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Abstract

For a given number of colours, s, the guessing number of a graph is the base s
logarithm of the size of the largest family of colourings of the vertex set of the graph
such that the colour of each vertex can be determined from the colours of the vertices
in its neighbourhood. An upper bound for the guessing number of the n-vertex cycle
graph Cn is n/2. It is known that the guessing number equals n/2 whenever n is
even or s is a perfect square. We show that, for any given integer s > 2, if a is the
largest factor of s less than or equal to

√
s, for sufficiently large odd n, the guessing

number of Cn with s colours is (n− 1)/2 + logs(a). This answers a question posed
by Christofides and Markström in 2011. We also present an explicit protocol which
achieves this bound for every n. Linking this to index coding with side information,
we deduce that the information defect of Cn with s colours is (n + 1)/2 − logs(a)
for sufficiently large odd n.

Keywords: guessing number, cycle graph, information defect, index codes, unicast,
entropy

1 Introduction

Computing the guessing number (Definition 2) of a graph G, is equivalent to determining
whether the multiple unicast coding problem [9] is solvable on a network related to G.
The guessing number of a graph, G, is also studied for its relation to the information
defect of G and index coding with side information [1, 11]. Exact guessing numbers are
known only for a small number of specific classes of graphs, such as perfect graphs, or
small cases of non-perfect graphs [2, 5, 6, 15]. In particular, the guessing number of odd
cycles, which is the focus of this paper, was not known, except for small cases [7, 3]. Here
we compute the guessing number of the cycle graph, Cn, by analysing optimal protocols
for the “guessing game”.

the electronic journal of combinatorics 24(1) (2017), #P1.45 1



The guessing game was introduced by Riis in 2007 [14]. It is a cooperative n-player
information game played on a graph with n vertices with s colours. The guessing game on
the complete graph Kn with s = 2 colours is played as follows. Each of the n players are
given a hat that is red or blue uniformly and independently at random. Each player can
see everyone else’s hat, but not their own. The players collaboratively aim to maximise
the probability that all players guess the colour of their hats correctly. Much of the
popularity of this puzzle is owed to the striking difference between the success probability
achieved by uncoordinated random guessing and an optimal protocol, which are 1/2n and
1/2 respectively.

The general guessing game considered here differs from many other variants of multi-
player information games (for example: the “hat guessing game” [4], “Ebert’s game” [10]
and the “hats-on-a-line game” [12]) in the following critical ways:

• The colours are assigned to each player independently and uniformly.

• Every player must guess (no passing or remaining silent).

• Each player does not necessarily see every other player’s colours; two players can
see each other if and only if they are joined by an edge in a given graph G.

• The players guess simultaneously so no communication is possible once the colours
are assigned.

• The guessing game is won only if all the players guess correctly. An incorrect guess
by any single player would mean that the whole team of n players collectively lose
the guessing game (unlike [4], for example which seeks to optimise the number of
players who guess correctly).

It is known that the greatest probability of winning the guessing game can be achieved
by a deterministic protocol [5]. Let G = (V,E) be a graph where V = {v1, v2, . . . , vn} is
the set of vertices and E ⊆

(
V
2

)
is the edge set. We restrict our attention to undirected

graphs, but the problem generalizes to directed graphs in an obvious way.

Definition 1 (Protocol, colouring). For any positive integer s, we let Zs, the group of all
residues modulo s, denote the colour set. A colouring of G with s colours is an n-tuple
c = (c1, c2, . . . , cn) such that ci ∈ Zs. The set of all colourings of G with s colours is
denoted Zns . A protocol on G with s colours is any n-tuple P = (f1, f2, f3, . . . , fn) where
for each i, the [deterministic] function fi : Zns → Zs is such that fi(c) is dependent only
on cj for all j such that vivj ∈ E, i.e. for any i and any two colourings c = (c1, c2, . . . , cn)
and c′ = (c′1, c

′
2, . . . , c

′
n), if c′j = cj for all j such that vivj ∈ E then fi(c) = fi(c

′).

Definition 2 (Fixed number, fixed set). For any protocol, P , the fixed set of P , let
Fix(P) be the set of all invariant colourings:

Fix(P) =
{

c ∈ Zn
s | ci = fi(c) ∀i

}
.

The fixed number of the protocol P is the size of its fixed set; fix(P) = |Fix(P)|. A
protocol P is called non-trivial if Fix(P) 6= ∅. A protocol is called optimal if it has
maximal fixed number.
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Definition 3 (Guessing number). The guessing number of G with s colours is defined as

gn(G, s) = logs max
P

[fix(P)] .

Here we are taking the maximum over all protocols, P on G with s colours.

We assign the n-tuple of colours c ∈ Zns uniformly at random to the set of players, who
are each identified with a vertex of G. The guesses of the players are given by P(c), so
the players win if and only if c = P(c). Hence, the probability that an optimal protocol
P wins is

P
(
c = P(c)

)
=

fix(P)

|Zns |
= sgn(G,s)−n.

Christofides and Markström [7] showed that, for a perfect graph G and any s, gn(G, s) =
n− α where α is the size of the largest independent set in G. For example, the complete
graph Kn is a perfect graph with α = 1, so an optimal protocol on Kn, wins with
probability 1/s. The 3-cycle and the even-cycle C2k (for any positive integer k) are both
perfect graphs with α(C3) = 1 and α(C2k) = k so

gn(C3, s) = 2 and gn(C2k, s) = k ∀ k. (1)

Henceforth, we shall consider only the cycle graphs Cn for odd n > 5. In [7], it is shown
that

gn(C5, 2) = 5,

and the analysis in [3] shows that

gn(Cn, 2) =
n− 1

2
, for odd n > 7.

For general s, Christofides and Markström define protocols called “the clique strategy”
and “the fractional-clique strategy” [7]. The fractional clique strategy is only defined
when the number of colours s is a perfect power, and it is shown to be optimal on the
odd cycle whenever s is a perfect square, i.e.

gn(Cn,m
2) =

n

2
∀ n,m. (2)

In Definition 14, a protocol Pfcp is defined on odd cycles for any number of colours s. The
protocol Pfcp is equivalent to the clique-strategy when s is prime, and to the fractional-
clique-strategy when s is a perfect square. The protocol Pfcp is called the fractional-
clique-partition protocol to emphasise that it is very closely related to Christofides and
and Markström’s fractional-clique strategy. Our main result in Theorem 33 states that,
for any given s, this fractional-clique-partition protocol is optimal on any large enough
odd cycle.

The rest of this paper is organised as follows. In Section 2, we summarise a few of the
known results on guessing numbers, and introduce the concepts of entropy and mutual
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information, which we will use heavily in our proofs. In Section 3, we define the fractional-
clique-partition protocol, which is a refinement of the protocol introduced in [7] and we
prove that for odd n, as the number of colours grows, this protocol achieves a fix(P)
which lies between sn/2 and sn/2(1 − O(n/

√
s)) (Theorem 17). In Section 4, we lay the

technical groundwork which is needed for Section 5. Then, in Section 5, we focus on the
case of large n compared to s, and we prove that the fractional-clique-partition protocol
is in fact optimal on large enough odd cycles (Theorem 33). In Section 6, we link this to
index coding with side information and compute the size of an optimal index code for Cn
with s colours when n is odd and sufficiently large.

2 Backround Material and Notation

Many of our proofs will use the concept of the entropy of a random variable. Entropy
is defined in Definition 5 and we list three crucial properties in Proposition 6. In this
paper we take most logarithms base s, including inside the definitions of entropy. In the
rest of this section, we present a few known results on the guessing number, define some
useful random variables on the cycle graph and a notion of entropy, all of which will be
used extensively in our proofs. When possible, we are consistent with the definitions and
notations given in [5, 6, 7, 2, 13, 14]. We start with a small, useful result that shows,
intuitively, that we are allowed to “forget” some colours.

Proposition 4. Let G be a graph, let s and s′ be positive integers with s′ 6 s, and let P
be any protocol on G with s colours. There exists a protocol P ′ on G with s′ colours such
that {

c ∈ Fix(P)
∣∣ 0 6 ci < s′ ∀i

}
⊆ Fix(P ′).

Proof. If P = (f1, f2, . . . fn) then define P ′ = (f ′1, f
′
2, . . . , f

′
n) such that:

• If 0 6 cj < s′ for all j such that vivj ∈ E, and 0 6 fi(c) < s′ then f ′i(c) = fi(c).

• If s′ 6 cj < s for any j such that vivj ∈ E, or s′ 6 fi(c) < s then choose f ′i(c)
arbitrarily.

For any colouring c ∈ Fix(P), if 0 6 ci < s′ for all i, then P ′(c) = P(c) = c so c ∈
Fix(P ′).

Definition 5 (Entropy, mutual information). Let A1, . . . , Ak be random variables which
take values in a finite set A. The entropy of A1, . . . , Ak is denoted H(A1, . . . , Ak) and is
given by:

H(A1, . . . , Ak) = −
∑

a1,...,ak∈Ak

P(A1 = a1, . . . , Ak = ak) logs P(A1 = a1, . . . , Ak = ak).

The mutual information of A1 and A2 is denoted I(A1;A2) and is given by:

I(A1;A2) = H(A1) +H(A2)−H(A1, A2).
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Let B be another random variable taking values inA. The conditional mutual information
of I(A1;A2|B) is given by

I(A1;A2|B) = H(A1, B) +H(A2, B)−H(A1, A2, B)−H(B). (3)

Proposition 6. Let A1, A2 be random variables which take values in a finite set A.

1. H(A1) 6 log |A| with equality if and only if A1 is uniformly distributed.

2. I(A1;A2) > 0 with equality if and only if A1 and A2 are independent.

3. I(A1;A2|B) > 0 with equality if and only if A1 and A2 are independent conditional
on B.

For a proof of the results in Proposition 6 we refer the reader to [8].

Definition 7. For a non-empty set S, we use the notation A ∈u S to mean A is a random
variable distributed uniformly over all elements in S.

Definition 8 (Notation for Cn). The cycle graph, Cn, has n vertices V = {v1, v2, . . . , vn}.
The edge set of Cn is

E = {vivi+1 | i = 1, 2, 3, . . . , n}
(indices are always taken modulo n). In a slight abuse of notation, for any protocol
P = (f1, f2, f3, . . . , fn) on Cn with s colours, we say fi : Z2

s → Zs where

fi(c) = fi(ci−1, ci+1).

Recall that a protocol P is non-trivial if Fix(P) 6= ∅. For a given non-trivial protocol P
on Cn, define X = (X1, X2, . . . , Xn) to be a colouring chosen uniformly at random from
Fix(P). i.e.

X ∈u Fix(P).

Note that the random colouring X = (X1, X2, . . . , Xn) is only defined for non-trivial
protocols P . To simplify notation we will sometimes denote the entropy of a tuple of Xis
by

h(i1, i2, i3, . . .) = H(Xi1 , Xi2 , Xi3 , . . .).

Since Xi is determined by (Xi−1, Xi+1) we must have H(Xi−1, Xi, Xi+1) = H(Xi−1, Xi+1)
so h(i− 1, i, i+ 1) = h(i− 1, i+ 1). In general we can freely remove the argument i from
h(. . . , i− 1, i, i+ 1, . . .) as long as we don’t remove the arguments i− 1 and i+ 1.

h(. . . , i− 1, i, i+ 1, . . .) = h(. . . , i− 1, i+ 1, . . .) (4)

To simplify notation even further, for integers j < k, let Hk
j denote the quantity

Hk
j = h(j, j + 1, j + 2, . . . , k − 1) + h(j + 1, j + 2, j + 3, . . . , k).

Since X1 = f1(Xn, X2) and Xn = fn(Xn−1, X1), we conclude that H(X) = h(2, 3, 4, . . . , n)
and H(X) = h(1, 2, 3, . . . , n− 1). Adding these together gives

Hn
1 = 2H(X) = 2 logs fix(P).
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Proposition 9. For any three integers i, j, k such that 1 6 i < j and j + 1 < k 6 n.

Hk
i 6 Hj

i +Hk
j+1.

Proof. We add up the following inequalities:

h(i, i+ 1, . . . , k − 1) = h(i, . . . , j − 1, j + 1, . . . , k − 1)

6 h(i, . . . , j − 1) + h(j + 1 . . . , k − 1),

and h(i+ 1, i+ 2, . . . , k) = h(i+ 1, . . . , j, j + 2, . . . , k)

6 h(i+ 1, . . . , j) + h(j + 2, . . . , k).

Lemma 10. If P is a non-trivial protocol on Cn with s > 2 colours and X ∈u Fix(P),
then, for all i,

logs fix(P) = H(X), h(i) 6 1.

Proof. The entropy of any random variable over a finite domain is maximised when the
variable is uniformly distributed. Therefore, h(i) = H(Xi) 6 H(U) where U is a random
variable uniformly distributed over Zs. Hence,

h(i) 6 H(U) = −
∑ 1

s
logs

1

s
= 1.

The variable X is uniformly distributed over Fix(P). Therefore,

H(X) = −
∑ 1

fix(P)
logs

1

fix(P)
= logs fix(P).

Lemma 11. If P is a non-trivial protocol on Cn with s > 2 colours and X ∈u Fix(P),
then

Hk
j 6

k∑
i=j

H(Xi),

for any j > 1 and j + 3 6 k 6 n.

Proof. We prove this by induction on (k−j). Recall h(i1, i2, i3, . . .) = H(Xi1 , Xi2 , Xi3 , . . .).

• Base case: k = j + 3. Since Xj+1 = fj+1(Xj, Xj+2) and Xj+2 = fj+2(Xj+1, Xj+3)
we have

h(j, j + 1, j + 2) = h(j, j + 2) 6 h(j) + h(j + 2)

and h(j + 1, j + 2, j + 3) = h(j + 1, j + 3) 6 h(j + 1) + h(j + 3),

respectively. Adding these together yields:

Hj+3
j = h(j, j+1, j+2)+h(j+1, j+2, j+3) 6 h(j)+h(j+1)+h(j+2)+h(j+3).
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• Inductive step: k > j + 4. Since Xk−1 = fk−1(Xk−2, Xk) we have

h(j + 1, j + 2, . . . , k) = h(j + 1, j + 2, . . . , k − 2, k)

6 h(j + 1, j + 2, . . . , k − 2) + h(k).

By Proposition 6, I(Xj;Xk−1|Xj+1, Xj+2, . . . , Xk−2) > 0. Adding these together
yields

Hk
j 6 Hk−1

j + h(k).

This completes the proof.

Lemma 12. Let P be a non-trivial protocol on Cn with s > 2 colours and let X ∈u Fix(P).
Suppose 1 = d(1), d(2), d(3), . . . , d(k) = n is a sequence of positive integers with k > 2. If
d(i+ 1) > d(i) + 2 for all i, then

2 logs fix(P) 6 H
d(2)
d(1) + H

d(3)
d(2)+1 + · · ·+ H

d(k)
d(k−1)+1.

Proof. We proceed by induction on k.

• Base case: k = 2. Since X1 = f1(Xn, X2) and Xn = fn(Xn−1, X1), we have

H(X) = h(2, 3, 4, . . . , n) and H(X) = h(1, 2, 3, . . . , n− 1),

respectively. Adding these together gives Hn
1 = 2H(X) = 2 logs fix(P).

• Inductive step: By Proposition, we have Hn
d(k−1)+1 6 H

d(k)
d(k−1)+1 +Hn

d(k)+1. So

2 logs fix(P) 6 H
d(2)
d(1) +H

d(3)
d(2)+1 + · · ·+H

d(k)
d(k−2)+1

6 H
d(2)
d(1) +H

d(3)
d(2)+1 + · · ·+H

d(k−1)
d(k−2)+1 +H

d(k)
d(k−1)+1.

3 The Fractional-Clique-Partition Protocol

In this section, we define the fractional-clique-partition protocol, Pfcp, on odd cycles Cn
with s > 2 colours. Theorem 16 appears in [7] and serves as a good upper bound for any
n > 4 and all numbers of colours.

Definition 13 (Factorization bijection). It is easy to see that for any factorization ab = s,
there exists a bijection between Zs and Za×Zb. Let φ(z)×ψ(z) be such a bijection. For
ease of notation, a and b are assumed to be given in context. Let π be the inverse of this
bijection, so that π(φ(z), ψ(z)) = z for all z ∈ Zs.

Definition 14 (Fractional-clique-partition protocol). Let n > 3 be an odd integer, let s
be a positive integer, let a be the greatest factor of s less than or equal to

√
s and let

b = s/a. For any colouring c = (c1, c2, . . . , cn) ∈ Zns , let φ(ci) and ψ(ci) be referred to as
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ψ(c7)φ(c7)

ψ(c1)

φ(c1)

ψ(c2)

φ(c2)

ψ(c6)

φ(c6)

Figure 1: The protocol Pfcp on C7 with s = ab colours, where a < b. Each vertex vi is
subdivided into two nodes representing the first and second components (φ(ci) and ψ(ci),
respectively). The red edges ( ) represent pairs of first-components that are copying
each other. The blue edges ( ) represent pairs of second-components that are copying
each other. The black edge ( ) joins a first-component (φ(cn)) and a second-component
(ψ(c1)) which are copying each other as much as possible. For a colouring c ∈ Fix(Pfcp)
on C7, there are a different choices for each red edge, b different choices for each blue edge
and a different choices for the black edge. Therefore, fix(Pfcp) = a4b3 = as3 for n = 7.

the first and second coordinates respectively of vertex vi. The fractional-clique-partition
protocol is the protocol Pfcp = (f1, f2, . . . , fn) on Cn defined by:

fi(ci−1, ci+1) = π
(
φ(ci−1), ψ(ci+1)

)
for i = 2, 4, 6, . . . , n− 1

fi(ci−1, ci+1) = π
(
φ(ci+1), ψ(ci−1)

)
for i = 3, 5, 7, . . . , n− 2

f1(cn, c2) = π
(
φ(c2), φ(cn)

)
and

fn(cn−1, c1) = π
(
ψ(c1)(mod a), ψ(cn−1)

)
.

Informally, vertices v2k−1 and v2k are copying each others first coordinate and vertices
v2k and v2k+1 are copying each others second coordinate (for k = 1, 2, 3, . . . , (n − 1)/2).
Additionally, the second coordinate of vertex v1 and the first coordinate of vertex vn copy
each other as much as possible - whenever the second coordinate of vertex v1 is less than
a. An example of Pfcp on C7 is illustrated in Figure 1.

Proposition 15. For a given integer s > 2 and odd integer n > 3, if a is the greatest
factor of s less than or equal to

√
s, then we have fix(Pfcp) = as(n−1)/2.

Proof. Let n = 2k + 1. We count the number of colourings of Cn for which the protocol
Pfcp guesses correctly. For any colouring c ∈ Fix(Pfcp), there are k pairs of vertices
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copying each other’s first coordinates and there are a different choices for φ for each
pair. Similarly, for each of the k pairs of vertices copying each other’s second coordinates,
there are b different choices for ψ. This yields akbk possibilities. Additionally, the first
coordinate of vertex vn must equal the second coordinate of vertex v1, for which there are
a possible colours. Multiplying these together yields

fix(Pfcp) = ak+1bk = as(n−1)/2.

Theorem 16 ([7]). For any integer n > 4, we have gn(Cn, s) 6 n
2
, with equality only if

for any optimal protocol, P the following is satisfied. If X ∈u Fix(P) then H(Xi) = 1 for
all i.

Proof. Let P be an optimal protocol on Cn with s colours. By Lemmas 10, 11 and 12,
we have

gn(Cn, s) = logs fix(P) = H(X) = 1
2
Hn

1 6 1
2

n∑
i=1

h(i) 6
n

2
.

If gn(Cn, s) = n/2, then we must have equality throughout, which means that h(i) = 1
for all i.

Theorem 16 appears in [7]. This same paper also shows that the limit of gn(Cn, s)→
n/2 as s→∞. We give a bound on the rate of convergence to this limit in Theorem 17.

Theorem 17. If n is odd and s = m2 − t for integers m and t > 0 then there exists a
protocol P on Cn with s colours such that

fix(P) > sn/2
(

1− tn

s

)
.

Proof. Consider the optimal protocol P ′ = Pfcp on Cn with s′ = m2 colours and let
X ′ ∈u Fix(P ′). By Theorem 16, we must have H(X ′i) = 1 and therefore X ′i is uniformly
distributed over Zs′ for all i. By the union bound,

P (X ′i < s ∀ i) > 1−
n∑
i=1

P(X ′i > s) = 1−
n∑
i=1

t

m2
= 1− tn

m2
.

Now, let P be a protocol on Cn with s colours such that c ∈ Fix(P) for all colourings
c ∈ Fix(P ′) such that ci < s for all i (such a protocol must exist by Proposition 4). For
this protocol,

fix(P) > fix(P ′) P (X′i < s ∀ i)

> fix(P ′)
(

1− tn

m2

)
= (s+ t)n/2

(
1− tn(s+ t)−1

)
> sn/2

(
1− tn

s

)
.
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Corollary 18. If n > 4 then gn(Cn, s) = n
2
−O

(
n√

s loge s

)
as s→∞.

Proof. For even n > 4 we know gn(Cn, s) = n
2

exactly. For odd n > 5, we know that
gn(Cn, s) 6 n

2
with equality whenever s is a perfect square. For other values s, let m be

the smallest positive integer such that m2 > s. This gives t = m2 − s = O(
√
s). If P is

the protocol constructed in Theorem 17, then

gn(Cn, s) > logs fix(P) >
n

2
+ logs

(
1− tn

s

)
=

n

2
−O

(
n√

s loge s

)
.

Therefore
n

2
> gn(Cn, s) >

n

2
−O

(
n√

s loge s

)
for all n > 4 and all s > 2.

4 Entropy Results

The bounds in Theorem 17 are only useful when n is small relative to s. In contrast, the
purpose of the results in this section is to establish Lemma 27, which in turn will be used
to prove Theorem 33 which only applies when n is large relative to s. To help orientate
the reader through this section (and the next), Figure 2 shows which results are used to
prove other results.

Definition 19 (Flat function, semi-perfect function). For any z ∈ Zs and for any function
f : Z2

s → Zs let f−1(z) = {(x, y) | f(x, y) = z}. The function f is called flat if and only
if |f−1(z)| = s for all z. Let U = (U1, U2) ∈u Z2

s. A semi-perfect function, f , is any flat
function such that the U1 and U2 are conditionally independent given f(U) (Definition 5),
i.e.

I(U1;U2 | f(U)) = 0.

Definition 20 ((k, ε)-uniform). For any positive integer k and any ε > 0, a random
variable Y is called (k, ε)-uniform if Y takes values in a finite set Y with |Y| = k and, for
any y ∈ Y , ∣∣∣∣P(Y = y)− 1

k

∣∣∣∣ 6 ε.

Proposition 21. For any integer k > 2, any integer s > 2 and any ε > 0, there exists
δ > 0 such that, for any random variable Y which takes k distinct values, if H(Y ) is the
entropy of Y (base s), then

H(Y ) > logs k − δ =⇒ Y is (k, ε)-uniform.

Proof. For each k, it suffices to show this for all small enough ε. Assume 7kε < 1. We
prove the contrapositive:

the electronic journal of combinatorics 24(1) (2017), #P1.45 10



Prop 21 Lem 22 Lem 24

Lem 25

Lem 26

Lem 27

Thm 33

Lem 32Lem 31

Lem 30Prop 29

Figure 2: The structure of Sections 4 and 5. An arrow A → B indicates that A is used
in the proof of B.

• Suppose that P(Y = y) > 1
k

+ ε for at least one value y. Entropy is convex, and it
is maximised when Y is as uniformly distributed as possible. Therefore,

H(Y ) = −
∑
i

P(Y = i) logs P(Y = i)

6 −
(
1
k

+ ε
)

logs
(
1
k

+ ε
)
− (k − 1)

(
1
k
− ε

k−1

)
logs

(
1
k
− ε

k−1

)
= logs k −

(
1
k

+ ε
)

logs(1 + kε)−
(
k−1
k
− ε
)

logs
(
1− kε

k−1

)
.

Since 0 < kε < 1
7
, we can use the identity, − logs(1− γ) 6 (γ + 5

9
γ2) loge s (valid for

|γ| 6 1/7), to simplify this expression.

H(Y ) 6 logs k −
kε2

9

(
4− 5kε+ 4

k−1 + 5kε
(k−1)2

)
loge s

6 logs k −
kε2

3
loge s.

• Now suppose P(Y = y) 6 1
k
−ε for at least one value y. Again, since entropy convex,
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H(Y ) is maximised when Y is as uniformly distributed as possible. Therefore,

H(Y ) = −
∑
i

P(Y = i) logs P(Y = i)

6 −
(
1
k
− ε
)

logs
(
1
k
− ε
)
− (k − 1)

(
1
k

+ ε
k−1

)
logs

(
1
k
− ε

k−1

)
= logs k −

(
1
k
− ε
)

logs(1− kε)−
(
k−1
k

+ ε
)

logs
(
1 + kε

k−1

)
.

We can use the identity, − logs(1 − γ) 6 (γ + 5
9
γ2) loge s, again to simplify this

expression.

H(Y ) 6 logs k − kε2

9

(
4− 5kε+ 4

k−1 −
5kε

(k−1)2

)
loge s

6 logs k −
kε2

3
loge s.

In either case, H(Y ) < logs k − δ for any δ < kε2

3
loge s.

Lemma 22. For any integer s > 2, there exists positive constant ε = ε(s) that satisfies
the following property. For any non semi-perfect function g : Z2

s → Zs and for any three
(s, ε)-uniform random variables Y1, Y2, Y3 over Zs satisfying Y2 = g(Y1, Y3), if (Y1, Y3) is
(s2, ε)-uniform, then

I(Y1;Y3|Y2) > 1
2

min
{
I(U1;U2|f(U))

∣∣ f is a flat but not semi-perfect
}

= δ1,

where U = (U1, U2) ∈u Z2
s.

Proof. The value

δ1 = δ1(s) = 1
2

min
{
I(U1;U2|g(U))

∣∣ g : Z2
s → Zs is flat but not semi-perfect

}
is well-defined for any s > 2, because there are only a finite number of possible functions
g : Z2

s → Zs, and at least one of them is flat and not semi-perfect hence we can take
the minimum of these. For example, the function g(x, y) = x + y (mod s) is flat but
not semi-perfect. Moreover, δ1 > 0 because it is the minimum of a finite set of positive
numbers. First, let ε < 1

s2(s+2)
, so that

1

s2
− (s− 1)ε >

1

s2
− (s+ 1)ε > ε.

We show that f is flat by contradiction. Since (Y1, Y3) is (s2, ε)-uniform:

• If |f−1(z)| > s+ 1 then

P(Y2 = z) = P((Y1, Y3) ∈ f−1(z)) > (s+ 1)
(

1
s2
− ε
)

= 1
s

+
(

1
s2
− (s+ 1)ε

)
> 1

s
+ ε.

• If |f−1(z)| 6 s− 1 then

P(Y2 = z) = P((Y1, Y3) ∈ f−1(z)) 6 (s− 1)
(

1
s2

+ ε
)

= 1
s
−
(

1
s2
− (s− 1)ε

)
< 1

s
− ε.
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Both cases contradict the assumption that Y2 is (s, ε)-uniform. Therefore f is a flat
function and so

I(U1;U2|f(U)) > 2δ1.

Moreover, since (Y1, Y3) is (s2, ε)-uniform, then U and (Y1, Y3) differ in distribution by
less than ε. Since mutual information is continuous, we can choose ε small enough so that∣∣I(U1;U2|f(U))− I(Y1;Y3|Y2)

∣∣ 6 δ1.

Then, by the triangle inequality, I(Y1;Y3|Y2) > δ1.

Definition 23. From now on, for any integer s > 2, let ε = ε(s) > 0 be chosen small
enough so that ε 6 1

s2(2s+1)
and ε satisfies Lemma 22. Then let δ2 = δ2(s) > 0 be chosen

small enough to satisfy Proposition 21 for both k = s and k = s2 for this value ε. Then,
with δ1 as defined in Lemma 22, let δ = min(δ1, δ2).

Lemma 24. Let n > 5 be an integer and let P be any non-trivial protocol on Cn with
s > 2 colours. The random variables X1, X2, X3, X4, X5 (Definition 8) satisfy:

H5
1 6 3 + h(2, 4)− I(X2;X4|X3).

Proof. By Lemma 10, it suffices to show H5
1 6 h(1)+h(3)+h(5)+h(2, 4)−I(X2;X4|X3).

By Definition 5, we have

h(2, 3, 4) + h(3) = h(2, 3) + h(3, 4)− I(X2;X4|X3). (5)

By Shannon’s Inequality (Proposition 6) with A1 = X1, A2 = X4, and B = (X2, X3), we
have

h(1, 2, 3, 4) + h(2, 3) 6 h(1, 2, 3) + h(2, 3, 4). (6)

Also, by Shannon’s Inequality, with A1 = X2, A2 = X5, and B = (X3, X4), we have

h(2, 3, 4, 5) + h(3, 4) 6 h(2, 3, 4) + h(3, 4, 5). (7)

Finally since Xi = fi(Xi−1, Xi+1) for i = 2, 3, 4 respectively we have:

h(1, 2, 3) = h(1, 3) 6 h(1) + h(3), (8)

h(2, 3, 4) = h(2, 4), (9)

and h(3, 4, 5) = h(3, 5) 6 h(3) + h(5). (10)

The required result is the sum of equations (5), (6), (7), (8), (9) and (10).

Lemma 25. Let n > 5 be an integer and let P = (f1, f2, . . . , fn) be a non-trivial protocol
on Cn with s > 2 colours and let X ∈u Fix(P). For any j, if fj+2 is not semi-perfect or
(Xj+1, Xj+3) is not (s2, ε)-uniform then Hj+4

j 6 5− δ, for δ as in Definition 23.

Proof. Since δ = min(δ1, δ2) we have δ 6 δ1 and δ 6 δ2 (δ1 is defined in Lemma 22 and
δ2 is chosen small enough to satisfy Proposition 21). Without loss of generality let j = 1.
There are 3 cases.
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• If, for any i ∈ {1, 2, 3, 4, 5}, the variable Xi is not (s, ε)-uniform, then h(i) 6 1− δ2
(Proposition 21). In this case, by Lemma 11,

H5
1 6

5∑
i=1

h(i) 6 5− δ2 6 5− δ.

• If (X2, X4) is not (s2, ε)-uniform, then h(2, 4) 6 2− δ2 (Proposition 21). Therefore,
by Lemma 24, we have

H5
1 6 3 + h(2, 4)− I(X2;X4|X3) 6 5− δ2 6 5− δ.

• Otherwise, X2, X3, X4 are each (s, ε)-uniform and (X2, X4) is (s2, ε)-uniform and f3
is not semi-perfect. In this case, by Lemma 22, we have I(Xj+1;Xj+3|Xj+2) > δ1.
By Lemma 24, we have

H5
1 6 3 + h(2, 4)− I(X2;X4|X3) 6 5− δ1 6 5− δ.

In all cases, we have H5
1 6 5− δ.

Lemma 26. Let n > 7 be an integer and let P = (f1, f2, . . . , fn) a non-trivial protocol on
Cn with s > 2 colours and let X ∈u Fix(P). For any j, if any of fj+2, fj+3 or fj+4 are not
semi-perfect, or any of (Xj+1, Xj+3), (Xj+2, Xj+4) or (Xj+3, Xj+5) are not (s2, ε)-uniform,
then Hj+6

j 6 7− δ.
Proof. Without loss of generality let j = 1. We treat each case individually, and use
Lemma 25.

• If f3 is not semi-perfect or (X2, X4) is not (s2, ε)-uniform then

H7
1 = h(1, 2, 3, 4, 5, 6) + h(2, 3, 4, 5, 6, 7)

= h(1, 2, 3, 4, 6) + h(2, 3, 4, 5, 7)

6 H5
1 + h(6) + h(7)

6 (5− δ) + 1 + 1.

• If f4 is not semi-perfect or (X3, X5) is not (s2, ε)-uniform then

H7
1 = h(1, 2, 3, 4, 5, 6) + h(2, 3, 4, 5, 6, 7)

= h(1, 3, 4, 5, 6) + h(2, 3, 4, 5, 7)

6 h(1) +H6
2 + h(7)

6 1 + (5− δ) + 1.

• If f5 is not semi-perfect or (X4, X6) is not (s2, ε)-uniform then

H7
1 = h(1, 2, 3, 4, 5, 6) + h(2, 3, 4, 5, 6, 7)

= h(1, 3, 4, 5, 6) + h(2, 4, 5, 6, 7)

6 h(1) + h(2) +H7
3

6 1 + 1 + (5− δ).
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Lemma 27. Let n > 7(δ−1 + 2). Suppose P = (f1, f2, . . . , fn) is a non-trivial protocol on
Cn with s > 2 colours and let X ∈u fix(P) such that, for each j, either

• at least one of fj−1, fj, fj+1 is not semi-perfect, or

• at least one of (Xj−2, Xj), (Xj−1, Xj+1), (Xj, Xj+2) is not (s2, ε)-uniform,

then fix(P) < s(n−1)/2.

Proof. Let m be an odd integer such that m > δ−1 and 7m 6 n. By Lemma 12 and
Lemma 26, we have

2H(X) 6
m−1∑
j=0

H7j+7
7j+1 +

n∑
i=7m+1

h(i)

6 m(7− δ) + (n− 7m)

= n−mδ.

Since m > δ−1, this means that H(X) < n−1
2

. Therefore fix(P) = sH(X) < s(n−1)/2.

5 Guessing numbers of large odd cycles

In this section, we prove our main result in Theorem 33, which states that, for any given
s, this fractional-clique-partition protocol is optimal on any large enough odd cycle.

Definition 28 (Perfect function). For any function f : Z2
s → Z, let L(f, z) and R(f, z)

denote the subsets

L(f, z) = {x | f(x, y) = z for some y}
and R(f, z) = {y | f(x, y) = z for some x}.

The function f is called a perfect function if it is semi-perfect and the cardinalities |L(f, z)|
and |R(f, z)| do not depend on z, i.e. if |L(f, z)| = |L(f, z′)| and |R(f, z)| = |R(f, z′)| for
all z, z′ ∈ Zs.

Proposition 29. If f is a semi-perfect function then for all z ∈ Zs then

f−1(z) = L(f, z)×R(f, z).

Moreover |L(f, z)||R(f, z)| = s.

Proof. Let L = L(f, z) and let R = R(f, z). By definition, we have f−1(z) ⊆ L × R,
so if x ∈ L and y ∈ R are chosen arbitrarily, then it suffices to show (x, y) ∈ f−1(z).
Now consider the random variable U = (U1, U2) ∈u Z2

s. Since f is semi-perfect, we have
I(U1, U2 | f(U)) = 0. Therefore, U1 and U2 are conditionally independent given f(U).
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Since x ∈ L and y ∈ R, we have P(U1 = x|f(U) = z) > 0 and P(U1 = x|f(U) = z) > 0.
Therefore

P(U1 = x ∧ U2 = y|f(U) = z) = P(U1 = x|f(U) = z)P(U2 = y|f(U) = z) > 0,

and thus (x, y) ∈ f−1(z). Hence f−1(z) = L × R. We also know |L||R| = |f−1(z)| = s
because f is semi-perfect.

Lemma 30. Let s > 2 be an integer, let 0 < ε 6 1
s2(2s+1)

be a constant. Let P =

(f1, f2, . . . , fn) be any non-trivial protocol on Cn with s colours and let X ∈u Fix(P). If
f1 and f2 are semi-perfect functions and (X0, X2) and (X1, X3) are (s2, ε)-uniform, then,
for any c1, c2 ∈ Zs, we have

|{c0|f1(c0, c2) = c1}| = |{c3|f2(c1, c3) = c2}|.

Proof. We proceed by contradiction. Let S0 denote the set {c0|f1(c0, c2) = c1} and let S3

denote the set {c3|f2(c1, c3) = c2}. Without loss of generality assume |S0| < |S3| and so
|S3| − |S0| > 1. Since |S0| < s we have

|S3| − |S0|
|S0|

>
1

s
=⇒ |S3| >

(
1 +

1

s

)
|S0|.

Now because (X0, X2) is (s2, ε)-uniform,

P(X1 = c1 ∧X2 = c2) =
∑
x∈S0

P
(
(X0, X2) = (x, c2)

)
6 |S0|

(
1

s2
+ ε

)
.

Similarly, (X1, X3) is (s2, ε)-uniform, so

P(X1 = c1 ∧X2 = c2) =
∑
x∈S3

P
(
(X1, X3) = (c1, x)

)
> |S3|

(
1

s2
− ε
)
.

However, since ε 6 1
s2(2s+1)

, this implies

1 +
1

s
<
|S3|
|S0|

6
s−2 + ε

s−2 − ε
6

1
s2

+ 1
s2(2s+1)

1
s2
− 1

s2(2s+1)

= 1 +
1

s
,

which is a contradiction.

Lemma 31. Let P = (f1, f2, . . . , fn) be a non-trivial protocol on Cn with s > 2 colours,
let X ∈u Fix(P) and let j be any index (indices taken modulo n). If fj−1, fj and fj+1 are
semi-perfect functions and (Xj−2, Xj), (Xj−1, Xj+1) and (Xj, Xj+2) are (s2, ε)-uniform,
then fj is a perfect function.
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Proof. We proceed by contradiction. Without loss of generality, assume j = 0 and fix
c0, c

′
0 ∈ Zs arbitrarily. Now choose c−1, c1 ∈ Zs such that f0(c−1, c1) = c0 and choose

c′−1, c
′
1 ∈ Zs such that f0(c

′
−1, c

′
1) = c′0. Also let c′′0 = f0(c

′
−1, c1). Now by Lemma 30,

|L(f0, c0)| = |{x|f0(x, c1) = c0}| = |{x|f1(c0, x) = c1}| = |R(f1, c1)|
and |L(f0, c

′′
0)| = |{x|f0(x, c1) = c′′0}| = |{x|f1(c′′0, x) = c1}| = |R(f1, c1)|.

Similarly

|R(f0, c
′′
0)| = |{x|f0(c′−1, x) = c′′0}| = |{x|f−1(x, c′′0) = c′−1}| = |L(f−1, c

′
−1)|

and |R(f0, c
′
0)| = |{x|f0(c′−1, x) = c′0}| = |{x|f−1(x, c′0) = c′−1}| = |L(f−1, c

′
−1)|.

Recall that |L(f0, z)| · |R(f0, z)| = s for all z ∈ Zs (Proposition 29). Therefore,
|R(f0, c

′
0)| = |R(f0, c

′′
0)| if and only if |L(f0, c

′
0)| = |L(f0, c

′′
0)|. Hence,

|L(f0, c0)| = |L(f0, c
′′
0)| = |L(f0, c

′
0)|.

Similarly, |R(f0, c0)| = |R(f0, c
′
0)| (for arbitrary c0, c

′
0 ∈ Zs) and therefore f0 is a perfect

function.

Lemma 32. Let P = (f1, f2, . . . , fn) be a non-trivial protocol on Cn with s > 2 colours,
such that fj is a perfect function for some j. Then fix(P) 6 as(n−1)/2, where a is the
greatest factor of s less than or equal to

√
s.

Proof. Without loss of generality, assume j = 2. Since f2 is perfect, let l = |L(f2, z)| and
r = |R(f2, z)|. Without loss of generality, assume l 6 r and therefore l 6 a. Then X2

takes at most s different values and X1, conditioned on X2 = z for any z ∈ Zs, takes at
most l different values. Therefore, the pair (X1, X2) takes at most ls different values in
Z2
s and h(1, 2) 6 logs(ls). We have

H(X) = h(1, 2, 3, . . . , n)

= h(1, 2, 4, 6, . . . , n− 3, n− 1)

6 h(1, 2) +

(n−3)/2∑
i=1

h(2i+ 2)

6 logs(ls) +
n− 3

2
.

Therefore fix(P) = sH(X) 6 ls(n−1)/2 6 as(n−1)/2.

Theorem 33. For any integer s > 2, let a be the greatest factor of s less than or equal
to
√
s. There exists some N ∈ N such that

gn(Cn, s) =

{
n
2
, for even n,

n−1
2

+ logs a, for odd n > N,

and Pfcp is an optimal protocol on Cn with s colours for any odd n > N .
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Proof. Let ε and δ be the values given in Definition 23, let N = 7(δ−1 + 2) and let
P = (f1, f2, . . . , fn) be any non-trivial protocol on Cn with s colours. We have two cases:

Case one For all j, either:

• at least one of the functions fj−1, fj and fj+1 is not semi-perfect or

• at least one of (Xj−2, Xj), (Xj−1, Xj+1), (Xj, Xj+2) is not (s2, ε)-uniform.

Case two There exists some j such that:

• the functions fj−1, fj and fj+1 are all semi-perfect and

• (Xj−2, Xj), (Xj−1, Xj+1) and (Xj, Xj+2) are all (s2, ε)-uniform.

For case one, we can conclude that fix(P) 6 s(n−1)/2 6 fix(Pfcp) by Lemma 27. In case
two, fj must be a perfect function (Lemma 31) and then fix(P) 6 as(n−1)/2 = fix(Pfcp)
(Lemma 32). In either case, fix(Pfcp) > fix(P). Hence Pfcp is optimal.

6 An application to index coding with side information

In the problem of index coding with side information on a graph G, a sender aims to
communicate n messages c1, c2, . . . , cn (where ci ∈ Zs) to n receivers v1, v2, . . . , vn (the
vertices of G). Each receiver, vi, knows cj in advance, for each j such that vivj is an edge
in G. The sender is required to broadcast a message to all receivers (the same message
to all receivers) so that each receiver, vi, can recover ci. If m is the smallest integer such
that the sender can achieve this by broadcasting one of only m different messages, then
the information defect [13] of G with s colours is defined to be

β(G, s) = logs(m).

The relationship between the guessing number and information defect of a graph is well
known. Explicitly, let Cs(G) be the confusion graph [1, 3] (also known as the “code graph”
[7]), defined to have vertex set Zns , in which two vertices c, c′ ∈ Zns are adjacent if and
only if for some i ∈ [n], ci 6= c′i but for each j such that ij ∈ E(G) we have cj = c′j.
Intuitively c, c′ ∈ Zn

s are ‘confusable’ (joined by an edge in the confusion graph) if there
is no protocol P , for the guessing game on G, such that both c, c′ ∈ Fix(P) (i.e. c and
c′ cannot both be encoded with the same message from the sender.). If χ(Cs(G)) is the
chromatic number of the confusion graph of G and α(Cs(G)) is the size of the largest
independent set in the confusion graph of G, then

β(G, s) = logs χ(Cs(G)) and gn(G, s) = logs α(Cs(G)).

For any graph H, we have the identity χ(H)α(H) > |H| and so we have the identity [13]

β(G, s) + gn(G, s) > logs |Cs(G)| = n.
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We use this identity and the fact that the fractional-clique protocol Pfcp is optimal (The-
orem 33) to prove Theorem 34. This theorem in general is a new result, although the case
s = 2 was proven combinatorially in [3]. Theorem 34 shows that the size of an optimal
index code, β(G, s), depends on the factorisation structure of the size of the alphabet, s,
used for the input.

Theorem 34. For a given s, let b be the smallest factor of s which is at least
√
s. There

exists some N such that for all odd n > N ,

β(Cn, s) =
n− 1

2
+ logs b.

Proof. Write a = s/b. First by Theorem 33, gn(Cn, s) = (n − 1)/2 + logs a for all large
enough odd n. Therefore,

β(Cn, s) > n− gn(Cn, s) =
n− 1

2
+ logs b.

To show that we in fact get equality, we define a set of bs(n−1)/2 possible messages with
which the sender can solve the index coding with side information problem on Cn. Let φ
and ψ be defined as in Definition 13. This means that φ×ψ is a bijection from Za×Zb to
Zs. Now for any colouring c = (c1, c2, . . . , cn) ∈ Zns let the sender broadcast the following
values:

• For i = 1, 2, 3, . . . , n−1
2

, the sender broadcasts the residue φ(c2i−1) + φ(c2i) modulo
a and the residue ψ(c2i) + ψ(c2i+1) modulo b.

• Additionally, the sender broadcasts the residue ψ(c1) + φ(cn) modulo b.

The sender broadcasts n−1
2

residues modulo a and n+1
2

residues modulo b, and so the total
number of possible messages that the sender might send is

m = a(n−1)/2b(n+1)/2 = bs(n−1)/2.

Furthermore, each receiver, vi, knows ci−1 and ci+1, and so can recover both ci because
she can recover both φ(ci) and ψ(ci).
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