic Sieving Phemonon of Promotion on Rectangular Tableaux, Master's Thesis, University of Waterloo, 2012.
[11] B. Rhoades, Cyclic sieving, promotion, and representation theory, J. Combin. Theory Ser. A, 117 (2010) no. 1, 38-76.
[12] B. Sagan, The cyclic sieving phenomenon: a survey, London Math. Soc. Lecture Note Ser. 392 (2011), 183-234.
[13] M.-P. Schützenberger, La correspondance de Robinson, in Combinatoire et représentation du groupe symétrique, Lecture Notes in Math., 579 (1977), SpringerVerlag, 59-113.
[14] D. Stanton, V. Reiner and D. White, The cyclic sieving phenomenon, J. Comb. Theorey. Ser. A., 108 (2004), 17-50.
[15] R. P. Stanley, Promotion and evacuation, Electron. J. Combin. 16(2) \#R9 (2009).
[16] B. Westbury, Invariant tensors and the cyclic sieving phenomenon, preprint, arXiv:0912.1512.

[^0]: *Research of Purbhoo was supported by an NSERC Discovery grant.

