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Abstract

An open conjecture of Erdős states that for every positive integer k there is a
(least) positive integer f(k) so that whenever a tournament has its edges colored
with k colors, there exists a set S of at most f(k) vertices so that every vertex has a
monochromatic path to some point in S. We consider a related question and show
that for every (finite or infinite) cardinal κ > 0 there is a cardinal λκ such that in
every κ-edge-coloured tournament there exist disjoint vertex sets K,S with total
size at most λκ so that every vertex v has a monochromatic path of length at most
two from K to v or from v to S.

Keywords: Kernel by monochromatic paths; King-serf duo; Infinite graph; Tour-
nament

1 Introduction

A tournament T = (V (T ), A(T )) is a directed graph obtained by orienting the edge set
of a (possibly infinite) complete undirected graph. A directed cycle is called a dicycle
for short. We use some basic set theoretic conventions. We consider functions f as sets of
ordered pairs where 〈x, y〉 ∈ f and 〈x, z〉 ∈ f imply y = z. For a finite or infinite cardinal
κ let exp0(κ) = κ and let expk+1(κ) = 2expk(κ). Remember that a cardinal is the set of
the ordinals that are smaller than itself, for example 3 = {0, 1, 2}. A κ-edge-colouring
of a tournament T is a function c : A(T ) → κ. A monochromatic path is a directed
path (repetition of vertices is not allowed) with edges having the same colour. We call a
dicycle quasi-monochromatic if all but at most one of its edges have the same colour.

Our investigation was motivated by the following conjecture of Erdős [15, p. 274].

Conjecture 1 (Erdős). For every positive integer k there is a (least) positive integer f(k)
so that every k-edge-coloured finite tournament admits a subset S ⊆ V (T ) of size at most
f(k) such that S is reachable from every vertex by a monochromatic path.
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It is known that f(1) = f(2) = 1, and there is an example showing that f(3) > 3
(see [15]). However, there is no known constant upper bound for f(3), although it is
conjectured to be 3 by Erdős. As a weakening of the original conjecture, we consider
source-sink pairs instead of one sink set S. However, we may add bounds on the length of
the monochromatic paths. More precisely, a king-serf duo by monochromatic paths
consists of disjoint vertex sets K,S ⊆ V (D) so that every vertex v has a monochromatic
path of length at most two from K to v or from v to S. The size of the duo is defined as
|K|+|S|. An edge uv of an edge-coloured tournament T is called forbidding if there is no
monochromatic path of length at most two from v to u. Note that if T ′ is a subtournament
of T containing a forbidding edge uv, then uv is forbidding edge with respect to T ′ as
well.

The main result of the paper is the following.

Theorem 2. For every (finite or infinite) cardinal κ there is a cardinal λκ 6 exp10(κ) such
that in every κ-edge-coloured tournament there exists a king-serf duo by monochromatic
paths of size at most λk. For finite κ one can guarantee λκ 6 κ62500κ.

The rest of the paper is organized as follows. In Section 2, we give an overview of
previous results. Theorem 2 is then proved in Section 3.

2 Previous work

Given a digraph D = (V,A), an independent set K ⊆ V is called a kernel if it is absorbing,
that is, there exists a directed edge from K to v for every v ∈ V − K. Kernels were
introduced by Von Neumann and Morgenstern [14] in relation to game theory.

The concept of kernels was generalized by Galeana-Sánchez [5] for edge-coloured di-
graphs. In the coloured case, independence and absorbency are only required by means
of monochromatic paths, hence these sets are called kernels by monochromatic paths.
The existence of such kernels is widely studied, see [6]-[11], [13]. The case when K is an
absorbing set but not necessarily independent by monochromatic paths is also of inter-
est. Since an absorbing set always exists in a k-coloured digraph, a natural problem is
to find one with minimum size, which motivates the conjecture of Erdős (Conjecture 1).
In [15], Sands, Sauer and Woodrow proved that every 2-edge-coloured tournament ad-
mits an absorbing vertex, and also presented a 3-edge-coloured tournament in which the
minimum size of an absorbing set is 3. They conjectured that every 3-edge-coloured tour-
nament without polychromatic dicycles of length 3 has an absorbing vertex. Minggang
[13] verified a slightly different version of the conjecture claiming that any k-edge-coloured
tournament without polychromatic -not necessarily directed- cycles of length 3 contains
an absorbing vertex. Meanwhile, examples show that for every k > 5, there exists a k-
edge-coloured tournament without polychromatic dicycle of length 3 without an absorbing
vertex. Galeana-Sánchez [5] proved that if each directed cycle of length at most 4 in a
k-edge-coloured tournament T is quasi-monochromatic then T has an absorbing vertex.
In his PhD thesis [1], Bland provided several sufficient conditions for the existence of an
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absorbing vertex in a k-edge-coloured tournament. He also gave a sufficient condition for
the existence of an absorbing set of size 3 in 3-edge-coloured tournaments.

Quasi-kernels are possible weakenings of kernels. An independent set K ⊆ V is a
quasi-kernel if for each vertex v ∈ V −K there exists a path of length at most 2 from K
to v (quasi-sink sets can be defined analogously). The fundamental theorem of Chvátal
and Lovász [2] shows that every finite digraph contains a quasi-kernel. In [3], P.L. Erdős
and Soukup studied the existence of quasi-kernels in infinite digraphs. As the plain
generalization of the Chvátal-Lovász theorem fails even for tournaments, they considered
the problem of finding a partition V = V1 ∪ V2 of the vertex set such that the induced
subgraph D[V1] has a quasi-kernel and D[V2] has a quasi-sink. The authors conjectured
that such a partition exists for any (possibly infinite) digraph. They verified that every
(possibly infinite) directed graph D = (V,A) contains two disjoint, independent subsets
K and S of V such that for each node v ∈ V there exists a path of length at most 2 from
K to v or from v to S, but the conjecture is still open.

The motivation of our investigations was to combine the notions of absorbing sets by
monochromatic paths and that of quasi-kernels and sinks, which lead to the definition of
a king-serf duo by monochromatic paths, and to prove an analogue of Conjecture 1.

3 Proof of Theorem 2

The proof relies on the following theorem due to Erdős, Hajnal and Pósa [4] (finite case)
and Hajnal [12] (infinite case).

Theorem 3 (Erdős, Hajnal and Pósa). For every finite simple graph H and cardinal

κ > 0 there is a simple graph G of size at most exp|V (H)|+5(κ) (at most κ500|V (H)|3κ in the
finite case) such that in any κ-edge-colouring of G one can find a monochromatic induced
subgraph isomorphic to H.

With the help of Theorem 3, first we prove the following.

Lemma 4. For every cardinal κ > 0 there exists a tournament Tκ of size at most exp10(κ)
(at most κ62500κ in the finite case) such that in any κ-edge-colouring of Tκ there exists a
quasi-monochromatic dicycle of length three.

Proof. Pick a graph G ensured by Theorem 3 for κ and H = C5, that is, a cycle of length
5. Fix a well-ordering of V (G). Let Tκ denote the tournament obtained by orienting the
edges of G forward according to the ordering, and by adding all missing edges as backward
edges. We claim that Tκ satisfies the conditions of the lemma.

Take an arbitrary κ-edge-colouring of Tκ. The choice of G implies that there is a
monochromatic (not necessarily directed) cycle C of length 5 in the graph such that A(C)
consists of forward edges, and all the other edges induced by V (C) in Tκ are backward
edges.

No matter how the edges of C are oriented, we can always find a directed path of
length two in A(C). Take such a path, say uv and vw. These edges together with wu
form a quasi-monochromatic dicycle, concluding the proof of the lemma.
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We claim that λκ := |V (Tκ)| satisfies the conditions of the theorem. Suppose to the
contrary that there exists a κ-edge-coloured tournament T not containing a king-serf duo
by monochromatic paths of size at most λκ. Let Tκ be a tournament that we obtain by
applying Lemma 4.

Lemma 5. T has a subtournament isomorphic to Tκ consisting of forbidding edges.

Proof. We build up the desired subtournament by transfinite recursion. Let V (Tκ) =
{uγ}γ<|V (Tκ)|. Assume that for some α < |V (Tκ)| we have already found an ⊂-increasing
chain 〈fβ : β < α〉 of Tκ → T embeddings where dom(fβ) = {uγ}γ<β and the images of
the edges of Tκ are forbidding edges of T . If β is a limit ordinal, we may simply take fβ :=⋃
γ<β fγ to keep the conditions. Assume that β = δ+ 1. Let O = {γ < δ : uδuγ ∈ A(Tκ)}.

As T is a counterexample, the sets K := {fδ(uγ)}γ∈O and S := {fδ(uγ)}γ∈δ\O cannot form
a king-serf duo by monochromatic paths. Therefore there is a vertex v ∈ V (T ) such that
there is a forbidding edge from v to every element of K, and there is a forbidding edge
from every element of S to v. But then fδ+1 := fδ ∪ {〈uδ, v〉} maintains the conditions.
Finally, the image of f :=

⋃
γ<|V (Tκ)| gives the desired copy of Tκ.

The κ-edge-colouring of T defines a κ-edge-colouring of its Tκ subgraph as well. There-
fore, by the choice of Tκ, there is a quasi-monochromatic dicycle C of length three in Tκ.
Let uv denote the edge of C with different colour than the others if C contains two
colours, and let uv be an arbitrary edge of C if it is monochromatic. Then C − uv is a
monochromatic path of length two from v to u, contradicting uv being a forbidding edge
of T . This finishes the proof of Theorem 2.
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