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Abstract

The flip graph is the graph whose vertices correspond to non-isomorphic com-
binatorial triangulations and whose edges connect pairs of triangulations that can
be obtained from one another by flipping a single edge. In this note we show that
the diameter of the flip graph is at least 7n

3 + Θ(1), improving upon the previous
2n + Θ(1) lower bound.

1 Introduction

A combinatorial triangulation is a planar graph to which no edge can be added without
destroying planarity. The term triangulation emphasizes that in any planar drawing of a
combinatorial triangulation all the faces are delimited by cycles with three vertices, while
the term combinatorial stresses the fact that a combinatorial triangulation is not associ-
ated with a particular geometric realization. We are interested in simple combinatorial
triangulations, which have no self-loops or multiple edges. In the following, when we say
triangulation we always mean simple combinatorial triangulation.

Consider a planar drawing Γ, say on the sphere, of a triangulation G and consider
an edge (a, b) in G. If (a, b) were removed from Γ, there would exist a unique region of
the sphere delimited by a cycle with four vertices; in fact the cycle delimiting such region
would be (a, a′, b, b′), for some vertices a′ and b′. The operation of flipping (a, b) consists
of removing (a, b) from G and inserting the edge (a′, b′) inside the region delimited by
the cycle (a, a′, b, b′). The resulting triangulation G′ might not be simple though. In the
following, we only refer to flips that maintain the triangulations simple.
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The flip graph Gn describes the possibility of transforming n-vertex triangulations
using flips. The vertex set of Gn is the set of non-isomorphic n-vertex triangulations; two
n-vertex triangulations G and H are connected by an edge in Gn if there exists an edge e
of G such that flipping e in G results in H.

Various properties of the flip graph have been studied. A particular attention has
been devoted to the diameter of Gn, which is the length of the longest (among all pairs of
vertices) shortest path; refer to the surveys [3, 5]. A first proof that the diameter of Gn is
finite goes back to almost a century ago [11]. A sequence of deep improvements [4, 7, 8,
9, 10] have led to the current best upper bound of 5n+ Θ(1), which was proved recently
by Cardinal et al. [7]. Significantly less results and techniques have been presented for
the lower bound. We are only aware of a 2n + Θ(1) lower bound on the diameter of Gn,
which was proved by Komuro [8] by exploiting the existence of triangulations with “very
different” vertex degrees. The main contribution of this note is the following theorem.

Theorem 1. For every n > 3, the diameter of the flip graph is at least 7n
3
− 34.

2 Proof of the Main Result

In this section we prove Theorem 1. Let n > 3. For a triangulation G, we denote by
V (G) and E(G) its vertex and edge set, respectively.

Consider any n-vertex triangulation G1. A path incident to G1 in Gn is a sequence
of n-vertex triangulations such that the first triangulation in the sequence is G1 and
any two triangulations which are consecutive in the sequence can be obtained from one
another by flipping a single edge. Thus, a path incident to G1 in Gn corresponds to a
valid sequence σ = (u1, v1), . . . , (uk, vk) of flips, where u1, . . . , uk, v1, . . . , vk are vertices in
V (G1) and (ui, vi) is an edge of the triangulation obtained starting from G1 by performing
flips (u1, v1), . . . , (ui−1, vi−1) in this order. For a valid sequence σ of flips, denote by Gσ

1 the
n-vertex triangulation obtained starting from G1 by performing the flips in σ. Observe
that V (G1) = V (Gσ

1 ), given that a flip only modifies the edge set of a triangulation, and
not its vertex set.

Now consider any two n-vertex triangulations G1 and G2 and consider a simple path
in Gn between them. This path corresponds to a valid sequence σ of flips transforming G1

into G2. By the definition of Gn, the n-vertex triangulations Gσ
1 and G2 are isomorphic;

that is, there exists a bijective mapping γ : V (Gσ
1 ) → V (G2) such that (u, v) ∈ E(Gσ

1 ) if
and only if (γ(u), γ(v)) ∈ E(G2).

The key idea for the proof of Theorem 1 is to consider the bijective mapping γ before
the flips in σ are applied to G1 and to derive a lower bound on the number of flips in σ
based on properties of γ. In fact, the property we employ is the number of common edges
of G1 and G2 according to γ.

More precisely, for a bijective mapping γ : V (G1) → V (G2) between the vertex sets
of two triangulations G1 and G2, we define the number cγ of common edges with respect
to γ as the number of distinct edges (u, v) ∈ E(G1) such that (γ(u), γ(v)) ∈ E(G2). We
have the following.
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Lemma 2. For any two n-vertex triangulations G1 and G2, the number of flips needed
to transform G1 into G2 is at least 3n− 6−maxγ cγ, where the maximum is over all the
bijective mappings γ : V (G1)→ V (G2).

Proof. The statement descends from the following two observations. First, two isomorphic
n-vertex triangulations have 3n− 6 common edges according to the bijective mapping γ
realizing the isomorphism. Second, for any two n-vertex triangulations H and L that have
` common edges with respect to any bijective mapping γ, flipping any edge in H results
in a combinatorial triangulation H ′ such that H ′ and L have at most `+ 1 common edges
with respect to γ.

It remains to define two n-vertex triangulations G1 and G2 such that any bijective
mapping γ between their vertex sets has a small number cγ of common edges.

• Triangulation G1 is defined as follows (see Fig. 1a). Let H be any triangulation
of maximum degree six with bn

3
c + 2 vertices. Note that the number of faces of

H is 2(bn
3
c + 2) − 4 = 2bn

3
c. If n ≡ 2 modulo 3, if n ≡ 1 modulo 3, or if n ≡ 0

modulo 3, then insert a vertex inside each face of H, insert a vertex inside each face
of H except for one face, or insert a vertex inside each face of H except for two
faces, respectively. When a vertex is inserted inside a face of H, it is connected to
the three vertices of H incident to the face. Denote by G1 the resulting n-vertex
triangulation. We say that the vertices of G1 in H are blue, while the other vertices
of G1 are red.

(a) (b)

Figure 1: Triangulations G1 (a) and G2 (b).

• Triangulation G2 is defined as follows (see Fig. 1b). Starting from a path P with
n − 2 vertices, connect all the vertices of P to two further vertices a and b, and
connect a with b. Interestingly, the triangulation G2, which is sometimes called the
“canonical triangulation”, has been previously used in order to prove upper bounds
for the diameter of the flip graph [4, 7, 8, 9, 11], whereas in this paper we use G2 in
order to prove a lower bound for the same parameter.
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We have the following.

Lemma 3. For any bijective mapping γ : V (G1)→ V (G2), we have cγ 6 2bn
3
c+ 28.

Proof. Consider any bijective mapping γ : V (G1)→ V (G2). First, note that each vertex
v ∈ V (G1) has degree at most twelve. Namely, v has at most six blue neighbors; further,
v has at most six incident faces in H, hence it has at most six red neighbors. It follows
that, whichever vertex in V (G1) is mapped to a according to γ, at most twelve out of the
n − 1 edges incident to a are shared by G1 and G2 with respect to γ. Analogously, at
most twelve out of the n − 1 edges incident to b are shared by G1 and G2 with respect
to γ. It remains to bound the number of edges of P that are shared by G1 and G2 with
respect to γ. This proof uses a pretty standard technique (see, e.g., [6, 7]). Since G1 has
no edge connecting two red vertices, the number of edges of P that are shared by G1 and
G2 with respect to γ is at most the number of edges of P that have at least one of their
end-vertices mapped to a blue vertex; since bn

3
c + 2 vertices of G1 are blue, there are at

most 2bn
3
c+ 4 such edges of P . It follows that the number of edges shared by G1 and G2

with respect to γ is at most 2bn
3
c+ 28.

By Lemma 3, we have that G1 and G2 are two n-vertex triangulations such that, for
any bijective mapping γ : V (G1) → V (G2), we have cγ 6 2bn

3
c + 28. By Lemma 2, the

number of flips needed to transform G1 into G2 is at least 3n− 6− 2bn
3
c − 28 > 7n

3
− 34.

This concludes the proof of Theorem 1.

3 Conclusions

In this note we have presented a lower bound of 7n
3

+Θ(1) on the diameter of the flip graph
for n-vertex triangulations. One of the main ingredients for this lower bound is a lemma
stating that there exist two n-vertex triangulations such that any bijective mapping γ
between their vertex sets creates at most cγ 6 2n

3
+ Θ(1) common edges.

It not clear to us whether the bound resulting from this approach can be improved
further. That is, is it true that, for every two n-vertex triangulations, there exists a
bijective mapping γ between their vertex sets creating cγ > 2n

3
+ Θ(1) common edges?

The only lower bound on the value of cγ we are aware of comes as a corollary of the fact
that every n-vertex triangulation has a matching of size at least n+4

3
, as proved in [2],

hence cγ > n+4
3

.
It is an interesting fact that, for every n-vertex triangulation H, a bijective mapping

γ : V (H)→ V (G2) exists creating cγ = 2n
3

+Θ(1) common edges, whereG2 is the canonical
triangulation from the proof of Theorem 1. In fact, every n-vertex triangulation H has
a set of n

3
+ Θ(1) vertex-disjoint simple paths covering its vertex set V (H), as proved by

Barnette [1] (this bound is the smallest possible [6]). Mapping these paths to sub-paths
of the path P in G2 provides the desired bijective mapping γ.

We conclude with a remark on the definition of the problem we addressed in this paper.
Consider a planar drawing Γ of a triangulation G and denote by σG(v) the clockwise order
of the edges incident to each vertex v ∈ V (G) in Γ. By Whitney’s theorem [12], in any
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planar drawing of G either the clockwise order incident to each vertex v ∈ V (G) is σG(v),
or the clockwise order incident to each vertex v ∈ V (G) is the reverse of σG(v). Some
papers in fact define a combinatorial triangulation so that each vertex v is associated
with a clockwise order σG(v) of its incident edges; then two triangulations G and G′ are
isomorphic if two conditions are satisfied: (i) there exists a bijective mapping γ : V (G)→
V (G′) such that (u, v) ∈ E(G) if and only if (γ(u), γ(v)) ∈ E(G′); and (ii) σG(v) coincides
with σG′(γ(v)) for every vertex v ∈ V (G). This somehow changes the structure of the
flip graph; for example, with this definition the flip graph has twice as many vertices as
with the definition that was given in our paper. All the bounds known in the literature
for the diameter of the flip graph hold true in both settings; in particular our lower
bound immediately extends to the setting in which the vertices of the triangulations are
associated with a clockwise order of their incident edges. However we ask: Is the diameter
of the flip graph different with the two different definitions? How many flips does it take
to transform a triangulation with a certain clockwise order of the edges incident to each
vertex into the triangulation in which such orders are reversed?
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